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We derive an alternative representation for the relativistic nonlocal kinetic energy operator and we apply it
to solve the relativistic Salpeter equation using the variational sinc collocation method. Our representation is
analytical and does not depend on an expansion in terms of local operators. We have used the relativistic
harmonic oscillator problem to test our formula and we have found that arbitrarily precise results are obtained,
simply increasing the number of grid points. More difficult problems have also been considered, observing in
all cases the convergence of the numerical results. Using these results we have also derived a new represen-
tation for the quantum mechanical Green’s function and for the corresponding path integral. We have tested
this representation for a free particle in a box, recovering the exact result after taking the proper limits, and we
have also found that the application of the Feynman-Kac formula to our Green’s function yields the correct
ground state energy. Our path integral representation allows us to treat Hamiltonians containing nonlocal

operators and it could provide to the community a new tool to deal with such class of problems.
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I. INTRODUCTION

The appearance of nonlocal operators in the relativistic
extensions of the Schrodinger equation poses a serious chal-
lenge both to analytical and numerical calculations. How-
ever, the inclusion of relativistic effects is crucial for ex-
ample in the study of meson phenomenology, where the
Bethe-Salpeter equation (BSE) provides the correct theoreti-
cal tool to describe relativistic bound states. Replacing the
kernel in the BSE with an instantaneous local potential one
obtains a relativistic Schrodinger equation, which is also
known as “spinless Salpeter equation” (SSE). In such case
the Hamiltonian operator is typically given by

H=\p*+m?+ V(7). (1)

From a technical point of view, the inclusion in the Hamil-
tonian of the relativistic kinetic energy nature. The great phe-
nomenological relevance of the SSE has motivated in the
past twenty years many efforts to solve this equation, either
using analytical or numerical techniques. Early work on this
subject is contained for example in [1-6]. The method de-
scribed in [5], which allows one to obtain a matrix represen-
tation of the nonlocal kinetic energy operator, has also been
used recently [7] in conjunction with the Lagrange mesh
method. In this case, the method is particularly appealing
since it does not require the evaluation of the matrix ele-
ments of the potential, but rather only the specification of the
potential on the grid points. This feature is also shared by the
so-called sinc collocation methods (see, for example, [8,9]),
which could also be used straightforwardly together with the
method of [5]: however, we do not consider this possibility
since we are rather interested in developing a completely
new approach, as it will soon become clear.

In a series of recent works, Lucha and collaborators have
been able to obtain precise upper and lower bounds to the
eigenvalues of the RSE, [10-13]: these bounds provide use-
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ful analytic or semianalytic expressions and have been ap-
plied to a number of test problems (see, for example, [13]).
Another approach has been followed in [14], where an effec-
tive Hamiltonian of nonrelativistic form, which includes
relativistic effects by means of parameters depending on the
momentum, was constructed.

Finally, the SSE was also studied in the case of the rela-
tivistic harmonic oscillator (RHO) in three recent papers
[15-17]. In [17] the authors were able to obtain recurrence
relations for the coefficients of the series defining the eigen-
functions. The reader can also find useful the detailed biblio-
graphic information contained in that paper.

The main purpose of the present paper is to develop a
completely new approach to the solution of the SSE: we will
derive an analytical representation of the nonlocal kinetic
energy operator and use it with the variational sinc colloca-
tion method (VSCM) [8] to obtain arbitrarily precise numeri-
cal results. We will use the RHO of [17], for which semiana-
lytical results are available, to test our approach. The new
representation that we have found for the relativistic kinetic
energy operator has also been generalized to the calculation
of the quantum mechanical Green’s function and has allowed
us to obtain a new formula, which differs from the standard
formula of path integrals.

The paper is organized as follows. In Sec. II we describe
the SSE for the RHO and obtain precise numerical solutions
working in momentum space configuration (these results are
then compared with the results of [17]). In Sec. IIT we obtain
an explicit analytical expression for the matrix elements of
the nonlocal kinetic energy operator in terms of the so-called
“little sinc functions” (LSF) recently studied in [9] (these
functions were first introduced by Schwartz [18] and later
used by Baye [19]); we use this representation in the VSCM
working in coordinate space and reproduce the results previ-
ously obtained in momentum space. In Sec. IV we extend
our method to obtain explicit analytical representation for the
Green’s function which holds for general potentials. Finally
in Sec. V we draw our conclusions and set the direction for
future work.
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II. THE RELATIVISTIC HARMONIC OSCILLATOR

The RHO problem corresponds to the case in which a
spherical harmonic oscillator potential V(r)=ar? is used in
the Hamiltonian of Eq. (1). After a simple rescaling of the
mass and of the energy the Schrodinger equation can be cast
in the form

NP2+ w? + P21l = &), (2)

depending on a single parameter ,ul. The advantage of con-
sidering this potential lies in the fact that the corresponding
Schrodinger equation in momentum space representation is
local and it can therefore be attacked with standard tech-
niques. In this case we are left with the equation

[- A, +\p*+ 1’1(p) =(p), 3)

e
where AP=92+32+3?‘

The authors of f17] focus their analysis on the /=0 solu-
tions and obtain a recurrence relation for the coefficients of
the reduced radial wave function y(p)=v4mpW¥(p). The same
problem has also been discussed by Trott in [20], using a
basis of harmonic oscillator wave functions in momentum
space and numerically computing in this basis the matrix
element (i|\—d"+m?).

We will use the VSCM of [8,9] to obtain a numerical
solution of the problem and then compare our solution with
the results of [17]. The VSCM uses sinc functions (SF), de-
fined on the real line, or “little sinc functions” (LSF) [9], a
particular generalization of sinc functions defined on finite
intervals, to solve the Schrédinger equation by a collocation
technique. Since the details of this method are clearly ex-
plained in [8,9], we will here avoid mentioning all the tech-
nical details focusing on giving a more qualitative picture.

SF and LSF are functions which are strongly peaked
around a certain value and they fastly decay and oscillate,
when moving away from this value. Under certain conditions
they can be chosen to be orthogonal: such set of orthogonal
functions is obtained by performing a replica of one function
at the points where this function vanishes, thus effectively
introducing a grid. Unless otherwise specified, either by the
Physics of the problem or by convention, the spacing of the
grid is arbitrary and, if not carefully chosen, it strongly af-
fects the precision of the results. In a recent paper Amore
et al. have used an arbitrary scale factor as a variational
parameter in the solution of the Schrddinger equation using a
basis of simple harmonic oscillator wave functions [21]: in
that case it was shown that the optimal scale factor could be
chosen to minimize the trace of the Hamiltonian matrix in
the Hilbert subspace spanned by the N elements of the basis.
The same principle, which was inspired by the principle of
minimal sensitivity (PMS) [22], was then used in [8,9] using
a sinc collocation technique. As mentioned in the Introduc-
tion the sinc collocation has the great advantage of avoiding
the evaluation of matrix elements of the potential, which is
simply “collocated” at the grid points; on the other hand the
evaluation of the matrix elements of the non-relativistic ki-

'We adopt the same notation used in [17].

PHYSICAL REVIEW A 75, 032111 (2007)

netic operator is also quite simple, since it involves matrices
whose elements are obtained by collocating the derivative of
a given sinc function at the grid points. In this way one easily
obtains a matrix representation for the Hamiltonian.

For example, in one dimension one has

ﬁ2
Hkl =—- 2_C§3) + 5le(kh), (4)
m

where ¢ is the matrix obtained from the second derivative
of the sinc functions. & is the grid spacing. In the following
we will set =1, so that & will not be confused with the
Planck constant.

The diagonalization of H allows one to obtain the eigen-
values (energies) and the eigenvectors (wave functions)
of the problem (the number of these eigenvalues and eigen-
vectors being equal to the number of sinc functions used).
Before trying to deal with the RHO in coordinate space,
where it is nonlocal, we wish to use the VSCM to find nu-
merical solutions in momentum space, where it is local. In
this case machinery of VSCM applies straightforwardly and
we are able to verify our claim of accuracy of our method. To
allow a comparison with [17] we have used w=30 and
calculated the values of e—u for u=30 using grids with
different N. The optimal region in momentum space has
been obtained by applying the PMS condition to the prob-
lem. Our results show that the method converges quite rap-
idly; as a matter of fact, for N=50 we obtain e—pu
=0.386 266 042 572 445 193 517 188 444 455 which has all
the digits correct and agrees with the result shown in Table 1
of [17], although the latter contains only six digits.

However, we have also performed a more accurate test
using the recurrence relations for the coefficients appearing
in the series for the wave functions given in [17]. We have
extracted these coefficients by expanding around p=0 the
wave function obtained with our method and we have com-
pared them with the results obtained using directly the recur-
rence relation of Eq. (8) of [17]. In this way we have ob-
tained an indipendent confirmation of the accuracy of our
results.

The importance of the RHO lies in the unique possibility
of having a complete control on the solutions of the problem,
which can be calculated to any desired accuracy, despite re-
taining the nonlocal nature of the kinetic energy operator. In
more general problems, when the potential is not quadratic in
the coordinates, one cannot recover a local Schrodinger
equation by working in the momentum space configuration.
In these cases one possibility is to resort to a nonrelativistic
expansion in powers of p/u, which to lowest order provides
the rest mass and the usual nonrelativistic kinetic energy

A2
Ve e T (5)

2p
However the Hamiltonian operator obtained in this way con-
tains derivatives of higher order. In such cases it is still pos-
sible to apply the VSCM in coordinate space to solve these
equations, by using the matrices corresponding to the higher
order derivatives (which can be computed quite easily). Al-
though the implementation of this procedure poses no prob-
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lem, we wish to show that in certain cases it can provide
unexpected results, such as results which converge to wrong
solutions as the higher order relativistic corrections are
added.

We use once again the RHO as our “guinea pig” and work
in momentum space configuration using a potential obtained
by expanding the kinetic term up to a give order in p?/u’.
The expression in Eq. (5), for example, would represent the
potential obtained working to order p?/u* and corresponds
to the usual nonrelativistic harmonic oscillator. However, in
the inclusion of the higher order terms we have to take into
account that terms of order @2/ ,4/,2)2”, with n integer, are
negative, and therefore one always needs to work to order
(p?/ 1*)**! to have a spectrum bounded from below. We call

‘72,,+1(p) the potential in momentum space corresponding to
the expansion to order (p?/u?)*"*!. For example, to order
(p*/ u?)® we have

A

Vip)=p+——--—+ . 6
3(]7) M 2M 8,“«3 16,&5 ()

Once we substitute the nonlocal operator with its local
expansion to a given odd order we can solve the correspond-
ing local Schrodinger equation and thus obtain the energies
and the wave functions. We have calculated the values of &
—u for the ground state of the potential using N=100 and
two different values of u (u=30 and w=>5). In the case cor-
responding to w=30 we have observed that the series con-

verges to the exact result within 28 digit precision for \731,
while in the case corresponding to u=5 we have observed
that the series does not converge to the exact result, provid-

ing its best approximation for ‘79.

We can give a simple explanation of this behavior: for p
> u the series in Eq. (5)—where p is now a real number—
diverges and therefore the potential obtained using this series

V..(p)=lim,_...,Vs,,(p) corresponds to the original potential
with an infinite wall located at p=u. In the case u=30 the
wave function is extremely small at p=u and therefore the
nonrelativistic expansion is capable of providing highly (but
not arbitrarily) accurate results; on the other hand, in the case
m=35 the wave function is sizable at p=u and the nonrela-
tivistic expansion provides a very poor approximation. The
situation would clearly get worse as u is taken to be smaller.

It should be stressed that in both cases the nonrelativistic
expansion does converge, although not to the exact result,
but rather to a value which depends on the scale w. I am not
aware if this is a well-known fact in the literature.

III. MATRIX ELEMENTS OF \p*+ u?

In this section we want to describe a way of calculating
the matrix elements of the relativistic kinetic energy opera-
tor, which avoids the problems of the local nonrelativistic
expansion described in the previous section. As mentioned in
the Introduction, there are approaches in the literature to cal-
culate the matrix elements of this operator, although they are
numerical. For example, the method described in [5] consists
of four steps, i.e., the computation of (K?),=(i|p*+u?|)),
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the diagonalization of K2, the computation of the diagonal
square root matrix, and finally the computation of the square
root matrix K. Because of the calculation of K is numerical
this procedure would not be profitable in a variational
scheme, where the PMS condition is always analytical.

However, we will now show that it is possible to obtain
once and for all an analytical representation of \p’+ u” and
indeed of any nonlocal operator which is function of the
momentum operator. Because our results will be analytical it
will be possible to extend the VSCM to include relativistic
nonlocal terms, in what we will call the “relativistic varia-
tional collocation method” (RVSCM).

Let us now present our results. We will work in the fol-
lowing with the little sinc functions (LSF) of [9], although
similar results can also be obtained with the usual sinc
functions.” The LSF have been obtained in [9] using the
orthonormal basis of the wave functions of a particle in a box
with infinite walls located at x=+L:

,(x) = sm( 2—(x + L)) (7)
A LSF is simply obtained as
N
N = S 0. ®)
where y, = &—kh The LSF should be regarded as an ap-

proximate representatlon of a Dirac delta function. To sim-
plify the notation we have introduced the grid spacing h
=2L/N. k is an integer which takes the values k=-N/2
+1,-N/2+2,...,N/2-1, each corresponding to a different
grid point.

As shown in [9] an explicit expression for the LSF can be
obtained for even values of N in the form

0 sin[(l 2;/) —(x- kh)]

2 sm{ﬂ(x kh)J

os| | 1+ —|—(x+kh)
2N/ h

- . (9)
cos{ —(x+ kh)J

sp(h,N,x) =

2Nh

After simple algebra one can also obtain the alternative ex-
pression

k .
Sk(h,N,x) =-— — E (l)n+l sm(? + ﬂ)et(nmc/ZL)

n——N

(10)

S . >
which is suited to calculate the action of yp~+ u” over a LSF:

%As a matter of fact it is shown in [9] that for N— o and keeping
h fixed the LSFs reduce to the SFs.
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o — k
\p? + wlsy(h,N,x) = — — E (i)™! sm(%T + r]if)
n——N

2
nar 2 i(nmx/2L)
— | + . 11
<2L> re ()

Upon collocation on the grid, i.e., after setting X—Xj, We
have the matrix element

-
Kyj=\p*+ Mzsk(h N,x))

k 2 N
=-= E (@)™ sm( n; + —’;vw> (%) + p2elnmIN),
n——N

(12)

Notice that, despite its appearance, the expression above is
real, as it would be evident expressing it in terms of trigono-
metric functions; however, we prefer to leave it in terms of
plane waves.

To check that Eq. (12) is indeed the correct matrix ele-
ment of the nonlocal kinetic energy operator we can calcu-
late the matrix product (K?);,=% KK

(K= KK
J
N2-1  +N 4N

E E 2 (l)n1+n2+2

J——N/2+1 ny==N ny=—-N

. (nlﬂ' knlﬂ') . (}’l2’7T jnzﬂ')
Xsin| — + sm| —+——
2 N 2 N

2 2
nm 2\/( nzﬂ-) il(jn+Iny)w/N]
X — + - + 2
\/< 2L> WL ) Hee

(13)

and compare it with the matrix (K?),,=(p>+ u?)y, calculated
either us1ng the very same Eq. (12) with y( )2 +u?
—>(2L) +,u or using the matrix for the second derlvatlve to
represent p° (see [9]).

We can define

N/2-1

Cnlnz = E

. n
e/UmmN) sm( 27 + ]”277') (14)
J=—=N2+1 2

N

which for n,=+n, takes the values

C"l"l =_Cn1,—n1 == _( )n1+1 (15)
When C, ,, is used inside Eq. (13) it can be seen that only

the terms corresponding to n,==*n; contribute, whereas the

remaining terms cancel out. In this case we obtain
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2 E (l)n1+n2+2

( 17T+kn177>
n1=—Nn2——N 2 N
2 2
n 2\/(”2’7T) 2

XAl =] + — +
\/< 2L> KN\op ) ™#
i(Inym/N) nl+l

Xe'm ( (=) )( Sy = Oy o)

ntl niw knﬂ')
=—— + —
n_z—:zv (i) s1n( 5 N

ni 2 s
X o 2 l(JI‘HT/N). 16
{<2L> + }e (16)

This completes our proof, since we have precisely ob-
tained the expression that we would have reached if we had
used Eq. (12) directly with the squared operator. We have
also numerically verified this result and confirmed its valid-
1ty.

As done for the nonrelativistic Schrodinger equation we
can obtain the Hamiltonian matrix

(K==

Hyy = Ky + 6y V(kh). (17)

For a fixed N the matrix elements H, depend upon the
arbitrary scale L: as discussed in [8,9], it is possible to obtain
an optimal value for L by applying the principle of minimal
sensitivity (PMS) to the trace of the N X N Hamiltonian ma-
trix Ty(L)=Tr[Hyxy]:

d
d—LTN(L) =0. (18)

Physically one can justify this condition by observing that
the trace of the Hamiltonian is an invariant under unitary
transformations and therefore independent of L. On the other
hand the trace of the truncated matrix does depend on L: one
can therefore apply the PMS condition (18) to minimize such
dependence and thus obtain the scale where the problem is
less sensitive to changes in L (normally this equation pro-
vides a single solution, although in the case of multiple so-
Iutions one would choose the solution corresponding to a
flatter curve). Since Eq. (18) is an algebraic equation, the
computational cost needed in solving it is quite limited. The
scale L obtained in this way is then used inside Eq. (17) and
the Hamiltonian matrix is diagonalized, thus providing the N
lowest eigenvalues and eigenfunctions. The error corre-
sponding to choosing L according to the PMS is observed to
be nearly optimal, leading to results which converge more
rapidly as N increases.

We have used Eq. (17) in the case of the RHO with u
=30 and u=35, i.e., the case which was previously studied in
the momentum representation. The numerical results that we
have obtained in this nonlocal representation display a rate of
convergence similar to the one observed in the local repre-
sentation. In Fig. 1 we have plotted the difference |¢V)
— &exaci] @s a function of the scale L and compared the results
with the predictions obtained using the PMS condition (18).
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FIG. 1. (Color online) |¢™) - g, for the RHO as a function of
L for u=30. The results of the PMS are also displayed.

Here ¢ ™) is the energy for the ground state obtained using a

given value of N, whereas €.y, 1S approximated with the
energy obtained using N=100.

In the case u=5 where the nonrelativistic expansion pro-
vides a quite poor approximation with just a four digit pre-
cision, the result obtained in the nonlocal representation has
12 correct digits for N=50: (e—u)=0.915319 412 008. Al-
though the results obtained studying the RHO are sufficient
in our opinion to prove the efficiency and simplicity of the
method that we are proposing in this paper, we wish to con-
sider few examples which can better illustrate the power of
our method.

As a first example we have chosen the potential

V(x) = Va* + x* (19)
and the corresponding SSE [with x € (0,%)]:
[Vp? + 2+ Va? + 2Jlx) = egh(x). (20)

Notice that for a>1 and w>1 one recovers the standard
harmonic oscillator (SHO). We have applied our method us-
ing a=pu=1 and we have obtained (e—u)=2.075 870921,
using N=100, where all the displayed digits are correct.

As a second example that we wish to consider the SSE
[with x € (0,)]:

[VB* + 57 + >+ Va® + x*(x) = e(). 1)

Also in this case we have assumed w=a=1 and we have
obtained (e—u)=2.724 199 599, using N=100, where all the
displayed digits are correct.

As a final example we have considered the equation

2
{Mln{1+2p—“2} +V(x)}z,b(x)=E¢(x) (22)
with V(x)=x?/2 and x € (=%, +). Notice that the equation
obtained expanding to leading order in powers of p/u is the
standard Schrodinger equation for the harmonic oscillator.
Despite the rather ugly form of the “kinetic” operator in the
present case, the application of our method is straightforward
and an expression for the matrix elements of the Hamiltonian
is easily obtained:
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k 2w |
= ILL 2 (l)n+1 SIH<H+%)]11{] + n 3 2}et(/n-rr/N)

n——N 2 81“’ L

We have solved this problem assuming =10 and we have
obtained the ground state energy £=20.049 097 25 using N
=30 (all the displayed digits are correct). Although we did
not have any physical model in mind when we considered
the last two examples, we are aware that modifications of the
standard Schrodinger equation (not necessarily of this kind)
appear in several areas of research: for example, the intro-
duction of a minimal length uncertainty relation naturally
leads to modified Schrodinger equations (see, for example,

[23]).
IV. GREEN’S FUNCTIONS

In this section we want to show that the method that we
have developed in the previous section can also be applied to
the calculation of matrix elements of other nonlocal opera-
tors. We will see that SF and LSF are a powerful tool, and
actually they have already been used earlier in a different
context in applications to quantum field theory (QFT) (see,
for example, [24]).

To start we consider an operator o= f(p): in such case,

the results that we have obtained in the previous section ap-
ply straightforwardly and one obtains

=—= 2 (i)™ sm(H + %)f(mj i(jnmIN)

N2y 2 2L
(24)

One example of application of this formula is the calcu-
lation of the Green’s function for a free particle in a box
|x| <L, which is given by (see, for example, [25,26])

GO(y,05x.0) = (a7,

The notation |x) indicates a state localized at a point x: in
our formalism this is simply represented by a SF or a LSF
with a peak at this point. Notice, however, that SF and LSF
are not normalized to one, seeM which means that we
have an extra factor 1/yh=+N/2L for each SF or LSF,
where 4 is the spacing of the grid.

Therefore we can write

nmw  kna
GOx,0:x,1) =— — ntl sm(—+—)
(x,05x;,1) n_E_N( i) >t N
% e—it[(l/2,u,)(mr/2L)2] ei(/’nw/N), (25)

X and x; being points on the grid. In the limit of an infinitely
dense grid one can switch from the discrete indices &, to the
continuum indices x, y:

GO(y,0;x,1)

+N
- _ L 2 ln+1 (inmx/2L)— (m Z/SLZ,u) sm( wyn + ﬂ) )
L=, 2

(26)
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Notice that in the case of a free particle the exact result can be calculated with the standard path integral and reads

GO(0,05x,1) = | =E—eli20), (27)
2 it

In our formalism we have

+N

1 . . ™
GO0.05x,1) == - 3 il D) sin(;) (28)
n=-N
+N/2
:L 2 e—(iﬂ'zth/ZLz,u)—(iﬂztn/2L2p.)+(i7Txn/L)—(i7T2t/8L2,u)+(i1Tx/2L) (29)
2L n=-N/2 .

For N>1 we can approximate this sum with an integral
and thus obtain which reads

G(0,0:x,7) = 1 A /L.ei(y.leh)
2 N 2t

1 i
(Z + Z)[(N+ 1)7rt — 2L x|
X | Erf

L \J%

(i + i)[(N— 1)t + 2L ux]

+ Erf
L V%

(30)

In the limit N— o we can approximate each error function to
one and therefore obtain the exact expression (27).

To further test this formula we can also use the Feynman-
Kac formula to extract the ground state energy

1
Ey=-lim —In fde(x,— i7,x,0). (31)

70 T

In our case the integral appearing in Eq. (31) becomes a
sum over all the grid points and therefore reads
N2-1  +N

1 1
Ey=-1lim —Iny — > ()

% T Nh =Nt nen

Xsin(%-r+ knﬂ-)e—7{1/2;L(n77/2L)2]ei(kn77/N) . (32)

Because we are taking the limit 7— o, the exponential
factor in this expression will be quite small unless n=+1
(the term n=0 vanishes). For this reason we can approximate

NI2-1
1 1 k
Ey=-1lim —In) — > [2(3_(“27/8”L2) cosz(—w)]
77— T Nh k=—N/2+1 N
1 w
—_ lim — 1n{e—(ﬂ27/8,uL2)} =— (33)
70 T S,U«L

which is indeed the exact ground state of the particle in the
box.

We can now consider the more general case in which the
Hamiltonian contains a potential. In this case the formula of
Sec. IV cannot be applied directly because p and X do not
commute. However we can use the Trotter product formula
to write [25,26]

G(y,0:x,1) = lim <x|(e—i(ﬁz/Zuﬁ)te—i(V/N)t)ﬁ|y> ) (34)

N—x

We can use the completeness of the coordinate states |x)
to write

G(y,O;x,t):lim > <x|(e_i(ﬁzlzf‘ﬁ)’e_"(wﬁ)’)|x,l>(x,||

N— Il TN

VP P .
X(e i(p /2,U,N)te ’V/N’)|x,2> . <xr]\’]|

X e—i(ﬁzlz,ufl)t e—i(V/X/)z) Iy, (35)

where the indices r; span all the lattice. Notice the factors

t/N, which correspond to having a “timeslicing,” as usual in
path integration; at each intermediate time each point on the
grid can be reached.

We define

Vi) = hixle TNy = o VNS (36)

which is diagonal in the coordinates. We can now write the
compact expression

1
GO.0wn) = lim — X GOr,.r- e ) Vilx, )

N—x h 157, N
X G(O)(x,z,t —2¢ Xy, 1 = )

XVi(,0) - Vi, )G O(3,03x,,8), (37)

where £ =1/N. This expression should be compared with the
standard path integral expression [25,26]
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u \M2
G(x,1;y,0) = lim fdxl---dx,v_1< - )
2mie

N—o
X i€ /2 (g - PV, (38)

where e=1/N.

Equation (37) can be also compared with the exact ex-
pressions for the N-fold time sliced spacetime propagators
which Crandall has obtained in Egs. (2.9) and (2.12) of [27]
using the standard representation. Equation (37) provides a
representation of the path integral for quantum mechanical
problems with a clear physical interpretation: the propagation
of a particle sitting at y at time =0 and reaching x at time ¢
occurs moving at each time interval & from a point of the
grid to another one in all possible ways (remember the sums
over the grid points). G)(x;,t;x;,1+¢&) represents the prob-
ability of going from a point x; to another point x; on the grid
in a time interval e; at this point an interaction takes place,
through the potential term V. We stress that our representa-
tion corresponds to a different way of discretizing space
which also allows one to deal with Hamiltonians containing
nonlocal operators (the SSE is one example) and could be a
useful tool for problems which cannot be easily treated with
the conventional formalism.

V. CONCLUSIONS

In this paper we have derived an analytical expression for
the non-local relativistic kinetic energy operator which ap-
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pears in the Salpeter equation. This representation is exact in
the limit of an arbitrarily fine grid and we have used it to
solve the Salpeter equation for the relativistic harmonic os-
cillator, where semianalytical results are available. We have
found that our representation can be used together with the
variational sinc collocation method (VSCM) to provide arbi-
trarily precise results, with a strong rate of convergence. The
most important result of this paper is the representation for
the quantum mechanical Green’s function, which requires
the evaluation of matrix elements of nonlocal operators. We
have provided a general formula and we have explicitly
tested it in the case of a free particle in a box, recovering the
exact result. Our representation of the path integral can be
applied also to problems in which the Hamiltonian contains
nonlocal operators (which would be the case of the Salpeter
equation) and it is suitable both for numerical and analytical

calculations, in the cases in which the limits N ,ZV — 00 can be
calculated (as for a free particle in a box).

Given the importance of path integrals in many areas of
physics, we feel that the results contained in this paper could
have a large number of applications. Finally, we wish to
mention that it would be worth exploring the possibility to
use the PMS in a numerical scheme to optimize convergence

to the exact result for finite values of N and N. It also re-
mains to explore the possibility to apply our formalism to
quantum field theory (QFT), which we plan to address in
future works.
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