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Evidence for the epistemic view of quantum states: A toy theory
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We present a toy theory that is based on a simple principle: the number of questions about the physical state
of a system that are answered must always be equal to the number that are unanswered in a state of maximal
knowledge. Many quantum phenomena are found to have analogues within this toy theory. These include the
noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state,
the impossibility of discriminating nonorthogonal states, the impossibility of a universal state inverter, the
distinction between bipartite and tripartite entanglement, the monogamy of pure entanglement, no cloning, no
broadcasting, remote steering, teleportation, entanglement swapping, dense coding, mutually unbiased bases,
and many others. The diversity and quality of these analogies is taken as evidence for the view that quantum
states are states of incomplete knowledge rather than states of reality. A consideration of the phenomena that
the toy theory fails to reproduce, notably, violations of Bell inequalities and the existence of a Kochen-Specker

theorem, provides clues for how to proceed with this research program.
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I. INTRODUCTION

In this article, we introduce a simple toy theory based on
a principle that restricts the amount of knowledge an ob-
server can have about reality. Although not equivalent to
quantum theory nor even competitive as an explanation of
empirical phenomena, it reproduces in detail a large number
of phenomena that are typically taken to be characteristically
quantum. This, and the fact that the object analogous to the
quantum state in the toy theory is a state of incomplete
knowledge, are the grounds upon which we argue for our
thesis: that quantum states are also states of incomplete
knowledge.

We begin by clarifying the distinction between states of
reality and states of knowledge. To be able to refer to it
conveniently, we introduce the qualifiers ontic (from the
Greek ontos, meaning “to be”) and epistemic (from the
Greek episteme, meaning “knowledge”). An ontic state is a
state of reality, whereas an epistemic state is a state of
knowledge. To understand the content of the distinction, it is
useful to study how it arises in the uncontroversial context of
classical physics.

The first notion of state that students typically encounter
in their study of classical physics is the one associated with a
point in phase space. This state provides a complete specifi-
cation of all the properties of the system (in particle mechan-
ics, such a state is sometimes called a “Newtonian state™). It
is an ontic state. On the other hand, when a student learns
classical statistical mechanics, a new kind of state is intro-
duced, corresponding to a probability distribution over the
phase space (sometimes called a “Liouville state™). This is an
epistemic state. The critical difference between a point in
phase space and a probability distribution over phase space is
not that the latter is a function. An electromagnetic field con-
figuration is a function over three-dimensional space, but is
nonetheless an ontic state. What is critical about a probability
distribution is that the relative height of the function at two
different points is not a property of the system (unlike the
relative height of an electromagnetic field at two points in
space). Rather, this relative height represents the relative
likelihood that some agent assigns to the two ontic states
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associated with those points of the phase space. The distri-
bution describes only what this agent knows about the sys-
tem.

There is one case wherein the distinction between an ontic
state and an epistemic state breaks down, and that is for
epistemic states describing complete knowledge, because the
latter also contain a complete specification of a system’s
properties. For example, states of complete knowledge in a
classical theory are represented by Dirac-é functions on
phase space, and these are associated one-to-one with the
points of phase space. The epistemic states with which we
shall be interested in this paper—the ones with which we
hope to associate quantum states—are those describing in-
complete knowledge.

A widespread view among physicists and philosophers of
physics is that pure quantum states are ontic states. Only
mixed quantum states are taken to be epistemic states, spe-
cifically, states of incomplete knowledge about which pure
quantum state is really occurrent. In a variant of this view,
even the mixed quantum states are interpreted as ontic (this
approach is motivated by the fact that a mixed state may be
expressed as a convex sum of pure states in many different
ways). We shall describe proponents of both of these view-
points as proponents of the ontic view of quantum states. In
contrast, the thesis we wish to defend is that all quantum
states, mixed and pure, are states of incomplete knowledge.
This viewpoint will be referred to as the epistemic view of
quantum states.

The ontic view of quantum states has a long history in the
interpretation of quantum mechanics. Schrodinger initially
interpreted the quantum state as a physical wave, and never
wholly abandoned this view. In the classic textbooks of Dirac
[1] and of von Neumann [2], the quantum state is taken to
provide a complete specification of the properties of a sys-
tem. This is also true of both collapse theories [3-5] and
Everett-type interpretations [6,7]. Even within the popular
hidden variable theories, such as the de Broglie-Bohm theory
[8-10] and the modal interpretation [11-13], although the
quantum state has an epistemic role to play in specifying the
probability distribution over hidden variables, it is funda-
mentally an ontic state insofar as it acts as a guiding wave,
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causally influencing the dynamics of the hidden variables.
The tension between the epistemic and ontic roles of the
quantum state in these interpretations has understandably
troubled many authors, and although efforts have been made
to reduce the tension [10], these have tended to assign less
rather than more epistemic significance to the quantum state.

The epistemic view, although less common than the ontic
view, also has a long tradition. As we shall see in detail
further on, Einstein’s argument for the incompleteness of
quantum mechanics (which is most clear in his correspon-
dence with Schrodinger [14] but was made famous in the
Einstein, Podolsky, and Rosen (EPR) paper [15]) is an argu-
ment for an epistemic view of quantum states. The work of
Ballentine on the statistical interpretation [16,17] can be in-
terpreted as a defense of the epistemic view, as can that of
Emerson [18]. Peierls was also an early advocate of this
interpretation of the quantum state [19]. It is only recently,
with the advent of quantum information theory, that the
epistemic view has become more widespread. The work of
Caves, Fuchs, and Schack has been particularly notable in
promoting this view [20-22], with Fuchs’s manifesto on the
subject [23] being one of the most eloquent and convincing
to date. The present work owes much of its inspiration to this
research program, in particular, the idea of deriving quantum
phenomena from a principle that maximal information is in-
complete and cannot be completed [20,24].

Despite the fact that the epistemic view appears to be on
the rise, our impression is that many would-be supporters
have failed to completely abandon their ontic preconcep-
tions, perhaps due to the ubiquity of ontic language in the
literature and perhaps due to a vague feeling that the
epistemic path is one that has been shown to be inconsistent.
We hope through this article to correct some of these mis-
conceptions and to increase the respectability of this view-
point.

We shall argue for the superiority of the epistemic view
over the ontic view by demonstrating how a great number of
quantum phenomena that are mysterious from the ontic
viewpoint appear natural from the epistemic viewpoint.
These phenomena include interference, noncommutativity,
entanglement, no cloning, teleportation, and many others.
Note that the distinction we are emphasizing is whether the
phenomena can be understood conceptually, not whether
they can be understood as mathematical consequences of the
formalism, since the latter type of understanding is possible
regardless of one’s interpretation of the formalism. The
greater the number of phenomena that appear mysterious
from an ontic perspective but natural from an epistemic per-
spective, the more convincing the latter viewpoint becomes.
For this reason, the article devotes much space to elaborating
on such phenomena.

Of course, a proponent of the ontic view might argue that
the phenomena in question are not mysterious if one aban-
dons certain preconceived notions about physical reality. The
challenge we offer to such a person is to present a few simple
physical principles by the light of which all of these phenom-
ena become conceptually intuitive (and not merely math-
ematical consequences of the formalism) within a framework
wherein the quantum state is an ontic state. Our impression is
that this challenge cannot be met. By contrast, a single
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information-theoretic principle, which imposes a constraint
on the amount of knowledge one can have about any system,
is sufficient to derive all of these phenomena in the context
of a simple toy theory, as we shall demonstrate.

A few words are in order about the motivation for such a
principle. In Liouville mechanics, states of incomplete
knowledge exhibit phenomena analogous to those exhibited
by pure quantum states. Among these are the existence of a
no-cloning theorem for such states [20,25], the impossibility
of discriminating such states with certainty [20,26], the lack
of exponential divergence of such states (in the space of
epistemic states) under chaotic evolution [27], and, for cor-
related states, many of the features of entanglement [28]. On
the other hand, states of complete knowledge do not exhibit
these phenomena. This suggests that one would obtain a bet-
ter analogy with quantum theory if states of complete knowl-
edge were somehow impossible to achieve, that is, if some-
how maximal knowledge was always incomplete knowledge
[20,24,29]. This idea is borne out by the results of this paper.
In fact, the toy theory suggests that the restriction on knowl-
edge should take a particular form, namely, that one’s knowl-
edge be quantitatively equal to one’s ignorance in a state of
maximal knowledge.

It is important to bear in mind that one cannot derive
quantum theory from the toy theory, nor from any simple
modification thereof. The problem is that the toy theory is a
theory of incomplete knowledge about local and noncontex-
tual hidden variables, and it is well known that quantum
theory cannot be understood in this way [30,32,33]. This
prompts the obvious question: if a quantum state is a state of
knowledge, and it is not knowledge of local and noncontex-
tual hidden variables, then what is it knowledge about? We
do not at present have a good answer to this question. We
shall therefore remain completely agnostic about the nature
of the reality to which the knowledge represented by quan-
tum states pertains. This is not to say that the question is not
important. Rather, we see the epistemic approach as an un-
finished project, and this question as the central obstacle to
its completion. Nonetheless, we argue that even in the ab-
sence of an answer to this question, a case can be made for
the epistemic view. The key is that one can hope to identify
phenomena that are characteristic of states of incomplete
knowledge regardless of what this knowledge is about.

The outline of the paper is as follows. In Sec. II, we
introduce our foundational principle—that there is a balance
between knowledge and ignorance in a state of maximal
knowledge—and define our measures of knowledge and ig-
norance. From this starting point, and a few other assump-
tions, we derive the toy theory. We begin in Sec. III by con-
sidering the simplest possible system that can satisfy the
principle. In Sec. IV we consider pairs of these systems, and
in Sec. V, triplets. For each of these cases, we determine the
epistemic states, measurements, and transformations that are
allowed by the principle, as well as the manner in which
epistemic states must be updated after a measurement. Along
the way, we draw attention to various analogues of quantum
phenomena. Some additional analogues are enumerated in
Sec. VI, while in Sec. VII we identify some quantum phe-
nomena that are not reproduced by the toy theory and con-
sider what these teach us about how to proceed with the
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epistemic research program. In Sec. VIII, we discuss related
work, specifically, Kirkpatrick’s playing card model [34],
Hardy’s toy theory [35], Smolin’s “lockboxes” [36],
Zeilinger’s foundational approach [37], and Wootters’ dis-
crete Wigner function [38]. We conclude in Sec. IX with
some questions for future research. Some additional material
is presented in the Appendices, namely, a discussion of why
the toy theory for N elementary systems cannot be under-
stood as a restriction upon quantum theory for N qubits, and
of the significance of our results for information-theoretic
derivations of quantum theory.

II. THE KNOWLEDGE BALANCE PRINCIPLE

The toy theory is built on the following foundational prin-
ciple:

If one has maximal knowledge, then for every sys-
tem, at every time, the amount of knowledge one
possesses about the ontic state of the system at
that time must equal the amount of knowledge one
lacks.

We call this the knowledge balance principle. As stated, it
is not sufficiently explicit, because the manner of quantifying
the amount of knowledge one possesses and the amount one
lacks has yet to be specified. Although the measure of knowl-
edge that we adopt is very simple, it is not a conventional
one, and consequently we must define it carefully.

We begin by introducing the notion of a canonical set of
yes-no questions. This is a set of yes-no questions that is
sufficient to fully specify the ontic state, and that has a mini-
mal number of elements. To clarify this notion, consider a
situation wherein there are four possible ontic states. A set of
questions that will determine which of the four applies is as
follows: “Is it 1, or not?,” “Is it 2, or not?.” “Is it 3, or not?,”
and “Is it 4, or not?.” This questioning scheme is inefficient
however. A more efficient scheme divides the set of possi-
bilities into two with every question. Indeed, one can fully
specify the ontic state with just two questions, for instance:
“Is it in the set {1,2}, or not?” and “Is it in the set {1,3}, or
not?.” As there are four answers to two yes-no questions, two
is the minimal number of questions that can possibly specify
which of four states applies. So the two questions just de-
scribed form a canonical set. Note also that there can be
many canonical sets of questions. For instance, a different
pair of questions, namely, “Ts it in the set {1,2}, or not?” and
“Is it in the set {2,3}, or not?” also form a canonical set.

With the notion of a canonical set in hand, we can define
our measure of knowledge. It is simply the maximum num-
ber of questions for which the answer is known, in a varia-
tion over all canonical sets of questions. Our measure of
ignorance is simply the difference between this number and
the total number of questions in the canonical set.

The knowledge balance principle, made specific with our
measure of knowledge, is the starting point of the toy theory.
There are, however, a few other assumptions that shall go
into its derivation, to which we now turn.

We assume that all physical systems are such that there
can be a balance of knowledge about them. This implies that
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the number of yes-no questions in a canonical set must be a
multiple of two, because if this were not the case, one could
not have an equality between the number of questions an-
swered and the number of questions unanswered. The sim-
plest possible case is to have just two questions in the ca-
nonical set. Because a canonical set is, by definition, the
minimal sufficient set of questions required to specify the
ontic state, it follows that for two questions there are four
possible ontic states. Thus the simplest possible system in the
toy theory has four ontic states. We call this an elementary
system.

We shall also assume that every system is built of elemen-
tary systems. For a pair of elementary systems, there are four
questions in the canonical set, and sixteen possible ontic
states in all. For N systems, there are 2N questions in the
canonical set and 2%V possible ontic states. This “reduction-
ist” assumption will have very significant consequences in
the development of the toy theory, as the knowledge balance
principle will yield more constraints for composite systems:
not only must there be a balance of knowledge and ignorance
for the whole, but for every part of the whole, right down to
the smallest subsystems.

The motional degree of freedom for all systems is treated
classically, a background of flat space-time is assumed and
every elementary system is taken to exist at a point in space.

We also assume that the outcome of a reproducible mea-
surement depends only on the ontic state of the system being
measured. Moreover, we assume that a transformation ap-
plied to one system can only affect the ontic state of that
system, and not the ontic state of others. If the systems are
spatially separated, this amounts to an assumption of locality.
Further, we shall assume that an observer’s state of knowl-
edge about a system does not dictate what can and cannot be
done to the system, nor does it ever determine the change
that occurs in the system’s ontic state during a measurement.
This assumption is motivated by the implausibility of there
being a causal relation between the mental state of the agent
and the ontic state of the apparatus or the system.

Finally, we assume that information gain about a system
is always possible. This will allow us to infer the existence of
a disturbance when a reproducible measurement is per-
formed, rather than inferring the impossibility of reproduc-
ible measurements.

III. ELEMENTARY SYSTEMS
A. Epistemic states

An elementary system is one for which the number of
questions in the canonical set is two, and consequently the
number of ontic states is four. Although it takes two yes-no
questions to specify the ontic state, the answer to only one of
these can be known according to the knowledge balance
principle. Thus, the epistemic states for which the balance
occurs are those which identify the ontic state of the system
to be one of two possibilities. Denoting the four ontic states
by “1,” “2,” “3,” and “4,” and disjunction by the symbol “v”
(read as “or”), we can specify the possible epistemic states as
disjunctions of the ontic states. In all, there are six states of
maximal knowledge, namely,
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1v2,
3v4,
1v3,
2v4,
2v3,

1v4. (1)

It is useful to represent these graphically as follows:

-

2)

with the understanding that the four cells represent the four
ontic states, and the filled cells denote the set in which the
actual ontic state of the system is known to lie.

For a single elementary system, the only way to have less
than maximal knowledge is for both questions in the canoni-
cal set to be unanswered. This corresponds to the epistemic
state

1v2v3v4. (3)

It is denoted pictorially by

(4)

A single elementary system in the toy theory is analogous
to a system described by a two-dimensional Hilbert space in
quantum theory, called a qubit in quantum information
theory. In particular, the six epistemic states describing maxi-
mal knowledge of a single elementary system are analogous
to the following six pure qubit states

1v2e]0),
3vae|),
Iv3ie|+),
2vies|-),

2v3e|+i),
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Ivie|-i, (5)

where |£)==0)£[1) and |£i)=5|0)=i[ 1), while the single
state of nonmaximal knowledge is analogous to the com-
pletely mixed state for a qubit, that is,

Iv2vi3ividesl2, (6)

where [ is the identity operator on the two-dimensional Hil-
bert space. The rest of this section will demonstrate the ex-
tent of this analogy. Note, however, that the choice of which

. . N i

simply a convention.
1. Disjointness

It is useful to define the ontic support of an epistemic
state to be the set of ontic states which are consistent with it.
For instance, the ontic support of 1v2 is the set {1,2}. If the
intersection of the ontic supports of a pair of epistemic states
is empty, then those states are said to be disjoint. A set of
epistemic states are said to be disjoint if they are pairwise
disjoint. The relation of disjointness is analogous to the rela-
tion of orthogonality among quantum states. The fact that
there are pairs of epistemic states which are nondisjoint dem-
onstrates that there exists an analogue of nonorthogonality in
the toy theory.

2. Fidelity

One can also introduce a measure of the degree of non-
disjointness, equivalently, a measure of the distance between
a pair of epistemic states in the space of such states. A stan-
dard measure of distance between two probability distribu-
tions, p=(py), and q= (g1 is the classical fidelity, defined
by F(p,q)==;\p;\q,. If we treat the epistemic states of the
toy theory as uniform probability distributions, for instance,
associating the distribution (1/2,1/2,0,0) with 1v2, and
(1/4,1/4,1/4,1/4) with 1v2v3v4, then we can use the
classical fidelity as a measure of distance. For the epistemic
states of a single elementary system, the fidelity between a
pair takes one of four values: the value O if they are disjoint,
such as 1v2 and 3v4; the value 1/2 if they are nondisjoint
states of animal knowledge, such as 1v2 and 1v3; the
value 1/2 if one is a state of maximal knowledge, the other
not, such as 1v2 and 1v2v3v4; and the value 1 if the
elements of the pair are identical.

The analogous measure of distance between quantum
states is the quantum fidelity [39], which is defined for a pair
of density operators, p and o, as Tr|\py 0'| In the case of a
pair of pure states, |¢) and |x), the fidelity is simply the inner
. It turns out that the classical fideli-
ties between pairs of epistemic states are precisely equal to
the quantum fidelities for the analogous pairs of quantum
states under the mapping of Eq. (5). For instance, the quan-
tum fidelity between |0) and |1> is 0, between |0) and |+) is
1/2, between |0) and 1/2 is 1/ V2, and between any state and
itself is 1.

3. Compatibility

Another useful relation to introduce is that of compatibil-
ity. Two epistemic states are said to be compatible if the
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intersection of their ontic supports is the ontic support of a
valid epistemic state. Thus, the epistemic states 1v2 and
1v2v3v4 have the ontic states 1 and 2 in common, and are
therefore compatible, while 1v2 and 2v 3 have only the on-
tic state 2 in common, and are therefore incompatible. When-
ever two observers are describing the same system, their
epistemic states must be compatible. This follows from the
fact that if these individuals pool their information they will
rule out any ontic state that either one of them rules out,
which is equivalent to taking the intersection of the ontic
supports of their epistemic states. If their epistemic states
were incompatible, this would result in a final epistemic state
that violated the knowledge balance principle. Note that this
implies that if two observers both have maximal knowledge
of a system, then their states of knowledge must be identical;
there is always intersubjective agreement among maximally
informed observers. This relation of compatibility is analo-
gous to the Brun-Finkelstein-Mermin compatibility relation
for quantum states, according to which two states are com-
patible whenever the intersection of their supports (in Hilbert
space) is not null [40].

4. Convex combination

We now introduce a way of combining epistemic states
that is analogous to the convex combination (or incoherent
superposition) of quantum states. A pair of epistemic states
in the toy theory must satisfy two conditions for the convex
combination to be defined. The first condition is that they be
disjoint. The second condition is that the union of their ontic
supports must form the ontic support of a valid epistemic
state. If both conditions are met, then the epistemic state that
results by taking the union of the ontic supports of the pair is
defined to be the convex combination of that pair. Thus, the
convex combination of 1v2 and 3v4 is 1v2v3v4, while
the convex combination of 1v2 and 1v3 is undefined, as is
the convex combination of 1v2 and 1v2v3v4. The convex
combination of a larger set of epistemic states is defined
similarly.

Note that in addition to being sometimes undefined, the
convex combination of a set of epistemic states in the toy
theory also differs from the convex combination of a set of
quantum states in there being nothing analogous to a convex
sum with unequal weights.

It is useful to introduce the terms mixed and pure to
specify whether or not an epistemic state can be obtained as
a convex combination of distinct epistemic states or not. For
a single elementary system, the epistemic states 1v2, 3v4,
1v3,2v4, 1v4, and 2v3 are pure, while the epistemic state
1v2v3v4 is mixed. There are in fact many convex decom-
positions of 1v2v3v4. Denoting convex combination by
the symbol “+.,,” we have

Iv2v3va=(1v2)+,B8v4)=(1v3)+,(2v4)
=(2Vv3)+,(1v4). (7)

Graphically,

PHYSICAL REVIEW A 75, 032110 (2007)

EEEE - BN . [T
- 0 ¢, (O
— (Wm0 4., BTW

This is analogous to the fact that in quantum theory, the
completely mixed state of a qubit, /2, has convex decom-
positions

| 1 1 1
112= Z|O)O] + S [1¢1] = ]+ ¢+ [+ S X- |

= Sl i+ 31 X ©)

Thus, the toy theory mirrors quantum theory in admitting
multiple convex decompositions of a mixed state into pure
states. This multiplicity is a direct result of the fact that in the
toy theory, pure epistemic states are states of incomplete
knowledge.

5. A geometric representation of the space of epistemic states

In quantum theory, the Bloch sphere (or, more precisely,
the Bloch ball) offers a useful geometric representation of
the quantum states of a qubit and the relations of orthogo-
nality and convex combination that hold among them [39].
Specifically, orthogonal quantum states are represented by
antipodal points on the sphere, and every convex decompo-
sition of a mixed state is associated with a convex polytope
that contains in its interior the point representing the mixed
state, with the vertices of the polytope representing the ele-
ments of the convex decomposition [41]. Similarly, the
epistemic states for an elementary system in the toy theory
can be represented by a subset of the points inside a unit ball.
Disjoint epistemic states are represented by antipodal points,
and convex decompositions of the mixed epistemic state are
represented by line segments, the end points of which are the
elements of the decomposition. The two pictures are pre-
sented for comparison in Fig. 1.

6. Coherent superposition

One can also introduce a way of combining epistemic
states that is analogous to the coherent superposition of
quantum states. What we seek is a binary operation that takes
a pair of pure epistemic states to another pure epistemic state
(unlike the operation of convex combination we have just
introduced, which takes a pair of pure states to a mixed
state). Suppose the two epistemic states we seek to combine
are of the form avb and cvd (here, of course, a,b,c,d
e€{1,2,3,4} and a# b,c #d). We assume that they are dis-
joint, so that a,b +# c,d. Moreover, we adopt the convention
that a <b and ¢ <d. One can define four new pure epistemic
states from these two, namely, ave, avd, bve, and bvd.
We can think of these as the result of applying four distinct
binary operations to the original pair of states. Denoting
these four operations by +;, +,, +3, and +,, we have

(avb)+|(cvd)=avc,
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(a) 1v2
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Ivd — 1v2v3v4d 3
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FIG. 1. (Color online) (a) A representation of the space of
epistemic states in the toy theory, and (b) the Bloch ball represen-
tation of the states in quantum theory.

(avb)+,(cvd)=bvd,
(avb)+s(cvd)=bve,

(avb)+cvd)y=avd. (10)

The first operation can be described as follows: take the ontic
state of lowest index from the first epistemic state, and the
ontic state of lowest index from the second epistemic, then
define a new epistemic state in terms of these. The other
three operations can be defined similarly. All that differs is
whether one takes the ontic state with the lowest or highest
index from each epistemic state. The convention we have
chosen is that +, +,, +3, and +, are associated with low-low,
high-high, high-low, and low-high. We call these coherent
binary operations.

The four possible coherent binary operations acting on
1v2 and 3v4 yield

(1v2)+,3v4)=1v3, (11)
(1v2)+,(3v4)=2v4, (12)
(1v2)+33v4)=2v3, (13)
(1v2)+,3v4)=1v4, (14)
acting on 1v3 and 2v4, they yield
(1v3)+2v4)=1v2, (15)
(1v3)+,(2v4)=3v4, (16)
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(1v3)+;(2v4)=2v3, (17)

(Av3)+,2v4)=1v4, (18)

and acting on 2v3 and 1v4, they yield

Qv3)+(lva)=1v2, (19)
(2v3)+y(lv4)=3v4, (20)
(2v3)+(1v4)=1v3, 1)
(2v3)r(1v4)=2v4. (22)

These relations should be compared with the following rela-
tions among quantum states:

20+ )=+, @3)
27 (o) = [1) =]-), @4)
20y +il1) = |+ ), 25)
270y - 1) =|- ), (26)
and
24+ ) =0, 27)
274y =) =1, (28)
V27U 4 ) + )= )) = e ™- iy, (29)
2 () =i = i), 50
and
2+ i)+ |- ) =0), (31)
27+ iy = =) =il), (32)
VUi il- i) =™ +), (33)
V2 ) — il i) = e ). (34)

Note that the combinations we have enumerated do not
exhaust the possibilities, since for the operations +3 and +,,
the order of the arguments in the operation is important. That
is, +3 and +, are not commutative operations. For instance,
(1v2)+5(3v4)=2v3 while (3v4)+;(1v2)=1v4. The same
sensitivity to ordering is found in quantum theory for coher-
ent superpgsitions with relative phases /2 and 37/2. For
instance, v27'(|0)+i| 1)) =|+i), while v27'(|1)+i|0))=i|-i).
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It is natural to associate the operations +;, +,, +3, and +,4
with coherent superpositions of two quantum states where
the relative weights are equal and the relative phases of the

second term to the first are O,w,7/2, and 37/2,
respectively, :

+, <0,

+, & T,

+3C>7T/2,

+4 & 37/2. (35)

Under this association of toy-theoretic operations with quan-
tum operations and under the association of epistemic states
with quantum states expressed in Eq. (5), the relations
(11)—(22) parallel (modulo global phases) the relations
(23)-(34), with two notable exceptions. Given the form of
the relations (17) and (18), and the fact that 2v3 maps to
[+i) and 1v4 maps to |-i) under Eq. (5), one would expect
the right-hand side of Eq. (29) to be proportional to |+i) and
the right-hand side of Eq. (30) to be proportional to |—i)
rather than vice versa. Note that one cannot achieve a better
analogy by modifying the associations adopted in Egs. (5)
and (35). For instance, by associating 2 3 with |—i) and 1v4
with |+i), the relations (17) and (18) can be made to parallel
the relations (29) and (30), however, in this case the relations
(13) and (14) fail to parallel (25) and (26). This curious
failure of the analogy shows that an elementary system in the
toy theory is not simply a constrained version of a qubit.

There are two other important respects in which our co-
herent binary operations for a single elementary system dif-
fer from those one finds in quantum theory for a qubit. First,
whereas any pair of quantum states of a qubit can be coher-
ently superposed, the binary operations in the toy theory are
not defined for arbitrary pairs of epistemic states. Specifi-
cally, they are not defined for nondisjoint epistemic states.
Second, whereas there are a continuum of different types of
coherent superposition of a pair of quantum states of a qubit,
corresponding to all possible relative weights and all pos-
sible relative phases, there are only four coherent binary op-
erations in the toy theory.

B. Transformations

We now consider the sorts of transformations of the ontic
states that are allowed by the knowledge balance principle.
Imagine a transformation that takes two different ontic states,
say 1 and 2, to a single ontic state, say 3. If the epistemic
state prior to the transformation was 1v2, then after the
transformation, one would be certain that the ontic state was
3. But such an epistemic state violates the knowledge bal-
ance principle, therefore this transformation is not allowed.
A similar example can be devised for any many-to-one map.
Thus, all such maps are ruled out by the principle.

We are left with the one-to-one maps and the one-to-many
maps. We focus on the former here, since these correspond to

'Further justification for this analogy is provided in Sec. III B.

PHYSICAL REVIEW A 75, 032110 (2007)

TABLE 1. The class structure of the group S4 of permutations of
four elements.

(1% (31) (21%) (29 (4)
(H(2)(3)4) (234)(1)  (12B3)@)  (12)(34) (1234
(243)(1) (1432)
134 (13)(24)
(134)(2) (1243)
(143)(2) (14)(2)(3) (14)(23) (1342)
(124)(3) (23)(1)(4) (1324)
(142)(3) (1423)
(24)(1)(3)
(123)(4)
(132)4)  (BH((Q)

the reversible maps. Clearly, these are simply the set of per-
mutations of the four ontic states.

One can describe permutations in terms of cycles. For
instance, the permutation a —a, b— c—d— b involves two
cycles: a one-cycle, a—a, and a three-cycle b—c—d—b.
In cycle notation, this permutation is written as (a)(bcd). The
set of permutations of 4 elements is the group Sy, containing
24 elements. Permutations with the same number of cycles
form a class. We list the elements of S,, and their class struc-
ture in Table I. If an element is written alone, it is its own
inverse, whereas elements appearing in pairs are each other’s
inverses.

The valid transformations may be usefully represented
graphically by arrows between the ontic states. For instance,

(123)(4) : GBI
(13)(24) : CEEL]
(13)(2)(4) : 1]
(1234) : 55] (36)

It is interesting to determine how the set of epistemic
states are transformed under a permutation of the ontic states.
For instance, the permutation (123)(4) leads to the following
map on the epistemic states

Iv2—-2v3,
3vd—1v4,
1v3i—1v2,
2v4—3v4,
2v3—1v3,

I1v4d —=2v4. (37)
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(a) 1v2 b) 1v2
(123)4) (13)(24) I
2 2v4
1v4 2v3 1v4 2 > 2v3
1v3 1v3
N ,
3v4 3v4
(©) 1v2 (d) 1v2
(13)(2)(4) (1234)
2 2
1v4 2v3 1v4 2v3
AN w
1v3 1v3
3v4 3v4

FIG. 2. How four permutations of the ontic states appear in the
Bloch sphere representation of the space of epistemic states.

Representing the epistemic states in the “Bloch sphere”
picture, we see that this permutation appears as a rotation by
120° about the axis that points in the X+y+Z direction, as
seen in Fig. 2(a). Similarly, the permutation (13)(24) appears
as a rotation by 180° about the X axis, as seen in Fig. 2(b).
These permutations are analogous to unitary maps in Hilbert
space, which appear as rotations in the Bloch sphere. These
two examples might lead one to think that all permutations
appear as rotations in the Bloch sphere picture, but this is not
the case. A permutation such as (13)(2)(4) is a reflection
about the plane spanned by £ and (¥+2), as seen in Fig. 2(c),
while (1234) involves a rotation of 90° about £ and a reflec-
tion about the plane spanned by ¥ and Z, as seen in Fig. 2(d).
These are analogous to antiunitary maps in Hilbert space.
Antiunitary maps do not represent possible evolutions of a
system in quantum theory because evolution is assumed to
be continuous in time and in the limit of short times only
unitary maps go over to the identity map; this is the content
of Wigner’s theorem. Given that transformations in the toy
theory are not continuous but discrete, there is no analogous
constraint that would serve to rule out those transformations
that are analogous to antiunitaries.

Note that the set of all reversible transformations for an
elementary system corresponds to the symmetry group of a
tetrahedron the four vertices of which are located along the
X—y+Z axis, the —X+y+Z axis, the £+y—Z axis, and the —%
—y—2 axis. These vertices are associated with the ontic states
1,2,3, and 4, respectively.

Coherent superposition revisited

The analogy between these transformations and unitary
maps lends support to the notion that the coherent binary
operations introduced in the previous section are the correct
analogues of coherent superpositions. In quantum theory, the
notion of coherent superposition is typically defined in terms
of the linear sum of vectors in Hilbert space. Given that it is
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not obvious whether or how the space of epistemic states
considered here may be embedded in a vector space, this sort
of definition is clearly not available. However, one can also
define the notion of coherent superposition in quantum
theory using transformations, and this sort of definition does
have an analogue in the toy theory, as we presently demon-
strate.

If a reversible transformation takes the quantum state |0)
to |1), then a square root of that transformation (one that
when acted twice yields the transformation) takes |0) to an
equal superposition of |0) and |1). Recalling that unitaries are
rotations on the Bloch sphere (Fig. 1), and denoting a rota-
tion through an angle ¢ about the 7i axis by R;(¢), it is clear
that Ry(7) and Rg(m) are both rotations that take |0) to |1).
The rotations Ry(7/2)and Ry(~m/2) are square roots of the
first, and Ry(7/2) and Ry(—m/2) of the second. Applying
these four different rotations to |0> we obtain the states |+>
|-), [+i), and |-i), respectively. It follows that the square root
transformations provide an alternative way of defining these
coherent superpositions of |0) and |1).

This suggests that an equal superposition of the epistemic
states 1v2 and 3v4 is obtained by acting on 1v2 with the
square root of a permutation that maps 1v2 to 3v4. The
permutations (14)(23) and (13)(24) both map 1v2 to 3v4
[these are the analogues of Ry(), and R¢()]. The permuta-
tion (14)(23) has two roots, namely, (1342) and (1243), as
does the permutation (13)(24), namely, (1234) and (1432).
[The graphical depictions of (13)(24) and (1234) in Fig. 2
illustrate this fact.] Acting these four permutations on 1v2
yields the four epistemic states 1v3, 2v4, 2v3, and 1v4
(which are precisely the analogues of |+), |-), |+i), and
|=i)).

Now consider how this works for an arbitrary pair of dis-
joint epistemic states, avb and c¢vd, where we convention-
ally assume that a<b and ¢ <d. The permutations that take
avb to cvd are (ad)(bc) and (ac)(bd). Each of these has a
pair of square roots yielding in total the four permutations
(acdb), (abdc), (abcd), and (adch). These define four coher-
ent binary operations on the epistemic states that are analo-
gous, respectively, to equal superposition with relative
phases 0, m, /2, and 37/2. Acting them on avb, we find

(acdb)(avb)=avc=(avb)+/(cvd)),

(abdc)(avb)=bvd=(avb)+y(cvd),
(abed)(av b)=bvc=(avb)+s(cvd),

(adcb)(avb)=avd=(avb)+,cvd), (38)

where the final equality follows from the definitions of the
binary operations +,, +,, +3, and +,, presented in Eq. (10).
This confirms our previous interpretation of these operations
[see Eq. (35)] and reinforces our claim that there is a good
analogue of coherent superposition in this toy theory.

C. No universal state inverter

Given the aspects of the toy theory developed so far, we
can already demonstrate an analogy to a characteristically
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quantum phenomenon, namely, the impossibility of building
a universal state inverter. For a single qubit, a universal state
inverter is a device that deterministically maps every pure
quantum state to the orthogonal quantum state, that is,

[y — ) for all ), (39)

where (i|#)=0. Such a map cannot be physically imple-
mented because it is not unitary [42].

The analogous task in the toy theory is to deterministi-
cally map every pure epistemic state of an elementary system
to the one that is disjoint with it. Thus, we require

1v2<3v4,
1v3ie—2v4,

2v3e1v4, (40)

But this transformation is impossible since it does not corre-
spond to any permutation of the ontic states; the first two
conditions together imply that 1+ 4 and 2+ 3, which is in
contradiction with the third condition.

The impossibility of universal state inversion in both
quantum theory and the toy theory can also be seen by noting
that it would appear as an inversion about the origin in the
Bloch ball representation, and such an inversion cannot be
achieved by any rotation, nor by any combination of the
rotations and reflections that are allowed in the toy theory.

D. Measurements

We now turn to the nature of measurements in the toy
theory. We shall here consider only measurements that are
reproducible in the sense that if repeated upon the same sys-
tem, they yield the same outcome. For this to be possible, the
epistemic state after the measurement must rule out all of the
ontic states that are not consistent with the outcome (other-
wise, the epistemic state would not reflect the fact that a
different outcome cannot occur upon repetition).

The knowledge balance principle imposes restrictions on
the sort of reproducible measurement that can be imple-
mented. Again, we start by ruling out a certain kind of mea-
surement, namely one which identifies whether or not the
ontic state is in a singleton set. To be specific, consider the
measurement which determines whether the ontic state is 1
or not. The “not 1”” outcome identifies the ontic state as being
either 2 or 3 or 4. Now, if in this measurement the outcome
1 occurs (and nothing prevents it from occurring when the
initial epistemic state deems it to be possible), then by virtue
of the assumed reproducibility of measurements, the
epistemic state after the measurement must rule out the ontic
states 2, 3, and 4. But this would mean that after the mea-
surement one would be certain that the ontic state was 1, and
such a state of knowledge violates the knowledge balance
principle. Thus, the measurement considered is not allowed.

Clearly, the fewest ontic states that can be associated with
a single outcome of a measurement is two. Thus, the only
valid reproducible measurements are those which partition
the four ontic states into two sets of two ontic states. There
are only three such partitionings:
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{Iv2,3v4},
{1v3,2v4},

{1v4,2v3}. (41)

In our pictorial representation, we can represent these as

(1T 1 [uu]
[1 Jurfr ]
L[] (42)

where in each case the two sets are distinguished by a roman
numeral. These three partitionings are analogous to the fol-
lowing three bases in quantum theory:

{1v2,3vd}e{|0)|1)},
{1v32vals{+).-)
{1v42v3te{+i).|-i}. (43)

We call the set of ontic states associated with a particular
outcome the ontic support of that outcome. If the initial
epistemic state has its ontic support inside the ontic support
of a particular outcome, then that outcome is certain to occur,
otherwise, the outcome is not determined by the initial
epistemic state. For instance, suppose the epistemic state is
1v2, so that graphically we have

(44)

If one performs the measurement that distinguishes 1v2
from 3v4, depicted

[ fufu]

(45)

then the first outcome is certain to occur. On the other hand,
if one performs the measurement that distinguishes 1v3
from 2v4, depicted

Hnnm

(46)

then the outcome is not determined. Nonetheless, one can
say something in this case, namely, that in a large ensemble
of such experiments, one expects the two outcomes to occur
with equal frequency.2 This is analogous to what occurs in
quantum theory: if the initial quantum state is one of the
elements of the orthogonal basis associated with the mea-
surement, then the outcome associated with that element is
certain to occur, while if it is not, only the expected relative
frequencies of the outcomes are determined by the quantum
state.

This presumes that the relative frequency of different ontic states
in the ensemble is equivalent to the probability distribution defined
by the epistemic state. This assumption can be questioned. See, for
instance, the work of Valentini [10].
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E. Measurement update rule

Suppose the initial epistemic state is 1v2, a reproducible
measurement of 1v3 versus 2v4 is performed, and the out-
come 1v3 occurs. In this case, one can retrodict that the
ontic state of the system must have been 1 prior to the mea-
surement. This is not in conflict with the knowledge balance
principle since the latter does not place restrictions on what
one can know, at a given time, about the ontic state at an
earlier time. The principle does, however, place restrictions
on what one can know, at a given time, about the ontic state
at that time. If it were the case that the system’s ontic state
was known to be unaltered in the process of measurement,
then one’s description of the system prior to the measure-
ment would apply also after the measurement. But then, one
would know the system to be in the ontic state 1 after the
measurement, and this is in violation of the knowledge bal-
ance principle. Since we assume that information gain
through measurements is always possible, we must conclude
that measurement causes an unknown disturbance to the on-
tic state of the system.

In our particular example, the assumption that the mea-
surement is reproducible implies that the epistemic state after
the measurement must rule out the ontic states 2 and 4. Thus,
the only final epistemic state that makes the measurement
result reproducible and abides by the knowledge balance
principle is 1v3.

It follows that the nature of the unknown disturbance
must be such that although one knows that the ontic state that
applied prior to the measurement was 1, all one knows about
the ontic state that applies after the measurement is that it is
1 or 3. Thus, the unknown disturbance must ensure that

1 —1v3. (47)

Similarly, if the initial epistemic state was 3v4 and a
measurement of 1v3 versus 2v4 found the outcome 1v3,
one could infer that prior to the measurement, the ontic state
must have been 3. However, in order to have reproducibility
and to abide by the knowledge balance principle, it must be
the case that after the measurement, the ontic state is only
know to be 1 or 3. Thus, the unknown disturbance must
ensure that

3—1v3. (48)

These two conditions can be satisfied by assuming that
the measurement induces either the identity permutation
(1)(3) or the two-cycle permutation (13) on the ontic states
that are consistent with the outcome, but which of these two
permutations occurs is not known. For instance, if the ontic
state was 1, then either it remains 1 or it becomes 3, and all
that can be said of the ontic state that applies after the mea-
surement is that it is 1 or 3. (Note that one need not specify
what occurs to the ontic states 2 and 4 since these have been
ruled out by the outcome of the measurement.)

This is generalized as follows. In a measurement of avb
versus cVvd, if the outcome av b occurs, then either the iden-
tity permutation (a)(b) occurs (i.e., nothing happens to the
system) or the two-cycle permutation (ab) occurs (if the ontic
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state is a, it becomes b and vice versa), but it is unknown
which.

Note that the possible permutations resulting from a mea-
surement depend only on the identity and outcome of the
measurement and not on the initial epistemic state. This is
appropriate, since the nature of someone’s knowledge of a
system should not influence how the ontic state of the system
evolves during a measurement. By the same token, whether
or not the system is initially correlated with other systems
should not influence the nature of the evolution of the ontic
state of the system during a measurement, because the pres-
ence or absence of such correlation is a feature of an observ-
er’s knowledge of the system, not a property of the system
itself.” Thus, although we have derived the nature of the
unknown disturbance by considering an example where the
system being measured is not correlated with any other sys-
tem, the results obtained must also be applicable when such
correlation is present. We will therefore make use of the
results derived above when we consider measurements on
one member of a pair of systems in Secs. IV A, IV B, and
IVG.

In the case considered here, where the system of interest
is uncorrelated with all other systems, the nature of the trans-
formation of the ontic states for reproducible maximally in-
formative measurements implies a particularly simple rule
for updating the epistemic state. The final epistemic state has
ontic support equal to the ontic support of the outcome ob-
tained in the measurement. This is analogous to the update
rule for a reproducible maximally informative measurement
in quantum theory, where the final quantum state is simply
the eigenvector associated with the outcome obtained in the
measurement.

We now consider a few more quantum phenomena for
which we can provide an analogue in the toy theory.

F. Noncommutativity of measurements

In quantum theory, the order in which measurements oc-
cur is important for the outcome that is obtained in these
measurements. For instance, implementing a reproducible
measurement of the basis {|0),|1)} followed by a reproduc-
ible measurement of the basis {|+),|-)} in general has dif-
ferent results from the case where they are implemented in
the opposite order. Specifically, if the quantum state is |0)
initially, then if the measurement of {|0),|1)} comes first, it
will yield the outcome |0) with certainty. On the other hand,
if it comes second, then the outcomes |0) and |1) will occur
with equal probability. The reason is that the intervening
measurement of {|+),|-)} collapses the quantum state to
|+) or |-), and the latter states make the outcome of {|0),|1)}
completely unpredictable.

Similarly, the order in which measurements occur in the
toy theory also has a bearing on the outcomes obtained. In-

The only way in which the initial epistemic state could influence
the evolution of the ontic state is if there was a physical influence
exerted by the mental state of the observer on the physical system.
In our derivation of the toy theory, we are explicitly rejecting this
sort of possibililty.
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deed, the example just provided has a perfect analogue in the
toy theory. We consider implementing a reproducible mea-
surement associated with the partitioning {Iv2,3v4} fol-
lowed by the reproducible measurement associated with the
partitioning {1v3,2v4}, and the same measurements in re-
verse order:

]} then [1[ufr]u]

or
then [1[t]u]u] (49)

Suppose that initially the epistemic state is 1v2,
(50)

If the measurement of {1v2,3v4} comes first, it will yield
the outcome 1v2 with certainty. On the other hand, if it
comes second, then the outcomes 1v2 and 3v4 will occur
with equal frequency. The reason is that the measurement of
{1v3,2v4} causes the epistemic state to be updated to 1v3
or 2v4, and each of these epistemic states makes the out-
come of {1v2,3v4} completely unpredictable.

G. Interference

Another quantum phenomenon that the toy theory repro-
duces qualitatively is interference. We offer the following
paradigmatic example of interference in quantum theory.
Consider the following three experiments:

(a) Prepare |0), then measure {|+),|-)}.

(b) Prepare |1), then measure {|+),|-)}.

(c) Prepare 271(|0)+|1)), then measure {|+),|-)}.

The probability distribution over the outcomes is
(1/2,1/2) for (a), (1/2,1/2) for (b), and (1,0) for (c). The
probability zero for the outcome |-) in case (c) is, of course,
a result of the destructive interference between the amplitude
for this outcome in states |0) and |1).

Interference is often cited as evidence against the
epistemic view of quantum states. The argument runs as fol-
lows. If quantum states are associated with probability dis-
tributions over some hidden reality, then the only way one
could possibly understand a coherent superposition of quan-
tum states (so the argument goes) is as a convex combination
of the associated probability distributions with weights given
by the amplitudes squared. In particular, the distribution as-
sociated with the state \27!(|0)+|1)) must be a convex sum,
with equal weights, of the distributions associated with |0)
and |1). But given that in a measurement of {|+),|-)} the
|-) outcome occurs with probability 1/2 for both |0) and |1),
if \5‘1(|O>+|1)) corresponded to a convex sum of these pos-
sibilities, one would still expect the |-) outcome to occur
with probability 1/2, not probability zero.

All this argument demonstrates, however, is a lack of
imagination concerning the interpretation of coherent super-
position within an epistemic view. We have already seen in
Sec. III A how in the toy theory one can define some binary
operations that are distinct from convex combination. The
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possibility of representing coherent superposition and con-
vex combination differently within an epistemic view is what
makes interference understandable. This is made clear
through the toy theory version of the interference experiment
discussed above. Recall from Eq. (35) of Sec. III A that the
toy theory analogue of the coherent superposition y27'(]0)
+|1)) is (1v2)+,(3v4) which is simply 1v 3. This is not the
equally weighted probabilistic sum of the two epistemic
states, which would be the epistemic state 1v2v3v4. Thus,
the analogue of the three experiments are as follows:

(a) Prepare [ 11, then measure [T[n[1]n]
(b) Prepare [T B , then measure [[0[1]0]
(¢) Prepare B I 1, then measure [I[U[1]1]

It is straightforward to see that the probability distribu-
tions over the outcomes are (1/2,1/2) for (a), (1/2,1/2) for
(b), and (1,0) for (c). Thus, the empirical signature of inter-
ference is reproduced.

Interference phenomena have led interpreters of quantum
theory to conclude that whatever an equally weighted coher-
ent superposition of two possibilities might be, it is not the
“or” of those possibilities nor the “and” of those possibilities.
This is certainly the case in the toy theory. The coherent
combination of a pair of disjoint pure epistemic states is
neither the “or” nor the “and” of those states, but rather a
sampling of the ontic states from each.

IV. PAIRS OF ELEMENTARY SYSTEMS
A. Epistemic states

The simplest composite system is a pair of elementary
systems. Since each elementary system has four ontic states,
the pair has sixteen ontic states. We can represent the ontic
states of the pair by conjunctions of the possible ontic states
of the constituents. Representing conjunction by “-” (read as
“and”), the sixteen possibilities are

1-1,1-2,1-3,1-4,2-1,2-2,2-3,2-4,

3.1,3-2,3:3,3-4,4-1,4-2,4-3,4-4. (51)

We can represent these graphically by a 4 X 4 array of boxes,
where the rows represent the different ontic states of system
A, and the columns represent the different ontic states of
system B. Specifically, we take the box in the jth row from
the bottom and kth column from the left to represent the
ontic state j-k.

— N W A

12 34
B (52)

Since each system has two questions in a canonical set, the
pair has four questions in a canonical set. The knowledge
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balance principle ensures that only two of these four ques-
tions may be answered in a state of maximal knowledge.
This corresponds to knowing the ontic state to be among four
of the sixteen possibilities. The pure epistemic states are
therefore disjunctions of four ontic states, for instance,

1-3)v(l-4)v(2-3)v(2-4), (53)

which can be represented graphically by

R 5

where we have dropped the labels on the rows and columns
for convenience.

By applying the knowledge balance principle to each of
the systems in the pair individually, we obtain a further con-
straint: at most a single question can be answered about the
ontic state of each of the systems. Thus, an epistemic state
for AB of the form

(55)

although satisfying the principle as it applies to the compos-
ite AB, violates the principle as it applies to the system B
because the ontic state of B is known to be 1.

The epistemic state for AB of the form

(56)

is also ruled out by application of the principle to the indi-
vidual systems. Here, it is not the marginals that are the
problem. Rather, the problem is that a reproducible measure-
ment of 1v2 versus 3v4 on A, which has outcome 1v2 for
instance, allows one to rule out 3 and 4 as possibilities for
the ontic states of A after the measurement, and, as estab-
lished earlier, causes the ontic state of A to undergo an un-
known permutation: either (1)(2) or (12). However, this
leaves the final epistemic state of AB as

a )

which corresponds to more knowledge about AB than is al-
lowed by the principle. We have here made use of the as-
sumption that the transformation that applies to A is the same
whether A is correlated with B or not, since correlation is a
feature of an observer’s knowledge and therefore cannot de-
termine the nature of the physical transformation.

The full set of epistemic states that violate the knowledge
balance principle in some way are
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E.: (58)

together with any epistemic state that can be obtained from
one of these by a permutation of A and B, or by a permuta-
tion of the rows among themselves or by a permutation of
the columns among themselves or by any combination of
these operations.

It follows that the valid states of maximal knowledge for
a pair of systems are of two types, represented as

IIII (59)

together with those that can be obtained from the operations
just described. These are analogous in quantum theory to
product states and maximally entangled states, respectively.

Epistemic states for composite systems can be classified
according to whether they describe correlations between the
systems or not. An epistemic state is said to describe corre-
lations between a pair of systems if some form of knowledge
acquisition about one of the systems leads the bearer of this
epistemic state to refine their description of the other system.
It is clear that by these lights epistemic states of the first type
are uncorrelated while those of the second type are corre-
lated.

The general form of the first type of epistemic state is

(avb)-(cvd), (60)

where a,b,c,de{1,2,3,4} and a#b, c#d. These states
are a conjunction of states of maximal knowledge for each of
the systems, and thus satisfy the principle as it applies to the
subsystems. Note that one can distribute the conjunction over
the disjunction to rewrite the epistemic state as

(a-c)via-dyv(b-c)v(b-d), (61)
verifying that it is a disjunction of four ontic states and thus

satisfies the principle as it applies to the pair. Some examples
of uncorrelated epistemic states are

(1v2)-(1v2),
(1v2)-(2v3),
2v3)-(1v4),

(1v3)-(1v3), (62)

which are represented graphically as
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B B -

By Eg. (5), these are analogous to the product states |0)]0),
|0)| +i), | +i)|—i), and |+)|+), respectively.

Since such an epistemic state is simply a “product” of the
marginals for A and B, when a measurement on A is imple-
mented, only the marginal for A is updated, and this occurs
in precisely the manner described in Sec. III E. For instance,
if the epistemic state for the composite is (1v2)-(2v3), and
a measurement of 1v4 versus 2v3 on system A finds the
outcome 1v4, the final state is (1v4)-(2v3),

I - (64)

The general form of the second type of allowed epistemic
state is

(@a-e)vb-flvic-g)v(d-h), (65)

where a,b,c,d,e.f,g,he{1,2,3,4} and a#b# c#d, e
# f# g # h. Note that the marginal epistemic states for A and
B are 1v2v3v4. Examples of such states are

(1-1)v(2-2)v(3-3)v(4-4),
(1-2)v(2-3)v(3-4)v@-1),
(1-4)v(2-3)v(3-1)v(4-2),

(1-49)v(2-1)v(3-3)v(4-2), (66)

which are depicted as

(67)

For such epistemic states, nothing is known about the ontic
states of the individual systems, but everything is known
about the relation between them. In the first example, for
instance, the two systems are known to be in the same ontic
state. In the second example, the ontic state of B has an index
that is one greater (modulo 4) than the ontic state of A. In
other words, the ontic state of B is related to the ontic state of
A by the permutation (1234). In the third and fourth ex-
amples, the permutations are (1423) and (142)(3), respec-
tively. There is an epistemic state of this sort for every per-
mutation of the four ontic states, and thus 24 in all. These are
represented graphically by the 24 ways of filling only one
box in every row and column.

The following picture emerges. Unlike in classical theo-
ries, wherein one can know the relation between two systems
completely and know their individual ontic states, in the toy
theory we have a trade-off. In a state of maximal knowledge,
either one can know as much as is possible to know about
the individual ontic states of a pair of systems, in which case
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one has an answer to a single question about each, yielding
an uncorrelated epistemic state, or one can know as much as
is possible to know about the relation between the two sys-
tems, in which case one knows the answers to two questions
about their relation, yielding a correlated epistemic state. It
has been argued by Brukner, Zukowski and Zeilinger [43]
(within the context of a different interpretational approach)
that this sort of account captures the essence of entangle-
ment.

It is worth noting that epistemic states of the second type
are not only correlated, they are perfectly correlated, that is,
for any form of knowledge acquisition about one of the sys-
tems, the description of the other is refined. Further on, we
shall consider epistemic states describing imperfect correla-
tions, for instance, in Eq. (80) of Sec. IV C.

It is useful to examine in detail how a perfectly correlated
epistemic state is updated if a reproducible measurement is
implemented on one of the subsystems. We describe this for
a generic epistemic state of the form given in Eq. (65), and a
generic measurement which distinguishes avb from cvd.
Upon obtaining the outcome av b, the ontic states c-g and
d-h for the composite are ruled out. Thus one immediately
sees that the marginal for B after the measurement will be
eV f. Moreover, as discussed in Sec. III E, the measurement
causes system A to undergo an unknown permutation,
namely, (a)(b) or (ab). The first case yields a-e and b-f as
possible final ontic states of the composite, while the second
case yields b-e and a- f. The final epistemic state is therefore
the disjunction of these four possibilities, which is simply
(avb)-(evf). As an example, if the epistemic state for AB is
initially (1-4)v(2-3)v(3-1)v(4-2) and a measurement of
2v3 versus 1v4 on A finds the outcome 1v4, the epistemic
state is updated to (1v4)-(2v4),

(68)

The marginal for B is updated from 1v2v3v4 to 2v4, so
there has been a refinement of the description of B as a result
of the measurement on A.

B. Remote steering

“Steering” is the name given by Schrodinger to the phe-
nomenon that lies at the heart of the Einstein-Podolsky-
Rosen argument for the incompleteness of quantum theory
[15]. We shall present the phenomenon in a manner that is
closer to the account given by Einstein in his correspondence
with Schrodinger [14] than to the account found in the EPR
paper. Alice and Bob each hold a qubit, denoted A and B,
respectively, and the pair AB is described by the quantum
state %(|O>|O)+|1)| 1)). Suppose Alice chooses to measure
the {|0),|1)} basis (in a reproducible way) on system A. In
this case, with probability 1/2 she obtains the outcome |0)
and (following the standard collapse rule) she updates the
quantum state of the pair to |0)|0),
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L (0)J0) + [1){1) — [0)0). (69)
V2

while with probability 1/2, she obtains the outcome |1) and
updates the quantum state of the pair to |1)|1),

L 010y + 11 = []1). (10)
\2

On the other hand, if Alice chooses to measure the
{|+).]-)} basis on system A, then with probability 1/2 she
obtains the outcome |+) and updates the quantum state of the
pair to |+)|+),

\%<|o>|o>+ D) = [+)]+), (71)

and with probability 1/2 she obtains the outcome |-) and
updates the quantum state of the pair to |-)|-),

L1000y + 019 = |-)1-). )
\2

Note that for one choice of Alice’s measurement, the final
quantum state for B is either |0) or |1) whereas for the other
choice, it is either |+) or |-). In a 1935 paper discussing this
phenomenon, Schrodinger remarks (Ref. [44], p. 555): “It is
rather discomforting that the theory should allow a system to
be steered or piloted into one or the other type of state at the
experimenter’s mercy in spite of his having no access to it.”
Indeed, if the quantum state is interpreted as a state of reality,
so that |0), [1), |+), and |~) are mutually exclusive states of
reality, then Alice’s choice of measurement can directly in-
fluence the reality in Bob’s laboratory. If the collapse occurs
instantaneously, as is generally assumed, this would corre-
spond to a nonlocal influence. To be precise, it would lead to
a failure of local causality, in the sense defined by Bell [45].
However, this example of the steering phenomenon does
not imply a failure of local causality if one adopts an
epistemic view of quantum states.* Indeed, we now show
that the particular example of steering described above has a
precise analogue in the toy theory despite the fact that the
latter is explicitly local. Here is how it works. Alice and Bob
each hold an elementary system, denoted A and B, respec-
tively, and Alice’s epistemic state for the pair AB is
(1-1)v(2-2)v(3-3)v(4-4). Suppose Alice implements the
reproducible measurement on A that distinguishes 1v2 from
3v4. With probability 1/2 she obtains the outcome 1v2
and, given the results of the previous section, she must up-
date her state of knowledge to (1v2)-(1v2). Graphically,

- -

*Of course, a failure of locality is implied by correlations that
violate Bell’s inequalities [33], and consequently there is nothing
analogous to such correlations in the toy theory. This will be dis-
cussed in Sec. VIIL
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On the other hand, if the outcome 3v4 occurs then Alice
updates her epistemic state for the pair to (3v4)-(3v4),

(74)

Alice could also choose to implement the measurement
that distinguishes 1v3 from 2v4. She again obtains both
outcomes with equal probability. If the outcome is 1v3, she
updates her epistemic state for the pair to (1v3)-(1v3),

(75)

while if the outcome is 2V 4, she updates her epistemic state
to (2v4)-(2v4),

(76)

Note that the right-hand sides of Egs. (73)—(76) are precisely
analogous to those of Egs. (69)—(72) under the mapping of
Eq. (5).

The important point to note about the steering phenom-
enon in the toy theory is that the choice of measurement at A
does not change the ontic state at B. The measurement does
sometimes lead to a disturbance, but this is a disturbance to
the ontic state of A. The only change associated with B is to
Alice’s knowledge of B. Suppose, for instance, that the ontic
state of AB was initially 1-1. Alice only knows that it is
(1-1) or (2-2) or (3-3) or (4-4), and therefore initially as-
signs the marginal 1v2v3v4 to B. If she measures 1v2
versus 3v4 on A, she will obtain the outcome 1v2 (by vir-
tue of A being in ontic state 1), and she will update her
marginal for B to 1v2. If, on the other hand, she measures
1v3 versus 2v4, then she will obtain the outcome 1v3 (by
virtue of A being in ontic state 1), and she will update her
marginal for B to 1v 3. In both cases, B remains in the ontic
state 1 throughout. Alice has simply narrowed down the pos-
sibilities in two different ways.

C. Epistemic states of nonmaximal knowledge

One way to have nonmaximal knowledge of a pair of
systems is to know nothing about their ontic state. This cor-
responds to the epistemic state (1v2v3v4)-(1v2v3v4),
depicted as

(77)

It is analogous to the completely mixed state for two qubits,
112®1/2.

In the case of a single elementary system, we found that
knowing nothing was the only way to have nonmaximal

032110-14



EVIDENCE FOR THE EPISTEMIC VIEW OF QUANTUM...

knowledge. In the case of two elementary systems, however,
there are other possibilities. Since there are four questions in
the canonical set, one could know the answer to just one of
these, rather than two or none. This corresponds to an ontic
support with eight elements. These epistemic states are also
highly constrained by the knowledge balance principle. Their
marginals must be valid epistemic states for the individual
subsystems, and they must be mapped to valid epistemic
states under the update rule for measurements on one of the
subsystems. Some examples of epistemic states of nonmaxi-
mal knowledge that contain eight ontic states but still violate
the principle in some way are

pe e, O

(78)

The epistemic states of nonmaximal knowledge that abide
by the principle are again found to be of two types. The first
type is essentially a conjunction of a pure epistemic state for
one system and a mixed epistemic state for the other. Ex-
amples are (3v4)-(1v2v3v4) and (1v2v3v4)-(1v3),
which are graphically depicted as

(79)

and which are analogous to the density operators |1){1]
®1/2 and I/2®|+)+|, respectively. These are uncor-
related states. The second type of state is more interesting.
Examples are [(1v2)-(1v2)]v[(3v4)-(3v4)] and
[(1v3)-2v4)]v[(2v4)-(1v3)], which are depicted as

(80)

which are analogous to the density operators
3[0)0[@ [0)0[+3[ 11| @ [1)(1] and 3]+ )+ @[=)=]+3[-)]
®|+)(+|. These are correlated states. Measurements upon
one system require an update of the epistemic state of the
other. For instance, if the initial epistemic state is
[(1v2)-(1v2)]v[(3v4)-(3v4)] and a measurement of 1v2
versus 3v4 is implemented on system A, then the final
epistemic state of the pair is (1v2)-(1v2) if the outcome
1v2 is obtained, and (3v4)-(3v4) if the outcome 3v4 is
obtained. Note however that other measurements, such as a
measurement of 1v3 versus 2v4, do not lead to an update
of the marginal of the nonmeasured system. Thus, the corre-
lation is not perfect, in the sense defined in Sec. IV A.
The same sort of thing occurs for the density operator
210)(0|®+3]1)(1|®[1)(1|. There is correlation for measure-
ments in the {|0),|1)} basis, but none for measurements in
the {|+),|-)} basis. The existence of a distinction between
epistemic states exhibiting perfect correlations and those ex-
hibiting imperfect correlations is analogous to the existence
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of a distinction, in quantum theory, between states that are
said to be quantum correlated, or entangled, and those that
are said to be merely classically correlated.”

Note that states of nonmaximal knowledge are mixed
states. Indeed, they may be viewed as convex combinations
of pure states in several different ways. For instance,

SR .

me
= +ex o

= +ex

(81)

Coherent binary operations on the pure epistemic states of
a pair of systems could also be defined, but we shall not do
so here. Note that our definitions of disjointness and compat-
ibility and of the fidelity between epistemic states, presented
in the context of a single elementary system in Sec. IIT A, are
applicable for composite systems as well.

D. Transformations

The transformations that can be performed upon a pair of
systems is a subset of the set of permutations of the sixteen
ontic states. It is a subset because some permutations take
valid epistemic states to invalid ones. For instance, the per-
mutation

(82)

is invalid because it leads to the transition

. B (83)

Independent permutations of each subsystem’s ontic
states are among the subset of allowed permutations of
the composite’s ontic states. For instance, the permutation
(12)(3)(4) on system A yields

5Again, this is not to say that perfect correlations in the toy theory
have all the features of quantum correlations. In particular, they do
not violate any Bell inequality.
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prarefele
AKIKIE; (84)

and the permutation (12)(3)(4) on A and (13)(2)(4) on B
yields

v

>
x|#[a]a
¥x
e

— (85)

Clearly, such local permutations cannot change the degree of
correlation between the systems: uncorrelated states are
transformed into uncorrelated states and correlated states are
transformed into correlated states. These permutations are
analogous to local unitary operations in quantum theory,
which do not change the degree of entanglement. Other per-
mutations can alter the degree of correlation, and are thus
analogous to entangling operations in quantum theory. One
such permutation is

P
-
(86)
which yields the transition
H
(87)

It is analogous to the controlled-NOT operation for a pair
qubits [39].

E. No cloning

Given the nature of transformations for a pair of elemen-
tary systems, it is possible to prove the existence of a no-
cloning theorem. We begin by reviewing this theorem in the
context of the ontic view of quantum states [46,47]. A clon-
ing process for a set of states {|#;)} is defined as a transfor-
mation satisfying

|‘/’i>|X> - |¢i>|‘/’i> (88)

for all |¢;), where |x) is an arbitrary fixed state. The idea is
that the quantum state of A is unknown and the goal is to
implement a transformation that leaves system B in this un-
known state.

The simplest case to consider is when the set contains two
states {|4,),|¢n)}. If |¢4,) and |¢,) are nonorthogonal states,
then the cloning process is impossible because it does not
preserve inner products, and so cannot be a unitary map. For
instance, a cloning process for the set {|1),|+)} satisfies
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[DI0) — [D)]1),

[+10) = [+)]+). (89)

where we have taken the arbitrary initial state of system B to
be |0). The inner product squared between the two possible
initial states is |[(1]+)(0]|0)|>=1/2, while the inner product
squared between the two possible final states is [(1]|+)
X(1|+)|>*=1/4. (Note that allowing irreversible operations
does not help since these can only increase, not decrease, the
fidelity between the input states. [39])

If one adopts an epistemic view of quantum states, then
the question of whether cloning is possible or not is a ques-
tion of whether the epistemic state that pertains to one sys-
tem can be made to be also applicable to another without
creating correlations between the two systems. It is not the
question of whether the ontic state of a system can be dupli-
cated in another (which would create correlations). Here is
the manner in which it is defined in the toy theory. A cloning
process for a set of epistemic states {(a;vb;)}; is defined as a
transformation satisfying

(a;vb)-(cvd)—(a;vb)-(a;vb) (90)

for all epistemic states a;vb; in the set, where cvd is an
arbitrary initial epistemic state for B. The cloning process
cannot be implemented for nondisjoint epistemic states be-
cause it leads to a decrease in the classical fidelity (defined in
Sec. IIT A) and because this fidelity is preserved under per-
mutations (and is nondecreasing under any valid mixture of
permutations). This is easily illustrated by an example. The
analogue of the cloning process for the set {|1),|+)} is the
cloning process for the set {3v4,1v3}. We require

(3v4)-(1v2)—(3Bv4)-(3v4),

(1v3)-(Iv2)—(1v3)-(1v3), (91)

where we have taken the arbitrary initial epistemic state for
B to be 1v2. Graphically, this is depicted as

(92)

Imagine that the upper and lower diagrams are superimposed
on top of one another. It is then easy to see that there are two
ontic states in the overlap of the two possible initial
epistemic states, namely, the ontic states 3-1 and 3-2,
whereas there is only one ontic state in the overlap of the two
possible final epistemic states, namely, 3-3. However, a per-
mutation of the ontic states can only change the places
wherein the two epistemic states overlap, not the number of
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places where they overlap. Thus, the cloning process is not a
permutation and therefore is impossible in the toy theory.6

As it turns out, one does not actually need a restriction on
knowledge to obtain a no-cloning theorem. By defining clon-
ing in terms of epistemic states rather than ontic states, one
obtains a no-cloning theorem for sets of nondisjoint
epistemic states, even in classical theories [20,25]. A restric-
tion on knowledge is necessary however in order to have
pure states that are nondisjoint, which is necessary if there is
to be a no-cloning theorem for pure states. In this sense, the
toy theory is more analogous to quantum theory, vis-a-vis
cloning possibilities, than any classical theory.

F. No broadcasting

Broadcasting is a process wherein one’s state of knowl-
edge about a system is duplicated in the marginals of a pair
of systems while allowing that these systems might become
correlated [48]. This differs from cloning insofar as the latter
does not allow for such correlation. A broadcasting process
for a set of density operators {p;} has the form

pi® a— W, (93)

where W, is a density operator for the composite AB that has
marginals

Try(W;) = Trg(W)) = p;. (94)

Broadcasting is only possible in quantum theory for a set of
commuting density operators [48].

The simplest case to consider is when the set {p;} contains
only pure states. Since nonorthogonal pure states do not
commute, these cannot be broadcast. However, one does not
need the result of Ref. [48] to see this. It follows immedi-
ately from the fact that any quantum state for AB with pure
marginals is uncorrelated. That is, if p; is a pure density
operator, then the only way to satisfy Eq. (94) is to have
W,;=p;® p;. This implies that the only way to duplicate a pure
state of a system in the marginals of a pair of systems is if
the pair ends up in a product state. But this is simply cloning,
and cloning of nonorthogonal pure states is impossible.

It may seem that the no-broadcasting theorem for pure
quantum states tells us nothing that was not already con-
tained in the no-cloning theorem. However, the former does
capture something that the latter does not, namely, that pure
states can never arise as the marginals of a correlated state.
Although this is mathematically obvious given the formalism
of quantum theory, it is a conceptually significant fact in the
context of the epistemic view, since pure states are states of
incomplete knowledge within the epistemic view, and it is
natural to expect states of incomplete knowledge to arise as
the marginals of a correlated state. Indeed, in a classical
theory any state of incomplete knowledge can arise as the
marginal of a correlated state, and consequently a broadcast-
ing process exists for any set of epistemic states, even though
a cloning process need not. Specifically, one can broadcast

%In this case, the fidelity between the initial epistemic states is 1/2
whereas between the final epistemic states it is 1/4.
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any set of epistemic states classically as follows. Measure the
ontic state of system A (which can be done classically), pre-
pare B in this ontic state, then forget the outcome of the
measurement. The result is that the marginals for A and B
will be whatever the initial epistemic state for A was, and the
two systems will also be known to be perfectly correlated.

The fact that classically one can broadcast any set of
epistemic states while quantum mechanically one can only
broadcast commuting quantum states, may appear to chal-
lenge the view that quantum states are states of incomplete
knowledge. However, the toy theory provides an enlighten-
ing example of how broadcasting of arbitrary sets of
epistemic states may be ruled out. First note that the classical
protocol for achieving broadcasting does not work in a toy
theory universe since one cannot measure the ontic state of a
system. The set of epistemic states in the toy theory for
which it is easiest to see that there is no protocol that can
achieve broadcasting is a set of nondisjoint pure epistemic
states. The key to the proof is the fact that in the toy theory,
as in quantum theory, pure epistemic states never arise as the
marginals of correlated states. Consequently, when we de-
mand that the marginals of the final epistemic state be pure
we also demand that the two system be uncorrelated. This
implies that a broadcasting process for pure states is simply a
cloning process (as we defined it above), and as we saw in
the previous section, such a process is impossible in the toy
theory. This proof has the same structure as the one we pro-
vided for quantum theory. In this case, however, we can
identify the conceptual underpinnings of the fact that pure
epistemic states never arise as the marginals of correlated
states.

Recall that the pure epistemic states in the toy theory are
states of maximal knowledge. Thus, if every system is de-
scribed by a pure epistemic state, one has maximal knowl-
edge about each system. One cannot also have knowledge of
the relations among the systems (that is, a correlated
epistemic state), since this would exceed what is allowed by
the knowledge balance principle. For example, if the mar-
ginal epistemic states for a pair of elementary systems are
avb and eV f, respectively, then the only possible epistemic
state for the pair is (avb)-(evf), which is an uncorrelated
state.

Simply assuming that maximal information is incomplete
is not sufficient to conclude that broadcasting of pure states
will be impossible. For this, it needs to be the case that
having maximal knowledge of A and maximal knowledge of
B constitutes having maximal knowledge of the composite
AB. The knowledge balance principle ensures that this is the
case in the toy theory.

No broadcasting for mixed epistemic states also admits an
analogue in the toy theory, but we do not consider it here.

G. Measurements

We now consider the measurements that may be per-
formed upon a pair of systems. Every partitioning of the set
of sixteen ontic states into four disjoint pure epistemic states
yields a maximally informative measurement. If all of these
correspond to uncorrelated epistemic states, we have a mea-
surement such as
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IO IV{IV
HI{ITIV|IV
I|1|OfII

1|1 |II|II (95)

where the different roman numerals represent the different
outcomes. This is simply a conjunction of a measurement
upon the first system and a measurement upon the second, in
this case a measurement of {1v2,3v4} on both. We can
represent the measurement on the pair by the partitioning

{SI’SIIsSIII’SIV}’ (96)
where

S;=(1v2)-(1v2),
Sy=(1v2)-(3v4),
Spy=0CBv4)-(1v2),

SIV=(3V4)'(3V4). (97)
This is analogous to the product basis

{0303, [0} 1), [1)[0), [ 1)[ 1)} (98)

in quantum theory. We call measurements of this type prod-
uct measurements.

Other examples of product measurements can be obtained
by permuting the rows and columns in the above example,
for instance,

HHIVIIIIV] [TV IV [TV IV
I{IfTfITf (I )T )I0) JIjIjIfIn
HIIV{IIIV| [If T[T {I| [IV]IIIIIV
LI T (I} (IVIIINONIV) JIj 11 fn (99)

which are analogous to the bases

{0+ 0= 0=+ =)=t
{| + l>| + l>9 + l>|_ l>’ - l>| + l>5 - l>|_ l>}»
{1+ D, +)]= [ + i) [=)= D} (100)

respectively. Another form that a product measurement can
take is

HIIVI{IV

HIIV{HHIV
I)1|IfIn
I[1|II{1n

which is analogous to the product basis

{[0)[0), [0) 1), [ 1) +),[ 1) =)}

in quantum theory.
If the disjoint epistemic states are all perfectly correlated,
then we have a measurement such as

(101)
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IV IT| 1
IV T |1T
1] I |IV]IIT

1[n]mjiv (102)
This example is analogous to the Bell basis
{|D7), D7), [ W), [ W)}, (103)
where
@) =\27((0)[0) = [1)]1)),
W) =270} 1) = D]0)). (104)

Other examples of measurements composed entirely of cor-
related epistemic states include

NIV T {IT| [TV T | (I V] T
IV IT) 1 I [II{IV{IT| [IV] I |1} IT
IT] T |IVII) [IVIID] I fIIf [ 1TV ITIIT
I {IT{IIIV] (IO T I0)IV] IO T TV

(105)

There also exist measurements that are composed of some
uncorrelated and some correlated epistemic states, for in-
stance,

vt
vfiv] 1|1
1 1 [
1| n]mfm (106)
which is analogous to a measurement of the basis
{|@*),|®7),[0)[1),[1)[0)}. (107)

We call measurements that contain correlated epistemic
states joint measurements since they cannot be implemented
by separate measurements on the individual systems. Note
that joint measurements can only be implemented directly if
the systems are not spatially separated.

H. Mutually unbiased measurements

In quantum theory, two bases are said to be mutually un-
biased if all the pairwise fidelities between elements from the
two bases have the same value. Thus, bases {|¢;)} and {| X}
are mutually unbiased if [(4;] x;)|* is independent of i and j.
The number of mutually unbiased bases (MUBs) that can be
constructed depends on the dimensionality d of the Hilbert
space. For d a power of a prime, there are d+1 MUBs [49].

For a single qubit, the number of MUBs that can be con-
structed is three. An example of such a triplet of MUBs is

{lo),[DRA]+). =24 - i)} (108)

For a pair of qubits, one can construct five MUBs, an ex-
ample being

+), +1),

{10303, [0} 1), [1){0). [1)[ 1)},

_>|_ >’ _>|+>}»

+>|_ >’

{I+)+).
{I-Dl-),

+ )|+, |- D]+ ).+ DD},
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{I® U|®*), 1o UlD),I® UYHIe UY)},

{I® V|®H),1e V|®)I® V[¥H,I1e VI, (109)

where U is the unitary map that corresponds to a clockwise
rotation by 120° about the X+y+Z axis in the Bloch sphere,
and V=U"" [38].

As discussed previously, the analogue in the toy theory of
a basis of states is a set of disjoint epistemic states that yield
a partitioning of the full set of ontic states. We call two such
partitionings mutually unbiased if all pairwise classical fi-
delities (defined in Sec. III A) between elements from the
two partitionings have the same value. For a pair of pure
epistemic states, the classical fidelity is proportional to the
number of ontic states they have in common. It follows that
the number of mutually unbiased partitionings (MUPs) for a
single elementary system is three,

[rfrfufo| [ ]o]]u] {fufufr]

(110)

There exist sets of five MUPs for a pair of elementary sys-
tems, an example being the set

HIIIV{IV] [TIV{INIVE IVIONIIVE [ I5IVI] T I IT|IV] 1
HIJIIIVIIV] | T T {11 u I [IIVIID| V] T [ IO
LT ||| (MIviIImfvy (o {1 (v 1 [ I |IV] T [1IT
I|T[II]II L)1) [IVIIIIvV) (I 1 jIvy (I y I1V)

AY

We conjecture that the number of MUPs for any number of
elementary systems is equal to the number of MUBs for the
same number of qubits.

I. Dense coding

By transmitting a single qubit from Alice to Bob, the most
classical information that can be communicated is one clas-
sical bit. This is a consequence of Holevo’s theorem. How-
ever, if Alice and Bob initially share an entangled pair of
qubits, then they can communicate two bits of classical in-
formation by transmitting a single qubit. This is known as
dense coding [50].

The phenomenon is surprising because it is unclear how
adding a resource of entanglement can possibly increase the
capacity for communication given that the distribution of the
resource may occur at a time prior to Alice even deciding
which message she wishes to send, and need not involve any
transmission from Alice to Bob; they may both simply re-
ceive their half of the entangled pair from a third party. The
puzzle is sufficiently acute that some have suggested that the
additional bit of information travels backwards in time
through the channel that established the entanglement. A dif-
ferent sort of resolution of the puzzle is suggested by the
analogue of dense coding in the toy theory. In order to see
the extent of the analogy, we begin by presenting the quan-
tum protocol.

A pair of qubits, A and B, described by the entangled state
|D*)=+2"1(|0)|0)+|1)| 1)), are distributed to Alice and Bob
(A to Alice and B to Bob). Depending on which of four
messages, 00, 01, 10, or 11, Alice wishes to communicate to
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Bob, she implements one of four transformations on A cor-
responding to unitary operators /,0,,0,, and io, (where
0,,0,, and o, are the Pauli operators [39]). These transfor-
mations map |®*) to the four Bell states, |®*),|D7),|¥*),
and | W), respectively. Since these are orthogonal, they can
be distinguished with certainty. Thus, if Alice sends qubit A
to Bob, he holds the pair and can perform a measurement of
the Bell basis to determine which of the four messages Alice
wished to communicate. In this way, Alice has succeeded in
communicating two bits of information to Bob.

In the toy theory, it is also true that the transmission of a
single elementary system (without a shared resource of cor-
relation) can only communicate a single classical bit. The
reason is as follows. Although a single elementary system
has four ontic states, allowing it to carry two bits of classical
information, Alice cannot prepare the system to be in pre-
cisely one of these ontic states, nor can Bob measure which
of the four ontic states describes the system. The best Alice
can do is to choose which state of incomplete knowledge
describes the system after her preparation procedure. Thus,
she could encode one bit of classical information by choos-
ing to perform one or the other of two preparations associ-
ated with the epistemic states

I 1] and [T 0N

Bob can distinguish which preparation was implemented by
subjecting the system to the measurement of the form

onmm

(112)

(113)

It should be clear that one classical bit is the most that Alice
can communicate to Bob in this way.

On the other hand, if Alice and Bob initially each hold
one half of a pair of elementary systems that are correlated,
then Alice can communicate two bits to Bob. Here is a pro-
tocol that achieves this. Suppose that initially Alice holds an
elementary system A and Bob holds an elementary system B,
and these are known to be described by the epistemic state

(114)

Alice can, depending on which of four messages she wishes
to send, perform one of four permutations on A, namely,
(1(2)(3)(4), (12)(34), (13)(24), or (14)(23), graphically,

| A A A A
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(115)

These map the initial epistemic state to the four epistemic
states

(116)
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There is a measurement that distinguishes these four
epistemic states, namely,

IVIII|IT] 1
HIIV] T [ 1T
11| I |IV]III
1[I {IIT{IV

(117)

Thus, if Alice sends the system A to Bob, he can implement
this measurement and determine which of the four messages
Alice wished to communicate.

One can summarize these facts about the toy theory as
follows. Every elementary system has the inherent capability
of encoding two bits of classical information. However, the
knowledge balance principle imposes a restriction that pre-
vents Alice and Bob from making use of this capacity unless
they initially share correlated systems. In a toy theory uni-
verse, one cannot come to know which of four possible ontic
states describe a single system, because one cannot learn two
bits of information about a single system. However, one can
come to know which of four possible relations hold between
two systems, because one can learn two bits of information
about a pair of systems. Moreover, one can fix which of
these four relations holds by acting on just one of the sys-
tems.

Note that the toy theory yields an interesting new perspec-
tive on how to compare quantum and classical information
theories: rather than comparing a single qubit to a single
classical bit, as is conventionally done, the toy theory sug-
gests that it is more appropriate to compare a single qubit to
two classical bits.

J. Nonmaximally informative measurements

In addition to the measurements considered in Sec. IV G,
there are measurements that are not maximally informative.
These do not answer as many questions as are allowed by the
knowledge balance principle. An example of a product mea-
surement that is nonmaximally informative is one that is
trivial for one of the systems. For instance, the measurement
that is trivial on B and distinguishes 1v2 from 3v4 on A is
depicted by

IL{ITIT) 1T
I I IT| 1T
IJI1|1]|I
IJT|1|1

(118)

Joint measurements can also fail to be maximally infor-
mative. For instance, the measurement

IIjI]I
1|1
I[I]IT]II
I[I]II]II

(119)

yields information about the relation between the two sys-
tems, but is not as informative as it could be. Indeed, it can
be obtained by coarse graining of the outcomes of the mea-
surement described by Eq. (95) or the one described by Eq.
(102).
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K. Measurement update rule

The unknown disturbance associated with measurements
that act upon a single elementary system has been described
in Sec. III E. The unknown disturbance associated with a
product measurement is simply a conjunction of such distur-
bances on the individual subsystems. For joint measure-
ments, we must see what the knowledge balance principle
dictates. If the measurement is maximally informative, then
in order for it to be repeatable, the updated epistemic state
must assign zero probability to all the ontic states that are
inconsistent with the outcome that occurred. But no more
ontic states can receive probability zero without violating the
principle. Thus, the ontic support of the final epistemic state
must be the ontic support S of the measurement outcome.
This must be true regardless of the initial epistemic state.
This implies that an unknown permutation must occur as the
result of the measurement, specifically, a permutation drawn
uniformly from any set that has the property of randomizing
the elements of S (the set of all permutations of the elements
of S, for instance, has this property).

For instance, if the initial state is (2v3)-(1v2), and a
reproducible measurement of the form of Eq. (102) (analo-
gous to the Bell basis) finds the outcome I, then we have

(120)

The situation is more complicated for joint measurements
that are not maximally informative. Suppose, for instance,
that the initial state is (2v3)-(1v2), and that a reproducible
measurement of the form of Eq. (119) finds the outcome .
There are many update rules that are consistent with the re-
producibility of the measurement. For instance,

(121)
. (122)
(123)

Indeed, any epistemic state appearing in Eq. (81) could be
the final epistemic state while still yielding reproducibility.
It turns out that the update rule is not uniquely defined in
this case. This is completely analogous to what occurs in
quantum theory. There, reproducible measurements are rep-
resented by sets of projectors and these fail to be maximally
informative if some of the projectors have rank greater than
1. Such a reproducible measurement can be associated with
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many different maps (differing for instance in the degree
with which they maintain coherence in the subspaces defined
by the higher rank projectors). Which map applies in a given
instance depends on how the measurement is implemented.
One update rule, however, is particularly common. This is
the one wherein the final quantum state is the projection of
the initial quantum state into the subspace associated with
the outcome that occurs. We can define an analogous update
rule in the toy theory: the final epistemic state is the one with
the highest classical fidelity with the initial epistemic state.
In this form, the analogy to the quantum update rule is ap-
parent, since the quantum state that is the projection of the
initial quantum state into the subspace associated with the
outcome is the element of that subspace that has the maximal
inner product with the initial quantum state. In the example
provided above, this particular update rule corresponds to the
second rule we depicted, that is, Eq. (122).

V. TRIPLETS OF ELEMENTARY SYSTEMS
A. Epistemic states

For three elementary systems, each of which has four on-
tic states, there are 64 ontic states in all. We can represent
these by a 4 X4 X4 grid of boxes, with the three systems
labeled by A, B, and C,

(124)

There are six yes-no questions in a canonical set for the three
systems. In a state of maximal knowledge, three questions
are answered and three are unanswered, which implies that a
state of maximal knowledge contains eight ontic states. Any
pair of systems in the triplet must also abide by the knowl-
edge balance principle, so that the marginal distributions for
the pairs must all be valid epistemic states for a pair of el-
ementary systems.

The pure epistemic states that are allowed by the knowl-
edge balance principle are of three types: (1) no correlations
between any of the systems, (2) correlations between one
pair of the systems, and (3) correlations between all three
systems. We shall see that these are analogous, respectively,
to product states, products of a Bell state and a pure state,
and the so-called Greenberger-Horne-Zeilinger (GHZ) states
[51].

The uncorrelated epistemic states are of the form

(1v2)-(1v2)-(1v?2) (125)

to within local permutations. The marginals over any pair of
systems are pure uncorrelated epistemic states. For instance,
the marginal on AB is simply (1v2)-(1v2). We can repre-
sent the epistemic states graphically as collections of solid
colored 1 X 1X 1 blocks in our 4 X4 X4 grid, and the mar-
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ginals as the shadows of these blocks. For instance, the ex-
ample of Eq. (125) is represented graphically as follows:

7 4

(126)
This is analogous to the quantum state |0)|0)]0).
The pair-correlated epistemic states are of the form
[(A-1)v(2-2)v(B-3)v(d-4]-(1v2), (127)

to within local permutations. This is represented graphically
as

ol

and is analogous to é(|0>|0>+|1>| 1))]0).
The triplet-correlated epistemic states have the form

(1-1-Dv(1-2-2)v(2-1-2)v(2-2-1)
V(3-3-3)v(3-4-4)v(4-3-4)v(4-4-3)
(129)

(128)

to within local permutations. The marginals over every pair
of elementary systems are correlated mixed states. For the
particular example we have provided, they are all of the form
[(1v2)-(1v2)]v[(3v4)-(3v4)]. This is represented graphi-
cally as follows

-,

This epistemic state is analogous to the GHZ state for three
qubits of the form \L—(|0)|0)|0)+|1)| 1)|1)) which has mar-
ginals 1|00)(00|+5|11)(11| over every pair of subsystems.

B. The monogamy of pure entanglement

In quantum theory, a system can be pure entangled with
only one other system. The reason is that if A and B are pure
entangled, then the reduced density operator over AB is a
pure state. However, for the composite AB to be entangled
with another system, the reduced density operator of AB
must be mixed. Consequently, there is no entanglement be-
tween AB and any other system, and thus no entanglement
between A and any other system besides B. This feature of
pure state entanglement is sometimes referred to as the mo-
nogamy of entanglement [52].
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From the epistemic perspective, the monogamy of pure
entanglement is a monogamy of perfect correlations. In both
classical theories and the toy theory, a pair of systems are
perfectly correlated if one knows the precise relation be-
tween their ontic states. Perfect correlations are monoga-
mous if a system can only be perfectly correlated with one
other.

Classical statistical theories are polygamous when it
comes to perfect correlations. For instance, it is possible to
know that three systems, A, B, and C, are in precisely the
same ontic state. In this case, A is perfectly correlated with B
and perfectly correlated with C.

The toy theory, however, forbids such polygamy. We
demonstrate this in the case of three elementary systems by
supposing the contrary and deriving a contradiction with the
knowledge balance principle. Suppose three elementary sys-
tems, A, B, and C, are all pairwise perfectly correlated. This
would imply that for every ontic state of A there was asso-
ciated a unique ontic state of B and a unique ontic state of C.
For instance, one way for A, B, and C to be perfectly corre-
lated would be if they were known to be in precisely the
same ontic state, that is, if the epistemic state was
(1-1-1)v(2-2-2)v(3-3-3)v(4-4-4). This epistemic state
and its marginals are represented graphically as follows:

.
-

But this is not one of the three valid forms of epistemic state
for a triplet of elementary systems. The problem is that it
contains only four ontic states rather than eight, which is the
minimum number that is allowed by the knowledge balance
principle.

(131)

C. Teleportation

A teleportation protocol in quantum theory makes use of a
pair of qubits that are maximally entangled and a classical
channel in order to transfer the applicability of an unknown
quantum state from a qubit in Alice’s possession to one in
Bob’s possession [53]. We shall begin by providing a stan-
dard account of how teleportation works within an ontic
(rather than epistemic) view of quantum states.

A pair of qubits, denoted A and B, are prepared in the
quantum state |®*)=1271(|0)|0)+|1)|1)), after which A is
given to Alice and B to Bob. A third party, Victor, prepares
another system, denoted A’, in the quantum state |lﬁ>, and
passes it to Alice. The identity of A’’s quantum state is un-
known to Alice and Bob. Their task is to implement a pro-
tocol that leaves B in the quantum state |¢). The initial quan-
tum state of A’AB is

D)D),

It turns out that this can be rewritten as follows:

(132)
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S0+ 51 © 0|0Vl + 21 © o))

1

+ E(l ® iay)|<13+)(ia'y)|1,b). (133)
Note that (/®a,)|PH)=|P7), (I®o,)|P")=|T*), and (I
®io,)|P*)=|¥"), so that the states for A’A in this decom-
position are just the elements of the Bell basis. If Alice mea-
sures the Bell basis on A’A and obtains the outcome associ-
ated with the unitary operator U, where U e{l,0,,0,,i0,},
then the quantum state of A’AB is updated to

(I ® U)|®HU|). (134)

If she classically communicates to Bob the identity of
U—only two bits of information are required to do so—then
Bob can apply the inverse of U to B to leave A’AB in the
state

(1® U)|@9)y).

Thus, at the end of the protocol, the quantum state of B is
|zﬂ), as required, and A’A is left in one of the Bell states. The
protocol succeeds regardless of the identity of |), so Alice
and Bob need not know its identity. Note that if system A’ is
entangled with a fourth system, C, then the quantum state of
A'C is transferred to BC, which is known as entanglement
swapping.

Teleportation is often thought to be surprising because it
takes an infinite amount of information to completely specify
a quantum state, but somehow this state can be transferred
from one system to another given the transmission of only
two bits of classical information. This fact is only surprising,
however, if one takes on ontic view of the quantum state.
From the perspective that quantum states are states of incom-
plete knowledge, teleportation is a protocol wherein some-
one’s knowledge about the system A’ becomes applicable to
the system B, and, as we shall see, a transfer of the applica-
bility of a state of knowledge from A’ to B requires much
less communication from Alice to Bob. We demonstrate this
first in the context of a classical theory, and then in the con-
text of the toy theory, where there is a strong analogue to the
quantum protocol.

In a classical theory, a transfer of the applicability of a
state of knowledge is easily achieved. Suppose Victor de-
scribes system A’ by some probability distribution p(x) over
its ontic states, and suppose that Alice and Bob do not know
the nature of this distribution. Nonetheless, Alice can simply
measure the ontic state of system A’, then communicate this
information to Bob, and Bob can prepare system B to be in
this particular ontic state. Assuming that Victor knows that
they have implemented this protocol, but does not know the
outcome of Alice’s measurement, he will assign the marginal
distribution p(x) to B. However, teleportation requires more
than just getting the marginal distribution for B to reflect the
initial marginal distribution for A’—the correlations of A’ to
other systems must also be reproduced. Since Victor initially
describes A’ as uncorrelated with all other systems, he
should, in the end, describe B as uncorrelated with all other
systems. The protocol we have just described does not quite

(135)
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achieve teleportation because Victor ends up describing B as
perfectly correlated with A’. However, this problem is easily
fixed: Alice can simply randomize the ontic state of A’at the
end of the protocol.

Note that this protocol only requires Alice to communi-
cate to Bob an amount of information that is sufficient to
specify the ontic state of A’, and this is in general much less
than is required to specify Victor’s epistemic state (for in-
stance, there might be a finite number of ontic states, but an
infinite number of epistemic states). Note also that this clas-
sical protocol succeeds without Alice and Bob requiring any
resource of classical correlations.

In the toy theory, this protocol does not work because
Alice cannot measure the precise ontic state of A’. Nonethe-
less, teleportation can be achieved if Alice and Bob initially
share correlated systems. Here is how it works. Suppose Al-
ice holds an elementary system A and Bob holds an elemen-
tary system B, and the pair is described by the epistemic state
(1-1)v(2-2)v(3-3)v(4-4) (analogous to |®*)). It is known
that A and B are in the same ontic state, but it is not known
what this state is. A third party, Victor, sends to Alice a
system A’, which he describes by the epistemic state avb,
where the identity of a and b are unknown to Alice and Bob
(analogous to the unknown state |#)). Victor’s initial
epistemic state for A’AB is

(avd)-(1-1)v(2-2)v(3-3)v(4-4). (136)
Although Alice cannot determine which of the four possible
ontic states applies to A’, she can determine which of four
relations hold between A’ and A. For instance, she can de-
termine whether the permutation that relates A to A’ is
(D(2)(3)(4), (12)(34), (13)(24), or (14)(23). This is simply
the measurement of Eq. (102) (analogous to the Bell basis),
applied to A'A.

Suppose the permutation relating A to A’ is found to be
P. Since the permutation that related B to A prior to the
measurement was identity, one can conclude that the permu-
tation that related B to A’ prior to the measurement was
P. Since Victor’s state of knowledge about the initial ontic
state of A’ (where by “initial” we mean prior to the measure-
ment) iS avb, it follows that, upon learning the outcome
of Alice’s measurement, his state of knowledge about the
initial ontic state of B is Pla]vP[b] where P[a] is the
image of a under the permutation P. Victor knows that
Alice’s measurement does not cause a physical disturbance
to B, so his state of knowledge about its final ontic state
(where by “final” we mean affer the measurement) is also
Pla]v P[b]. On the other hand, A’and A do suffer an un-
known permutation due to Alice’s measurement, which
causes the epistemic state for the pair to be updated to
(1-P[1])v(2-P[2])v(3-P[3])v(4-P[4]), the state appropri-
ate for finding A to be related to A’ by the permutation P.
Thus, after Alice’s measurement, Victor’s epistemic state for
A'AB is

((1-P[1D) v (2-P[2]) v (3-P[3]) v (4-P[4]) - (Pla]
v P[b]).
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To complete the teleportation protocol, Alice communi-
cates the outcome of her measurement, the permutation P, to
Bob. Since there are four possible outcomes, this requires
Alice to communicate two bits of information to Bob. Upon
learning P, Bob applies its inverse to B. Thus, Victor’s
epistemic state at the end of the protocol is

((L-P[1]) v (2-P2]) v (3-P[3]) v (4-P[4])) - (aV D).

The epistemic state av b, which was applicable to A" at the
start of the protocol, is now applicable to B. The epistemic
state for the pair A’A is left as one of the four correlated
epistemic states that are analogous to the Bell states. This is
the analogue of teleportation. Had Victor initially known A’
to have a particular correlation with a fourth system, C, then
at the end of the protocol, he would judge B to have this
correlation with C. This is the analogue of entanglement
swapping.

It should be noted that even if Victor does not learn the
outcome of Alice’s measurement, at the end of the protocol
he still describes B by the epistemic state he initially as-
signed to A’ (since he knows that Bob will implement the
inverse of P, regardless of the identity of P). Note also that
we could have chosen a different initial correlated epistemic
state for AB, or a different basis of correlated epistemic states
for Alice’s measurement on A’A [for instance, the basis as-
sociated with the four permutations (1)(2)(3)(4), (1234),
(13)(24), and (1432)] and teleportation could still be
achieved. These freedoms are analogous to freedoms that are
present in the quantum protocol.

In the toy theory, even though it takes more than two bits
of information to specify which of the six possible epistemic
states applies (the analogue of the continuum of quantum
states), the applicability of an unknown epistemic state can
clearly be transferred from one system to another using only
two bits of information. This is precisely what is achieved by
the protocol we have described. In fact, a transfer of the
applicability of a description from one place to another does
not require any communication between those locations.
Suppose that Alice refrains from sending Bob the two bits of
information specifying the outcome of her measurement, but
does send this information to Victor. It is still the case that in
one quarter of the trials, namely those where Alice finds the
ontic states of A" and A to be identical, the applicability of
Victor’s epistemic state is transferred from system A’ to sys-
tem B. The way in which the applicability of an epistemic
state is transferred from one system to another is not by
information transmission between the systems, but by infor-
mation transmission to the individual who is describing the
systems.

This toy version of a teleportation protocol is essentially
the one provided by Hardy [35], modulo the choice of the set
of permutations. Note, however, that his goal was to distin-
guish teleportation from nonlocality, not to provide an argu-
ment for the epistemic view of quantum states. His point,
that not every phenomenon involving entanglement involves
nonlocality, is reinforced by other examples we have consid-
ered here, such as remote steering, dense coding, and the
monogamy of entanglement.
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VI. FURTHER ANALOGUES

There are some more analogies between the toy theory
and quantum theory which we have opted not to present in
detail. Nonetheless, it is worth pointing out some of these,
lest the phenomena in question be mistaken as uniquely
quantum.

(a) The existence of unsharp measurements. In quantum
theory, measurements on a system are typically associated
with projective-valued measures (PVMs) or, equivalently,
Hermitian operators on the system’s Hilbert space. These are
known as sharp measurements. There are other sorts of mea-
surements on a system, called unsharp measurements, which
are associated with positive-operator valued measures
(POVMs) on the system’s Hilbert space. They may arise by a
convex combination of sharp measurements, or by coupling
the system to an auxiliary system (called an ancilla) and
performing a sharp measurement on the composite [39]. In
the toy theory, one can also contemplate certain convex com-
binations of measurements, and one can implement effective
measurements on a system by coupling to an ancilla and
measuring the composite. These constitute unsharp measure-
ments in the toy theory.

(b) The existence of irreversible transformations. A trans-
formation on a system in quantum theory is reversible if it is
associated with a unitary map. An arbitrary transformation,
however, is associated with a completely positive trace-
preserving linear map [39], which can be nonunitary. These
can arise as a result of a convex combination of unitary
maps, or by coupling the system to an ancilla and applying a
reversible transformation to the pair. Again, operations of
these sorts are allowed in the toy theory, and so irreversible
transformations arise there as well.

The main features of state discrimination tasks in quan-
tum theory [54] are also reproduced in the toy theory.

(c) No deterministic error-free discrimination of nonor-
thogonal states.

(d) The possibility of indeterministic error-free discrimi-
nation of nonorthogonal states (also known as unambiguous
discrimination).

(e) No information gain without disturbance in discrimi-
nation of nonorthogonal states. This latter phenomenon ac-
counts for the possibility of key distribution in quantum
theory [55,56]. It follows that one expects key distribution to
be possible in the toy theory as well.

The toy theory also contains analogues of a few recently
discovered phenomena involving product bases, namely:

(f) The existence of locally indistinguishable product
bases [57].

(g) The existence of unextendible product bases (that is,
product bases for which no additional product state can be
found that is orthogonal to every element of the basis) [58].

The phenomena (f) is sometimes referred to as “nonlocal-
ity without entanglement” (in fact, this was the title of Ref.
[57]). This description is perhaps inappropriate given that the
toy theory is explicitly local (in Bell’s sense) and yet repro-
duces this phenomena.

(h) The fact that for every outcome of a maximally infor-
mative measurement, there is a unique quantum state that
yields that outcome with certainty. To be specific, in a mea-
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surement associated with the basis {|¢;)}, the only state that
yields outcome i with certainty is |¢4;). This feature cannot be
captured within an epistemic approach if one allows for ar-
bitrary probability distributions over the ontic states. The
reason is that within such an approach, measurements corre-
spond to a partitioning of the ontic states into disjoint sets,
and a particular outcome of a measurement is only certain to
occur if the epistemic state prior to the measurement has its
ontic support within the ontic support of that outcome. But if
arbitrary distributions are allowed, then there will be many
epistemic states with the same ontic support. In the toy
theory, on the other hand, there are no two distinct epistemic
states with the same ontic support, since only uniform distri-
butions are allowed. As a result, there is a one-to-one corre-
spondence between the outcomes of maximally informative
measurements and the pure epistemic states.

We have not exhausted the list of quantum phenomena
that have analogues in the toy theory, however the point
should be clear: the toy theory captures a good deal of quan-
tum theory.

VII. PHENOMENA THAT ARE NOT REPRODUCED

There is a certain satisfaction in being able to reproduce
quantum phenomena in a theory that admits a simple inter-
pretation. Nonetheless, what is even more interesting is to
identify the quantum phenomena that cannot be reproduced
by the toy theory, since these now present the greatest chal-
lenge to the proponent of the epistemic view, and since these
provide the best clues for determining what other conceptual
ingredients, besides the idea that maximal information is in-
complete, are at play in quantum theory.

Here are some features of quantum theory that are absent
from the toy theory:

(i) Contextuality (i.e., the existence of a Kochen-Specker
theorem [30,32]).

(ii) Nonlocality (i.e., the existence of a Bell theorem
[33]).

(iii) The continuum of quantum states, measurements, and
transformations.

(iv) The fact that convex combination and coherent super-
position are full rather than partial binary operations on the
space of quantum states.

(v) The fact that two levels of a fundamentally three-level
system behave like a fundamentally two-level system.

(vi) The possibility of an exponential speed-up relative to
classical computation, assuming certain computational prob-
lems are classically hard.

We shall consider each of these in turn.

A. Contextuality and nonlocality

The Kochen-Specker theorem [30,32] and Bell’s theorem
[33] state that any hidden variable theory that is local or
noncontextual cannot reproduce all the predictions of quan-
tum theory. The toy theory is, by construction, a local and
noncontextual hidden variable theory. Thus, it cannot possi-
bly capture all of quantum theory. In the face of these no-go
theorems, a proponent of the epistemic view is forced to
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accept alternative possibilities for the nature of the ontic
states to which our knowledge pertains in quantum theory. It
is here that the novel conceptual ingredients are required.
Note that since nonlocality is an instance of contextuality
[59], the latter can be considered as the more fundamental of
the two phenomena. Indeed, if quantum theory can be de-
rived from a principle asserting that maximal information is
incomplete and some other conceptual ingredient, then con-
textuality may be our best clue as to what this other concep-
tual ingredient must be.

B. Continuum of states, measurements, and transformations

The finite cardinality of epistemic states, reproducible
measurements and reversible transformations in the toy
theory is due to the fact that these are associated respectively
with uniform distributions over, partitionings of, and permu-
tations of a finite set of ontic states.

Of course, by allowing nonuniform probability distribu-
tions over the ontic states, measurements whose outcomes
are determined only probabilistically by the ontic states, and
probabilistic combinations of permutations, one could have a
continuum of distinct epistemic states, measurements and
transformations over a finite number of ontic states.

As it turns out, however, such a theory cannot reproduce
the predictions of quantum theory. The proof is as follows.
For every pair of pure quantum states, one can find a mea-
surement and an outcome of this measurement such that the
first quantum state assigns zero probability to this outcome
while the second assigns to it a nonzero probability. This
implies that the first quantum state does not contain in its
ontic support any state that is in the ontic support of the
measurement outcome, while the second quantum state does.
It follows that every pure quantum state has an ontic support
that is unique to it, equivalently, no two quantum states have
the same ontic support. Since there are a continuum of pure
quantum states, there must be a continuum of distinct subsets
of the ontic states, which is only possible if the full set of
ontic states is a continuum. This proof is due to Hardy [60].
(Of course, in practice one cannot verify that the number of
distinct pure quantum states is really a continuum as opposed
to being very large but finite, so all one can strictly conclude
is that there must be a very large number of ontic states.)

Given these considerations, one is immediately led to the
idea of modifying the toy theory to allow for a continuum of
ontic states. In this case, there would be an infinite number of
questions in the canonical set. However, if one were to keep
the knowledge balance principle intact, this would imply that
a single elementary system was capable of encoding an infi-
nite number of classical bits, in contrast to the single classi-
cal bit that can be encoded in a qubit. Thus, if this variant of
the toy theory is to be analogous to quantum theory, it must
also involve some modification of the foundational principle;
we must consider other ways to guarantee that knowledge is
incomplete. An obvious choice is to assume that for N sys-
tems, only N of the infinite number of questions in a canoni-
cal set can be answered. (There would obviously be a great
imbalance of knowledge in this case, since one’s ignorance
would always far exceed one’s knowledge.) This choice,
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however, has significant problems. The most notable is the
fact that there are an infinite number of mutually unbiased
partitionings of an infinite set and therefore such a theory
would have an infinite number of mutually unbiased mea-
surements. By contrast, in quantum theory there are only
three mutually unbiased bases for a qubit, and five for a pair
of qubits. Other options for modifying the foundational prin-
ciple are required here.

C. Full binary operations on epistemic states

We have seen that there are two types of binary operations
defined for epistemic states in the toy theory, analogous to
convex combinations and coherent superpositions of quan-
tum states. However, these operations are partial; they are
not defined for every pair of epistemic states.

It might therefore seem desirable to close the set of
epistemic states in the toy theory under convex combination
with arbitrary probability distributions. In this case, the set of
allowed epistemic states for a single elementary system
would have the shape of an octahedron in the Bloch sphere
picture. Hardy’s toy theory, for instance, has this feature
[35]. Such a variant of our toy theory has also been consid-
ered by Halvorson [61]. However, there is an important sense
in which such a theory is less analogous to quantum theory
than the one presented in this paper. The toy theory shares
with quantum theory the feature that every mixed state has
multiple convex decompositions into pure states, whereas in
this modified version, there are many mixed states that have
unique decompositions. Similarly, in the toy theory, as in
quantum theory, every mixed state has a “purification”—a
correlated state between the system of interest and another of
equal size such that the marginal over the system of interest
is equal to the mixed state in question—whereas in the modi-
fied version, there are many mixed states that have only a
single purification.

The problem with the modified theory is that although
convex combination has been extended to a full binary op-
eration rather than a partial one, the coherent binary opera-
tions have not been so extended. Moreover, although one has
allowed arbitrary weights in the convex combinations, one
has not allowed the analogue of arbitrary amplitudes and
phases for the coherent binary operations. It is likely that a
better analogy with quantum theory can be obtained only if
both operations are generalized. Unfortunately, it is unclear
how to do so in a conceptually well-motivated way.

D. Embedding two-level systems in three-level systems

The toy theory we have described does not contain any-
thing analogous to a three-level quantum system (called a
“qutrit” in quantum information theory). Nonetheless, a vari-
ant of the toy theory does. One simply needs to change the
measure of knowledge to one that refers to ternary questions
(having three possible answers) rather than binary questions.
We can then introduce canonical sets of ternary questions,
and measure knowledge in terms of these. The knowledge
balance principle then dictates that in a state of maximal
knowledge, the maximum number of ternary questions for
which the answer is known must equal the number for which
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the answer is unknown.’ The simplest possible system one
can consider is completely specified by the answers to a pair
of ternary questions and thus has nine ontic states. In a state
of maximal knowledge one has the answer to one of these
questions, which corresponds to knowing that the system is
in one of three ontic states. For instance, the epistemic states
for an elementary system in such a theory are represented
graphically as

B T TTT]
[T I T 1]

[T TTTT
BT TET]
(BT T ]
(T T T,

etc. (137)

Although this variant of the toy theory does a good job of
reproducing quantum phenomena involving qutrits, it cannot
be combined, in any obvious way, with the original toy
theory. For instance, two disjoint epistemic states of a toy
qutrit are not isomorphic to two disjoint epistemic states of a
toy qubit, since the former involve six ontic states, and the
latter four. This is in contrast to quantum theory, where two
levels of a fundamentally three-level system are isomorphic
to a fundamentally two-level system.8

Similarly, a pair of qubits is described in the same way as
a fundamentally four-level system in quantum theory. We
could define a variant of the toy theory involving tertiary
questions (having four answers), which would yield an ana-
logue of a fundamentally four-level system, but this theory
would be distinct from the original toy theory applied to a
pair of elementary systems. For instance, in the original toy
theory a pair of systems must satisfy the knowledge balance
principle at the level of the pair and at the level of the indi-
vidual systems, but nothing analogous to the latter constraint
occurs in the variant involving tertiary questions.

E. Exponential speed-ups in computation

If it is indeed the case that quantum computers offer an
exponential speed-up over classical computers for certain
computational problems [39] (we currently do not have a
proof that these problems are in fact difficult for a classical
computer), then such a speed-up would be a feature of quan-
tum theory that is not reproduced by the toy theory. This is
clear since the toy theory can be efficiently simulated classi-
cally. N elementary systems of the toy theory can be modeled
by 2N classical bits and every operation in the toy theory has
a counterpart in the classical model since the toy theory in-

"This theory is likely to be closely connected with the theory of
qutrits confined to stabilizer states. The latter have been shown by
Gross to have positive discrete Wigner representation [62] and thus
admit a local noncontextual hidden variable model.

®The existence of such an isomorphism is one of the axioms in
Hardy’s axiomatization of quantum theory [63].
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volves a restriction, relative to the full classical model, on
the permissible preparations, transformations and measure-
ments. Thus, if quantum theory does offer an algorithmic
speed-up, this is likely to be connected is some way to the
other phenomena that the toy theory fails to reproduce, such
as the contextuality and nonlocality of quantum theory. In
this vein, note that some quantum information-processing
tasks that offer an advantage over their classical counterparts
have already been shown to have such a connection, specifi-
cally, random access codes [64] and communication com-
plexity problems [65].

A distinction between those quantum phenomena that are
due to maximal information being incomplete and those
quantum phenomena that arise from some other conceptual
ingredient is likely to be very useful in the field of quantum
information theory, where there is currently a paucity of in-
tuitions regarding what sorts of information-processing tasks
can be implemented more successfully in a quantum uni-
verse than in a classical universe.

VIII. RELATED WORK

Kirkpatrick has considered a model of a system with two
variables wherein it is assumed that the measurement of one
variable causes a randomization in the value of the other
[34]. This model exhibits noncommutativity of measure-
ments as well as an analogue of interference. The manner in
which these phenomena arise for a single elementary system
in the toy theory is no different. Kirkpatrick does not, how-
ever, consider the possibility of transformations nor the case
of multiple systems. Our conclusions are also quite different.
While Kirkpatrick emphasizes the classicality of his model,
we have tried to focus on the toy theory’s innovation relative
to a classical theory, namely, that maximal information is
incomplete.

Hardy has introduced a toy theory very similar to the one
described here [35]. The elementary systems within his
theory also have four ontic states. Hardy postulates restric-
tions on the sorts of measurements that are possible, and a
disturbance upon measurement that randomizes the ontic
state among the possibilities consistent with the measure-
ment outcome. This implies restrictions on the sorts of
epistemic states that apply after a measurement. He also pos-
tulates that permutations of the ontic states of a single system
are possible transformations.

In its treatment of a single system, Hardy’s toy theory is
essentially the same as the one presented here, although he
has suggested that any convex combination should be al-
lowed, in which case the set of epistemic states is the convex
hull of the ones we consider (an octahedron on the Bloch
sphere) [67]. Some of the disadvantages associated with
adopting this set of epistemic states were discussed in Sec.
VII. For multiple systems, the differences between Hardy’s
theory and the one presented here are more significant. Spe-
cifically, the set of measurements allowed in Hardy’s theory
is larger than the set picked out by the knowledge balance
principle. For instance, many of the epistemic states that are
forbidden by the knowledge balance principle, such as those
displayed in Eq. (58) (except for the first of these) and those
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displayed in Eq. (78), are allowed in Hardy’s toy theory. But
excluding such states was critical to obtaining a good anal-
ogy with quantum theory, so Hardy’s theory provides a
weaker analogy to quantum theory than the one presented
here. Note however that Hardy invented his theory for the
purpose of demonstrating the possibility of a local theory
that exhibits teleportation, and for this it is quite sufficient.

Smolin has constructed several toy models involving
“lockboxes” [36]. The motivation for his work is to repro-
duce certain information-theoretic phenomena which have
been suggested as postulates for quantum theory, specifically,
no superluminal signaling, no broadcasting, no bit commit-
ment and key distribution. One of Smolin’s models, involv-
ing pairs of lockboxes, succeeds in this task. It assumes,
however, that every pair of lockboxes bears a unique label
and this assumption has recently been criticized as unphysi-
cal [68].

There is an interesting connection between Smolin’s
theory and our own. By abandoning the assumption of
unique labels, and by formulating Smolin’s model in a dif-
ferent manner, one obtains a variant of the toy theory. Sup-
pose that every elementary system (a single lockbox in Smo-
lin’s terminology) has two possible ontic states, and thus
only a single yes-no question that can be asked of it. Now
assume that the answer to this question is always unknown.
Denoting the two ontic states by 1 and 2, it follows that the
only valid epistemic state for a single system is 1v2, and
there are no nontrivial measurements. However, permuting 1
and 2 does not increase one’s knowledge and is therefore an
allowed transformation. For a pair of such systems, there are
four possible ontic states, and thus two yes-no questions that
can be asked of the pair. Assume that one can know the
answer to one of these questions. Recalling that the margin-
als on the individual systems must be 1v 2, it follows that the
only valid epistemic states for the pair are (1-1)v(2-2) and
(1-2)v(1-2). This corresponds to knowing that the ontic
states of the two systems are the same, or knowing that they
are different. The only possible measurement on the pair is
the one that determines whether the ontic states of the two
are the same or different. Note that a permutation on either
system takes one epistemic state to the other. It is this last
feature which is critical for establishing the impossibility of
bit commitment.

Because of the assumption of unique labels for pairs,
Smolin’s model did not incorporate the possibility of corre-
lation between more than two systems. By the lights of our
reformulation however, it is natural to assume that for three
systems (and three yes-no questions) one could still only
have the answer to a single question, while for four systems,
one could have the answer to two, and so forth. Although the
resulting theory will not provide as good an analogy to quan-
tum theory as does our toy theory, it would be interesting to
explore the differences, since this is likely to shed light on
how much work is being done by the assumption of a bal-
ance of knowledge and ignorance and how much is being
done by the assumption of maximal knowledge being incom-
plete.

The above models all resemble the toy theory insofar as
they are local noncontextual hidden variable theories. They
do not, however, share the foundational principle from which
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the toy theory was derived. By contrast, Zeilinger has advo-
cated an approach to quantum theory which is operational,
denying any hidden ontic states, but which adopts a similar
foundational principle [37]. Zeilinger’s principle is that N
elementary systems represent the truth values of N proposi-
tions. The propositions to which Zeilinger is referring are
propositions stating the outcomes of measurements on the
system, rather than propositions about the ontic state of the
system. In particular, these propositions concern the out-
comes of measurements associated with a set of mutually
unbiased bases (Zeilinger calls these “mutually complemen-
tary measurements”). Note that the structure of the set of
measurements in quantum theory is taken for granted in this
approach; the existence of a particular number of mutually
unbiased bases for an elementary system is assumed rather
than derived. Had one assumed that there was only a single
measurement for every elementary system, then Zeilinger’s
principle would be consistent with knowing the truth values
for all propositions pertaining to a system and would there-
fore yield a classical theory. In the toy theory, the ratio of the
number of known propositions to the total number of propo-
sitions which pertain to a system is fixed by the assumption
of a balance between knowledge and ignorance.

Finally, Wootters has recently introduced a representation
of the quantum states of N qubits as real functions on a
discrete space of 4" elements [38]. This is a generalized
Wigner function representation of the quantum states. Since
these functions can be negative, they cannot be interpreted as
epistemic states. Nonetheless, this approach is likely to fa-
cilitate the comparison of quantum theory to the toy theory.

IX. CONCLUSIONS

We have considered the consequences of a principle of
equality between knowledge and ignorance to the structure
of the set of possible states of knowledge. We have examined
the manner in which such states of knowledge may be de-
composed into convex sums, decomposed into “coherent”
sums, transformed, inverted, updated, remotely “steered,”
cloned, broadcast, teleported, and so forth. In all of these
respects we have found that they resemble quantum states.
This is strongly suggestive that quantum states should be
interpreted as states of incomplete knowledge.

The toy theory contains almost no physics. The motional
degree of freedom was assumed classical, and there were no
masses or charges or forces or fields or Hamiltonians any-
where in the theory. Although this is a shortcoming from the
perspective of obtaining an empirically adequate theory, it
helps make the case for the epistemic view. Specifically, it
supports the idea that a great number of quantum phenom-
ena, and in particular all the phenomena that the toy theory
reproduces, have nothing to do with physics, but rather con-
cern only the manipulation of our information about the
world.? Since the spectra of atoms are not reproduced in the
toy theory, these might well be indicative of some real phys-
ics, but no cloning and quantum teleportation, for instance,
are probably not.

This idea has also been defended by Fuchs [24].
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The following three questions for future research suggest
themselves:

(i) Can we derive the knowledge balance principle from a
physical principle governing the interactions between sys-
tems, treating observers as physical systems? Most scientific
realists seek a theory that is universal, wherein apparatuses
and observers are physical systems like any other rather than
unanalyzed primitives that appear in the axioms of the
theory. Thus, even if one could derive quantum theory from
a set of axioms that included a principle of maximal infor-
mation being incomplete, the question of whether and how
this principle could be justified by some physical principle,
governing all systems, including observers, would be left
open. It may be useful to begin by attempting to answer this
question in the context of the toy theory, rather than in the
context of quantum theory.

(ii) What are the ontic states of which quantum states are
states of knowledge? Within the context of the research pro-
gram outlined here, this question captures the central mys-
tery of quantum theory. Contextuality and nonlocality imply
that there must be some modification, relative to classical
theories, of our conception of reality if we are to interpret
quantum states as states of incomplete knowledge about this
reality. Specifically, there cannot be local systems with at-
tributes that are measured in a noncontextual way. Many who
adopt an epistemic interpretation of the quantum state aban-
don the notion that the knowledge represented by the quan-
tum state is knowledge of a preexisting reality. Rather, it is
assumed that the quantum state can only represent someone’s
knowledge about the outcomes of future measurements, or,
more generally, the outcomes of future interventions into the
world, for instance, whether or not there will be an audible
click in a certain detector [23]. However, a proponent of the
epistemic view is not forced to this conclusion. Noncontex-
tual hidden variables and the outcomes of future interven-
tions do not exhaust the possibilities for the sample space
over which states of knowledge could be defined. We feel
that the most promising avenue for the epistemic program is
to investigate these other possibilities.

(iii) Is there a second principle that can capture the miss-
ing quantum phenomena? A principle stating that maximal
knowledge is incomplete knowledge is likely to serve as a
foundational principle in a simple axiomatization of quantum
theory. This is the claim that we argue is made plausible by
the strength of the analogy between the toy theory and quan-
tum theory. Nonetheless, this principle is insufficient for de-
riving quantum theory. It is intriguing to speculate that we
are lacking just one additional conceptual ingredient, just one
extra principle about reality, from which all the phenomena
of quantum theory, including contextuality and nonlocality,
might be derived. To find a plausible candidate for a second
such principle, it may be useful to adopt a similar strategy to
the one used here to argue for the first principle: do not
attempt to derive all of quantum theory, but rather focus on
the more modest goal of reproducing a variety of quantum
phenomena, even if only qualitatively and in the context of
some incomplete and unphysical theory. In particular, at-
tempt to reproduce those phenomena that the toy theory fails
to reproduce. Armed with a conceptual innovation that cap-
tures the essence of the missing quantum phenomena, a path
to quantum theory might suggest itself.
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APPENDIX A: WHY THE TOY THEORY IS NOT
A RESTRICTION OF QUANTUM THEORY

The strong similarity of the toy theory to quantum theory
might lead one to believe that the epistemic states, measure-
ments, and transformations that apply to N elementary sys-
tems in the toy theory are simply subsets of the states, mea-
surements, and transformations that apply to N qubits in
quantum theory. This is not the case however. First, there is
the fact that the coherent binary operations in the toy theory
are not precisely analogous to coherent superpositions in
quantum theory, as described in Sec. III A. Second, there is
the fact that the set of transformations in the toy theory in-
cludes permutations analogous to antiunitary maps, which do
not arise in a restricted version of quantum theory. A third
fact is that the nature of the correlations for mutually unbi-
ased measurements is different in the two theories, as we
now demonstrate.

Suppose a pair of qubits is described by one of the four
Bell states |®*),|®7),|¥*), or [¥~), and that one of three
mutually unbiased measurements are implemented on each
qubit: {|0),|1)} on each qubit, {|+),|-)} on each qubit, or
{|+i),|-i)} on each qubit. For each state and each possible
measurement, one obtains either correlation between the out-
comes (the same outcome for each qubit), or anticorrelation
(different outcomes for the two qubits). The results are sum-
marized in Table II, where “C” denotes correlation and “A”
denotes anticorrelation. One notes that in all cases there are
an odd number of anticorrelations.

We can consider the analogous experiment in the toy
theory. A pair of elementary systems are described by one of
four pure correlated epistemic states (heading the rows of
Table I1I), and one of three mutually unbiased measurements
is implemented on each system (heading the columns of
Table IIT). Again, one finds either correlated or anticorrelated
outcomes, however, the number of anticorrelations is always
even. Since one cannot achieve an even number of anticor-
relations for any quantum state, it is clear that the toy theory
for N elementary systems is not simply a restricted version of
quantum theory for N qubits.

TABLE II. Correlations (C) and anticorrelations (A) for differ-
ent measurements on each qubit of a pair prepared in one of the
Bell states.

{l0),1)} {13 {1+, =i}
|D*) c C A
|d7) C A C
|¥) A c C
|¥-) A A A
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TABLE III. Correlations (C) and anticorrelations (A) for mutu-
ally unbiased measurements given correlated epistemic states analo-
gous to the Bell states.

DoOoopnnnopnmmon
C C C
C A A
A C A
A A C

APPENDIX B: RELEVANCE TO QUANTUM AXIOMATICS

There has recently been much interest in the possibility of
deriving some or all of the quantum formalism from
information-theoretic axioms. Fuchs has popularized the
question [23], and it has been addressed in many recent ar-
ticles [23,36,61,66,68]. The toy theory shows that many of
the information-theoretic effects one finds in quantum theory
are not unique to the latter, and this has important conse-
quences for some proposed axiomatizations.

For instance, it is likely that in the toy theory key distri-
bution [56] is possible, as discussed in Sec. VI. Moreover, it
is likely that arbitrarily concealing and arbitrarily binding bit
commitment [69,70] is not possible in the toy theory. For
instance, the fact that there is an analogue of remote steering,
as demonstrated in Sec. IV B, shows that an analogue of the
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Bennett-Brassard 1984 protocol for bit commitment [56] will
not be secure against Alice. We have not rigorously estab-
lished the possibility of key distribution and the impossibility
of bit commitment, since to do so properly is a nontrivial
task. Nonetheless, our results strongly suggest the falsity of
an informal conjecture that the possibility of key distribution
and the impossibility of bit commitment together imply
quantum theory [71].

Recently, Clifton, Bub, and Halvorson (CBH) [66] have
shown that within the context of a C" algebraic framework,
one can derive quantum theory from three information-
theoretic postulates: the impossibility of superluminal infor-
mation transfer through measurements, the impossibility of
broadcasting, and the impossibility of bit commitment.

As we have shown, broadcasting is impossible in the toy
theory, and since the theory is explicitly local, there is clearly
no superluminal information transfer through measurement.
Moreover, as discussed above, it is very likely that bit com-
mitment is impossible in the toy theory. These facts do not,
however, challenge the CBH characterization theorem since
the toy theory does not fall within the C* algebraic frame-
work. For instance, convex combination is only a partial bi-
nary operation within the toy theory and is not defined for
arbitrary probability distributions, features that are required
within the C* algebraic framework [61]. Two possibilities
suggest themselves: either the assumption of a C* algebraic
framework rules out physically reasonable theories, or a
closer examination of those features of the toy theory which
cause it to fall outside this framework will show that it is not
physically reasonable after all. Similar conclusions can be
drawn form the work of Smolin [36].

Although the toy theory might ultimately be a setback for
the CBH approach insofar as it leads one to question the
innocence of the assumption of a ol algebraic framework,
the fact that it is derived from a simple information-theoretic
principle, the knowledge balance principle, and the fact that
it is so close in spirit to quantum theory suggests that the
prospects for an axiomatization of quantum theory that is
predominantly information theoretic are actually quite good.
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