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We extend to finite temperature the fidelity approach to quantum phase transitions (QPTs). This is done by
resorting to the notion of mixed-state fidelity that allows one to compare two density matrices corresponding
to two different thermal states. By exploiting the same concept we also propose a finite-temperature generali-
zation of the Loschmidt echo. Explicit analytical expressions of these quantities are given for a class of
quasifree fermionic Hamiltonians. A numerical analysis is performed as well showing that the associated QPTs

show their signatures in a finite range of temperatures.
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I. INTRODUCTION

Even, small, and smooth changes in parameters governing
the dynamics of a physical system can, in some circum-
stances, result in a dramatic change of physical properties of
the system itself. The traditional approach to these so-called
critical phenomena is based on the notions of order param-
eter, correlation functions, symmetry breaking, and a general
formulation in the framework of the Landau-Ginzuburg pic-
ture and renormaliztion group [1]. A phase transition can be
triggered, e.g., by a change of temperature of the system or,
at zero temperature, by a change of some of the coupling
constants (e.g., external fields) defining the system’s Hamil-
tonian. In the first case one says that the transition is driven
by thermal fluctuations, and the transition is referred to as
classical, whereas in the second quantum fluctuations are
held responsible for the transition and this latter is referred to
as a quantum phase transition (QPT) [2].

In the last few years much interest has grown about the
possibility of studying QPTs by means of ideas and tools
borrowed from the new born field of quantum information
science [3]. In this novel approach the key concept involved
is quantum entanglement (or genuinely quantum correla-
tions) and the idea is that quantum criticality can be suitably
characterized in terms of the behavior of different entangle-
ment measures [4]. Though the picture is still rapidly moving
it is by now clear that, whereas there are no doubts that
entanglement is indeed a valuable conceptual tool to analyze
QPTs, one has, case by case, identified what is the entangle-
ment measure, e.g., block entanglement or concurrence most
suited to extract the relevant information.

More recently an approach to QPTs based on another
quantum information notion, i.e., quantum fidelity, has been
put forward [5,6]. The idea behind this novel approach is
quite simple: the dramatic chance of the structure of the
ground state occurring at the critical points can be fruitfully
studied by analyzing their degree of distinguishability. Since
this latter quantity is related to the overlap, i.e., scalar prod-
uct, between two different ground states, the fidelity ap-
proach is basically nothing but a metric one, the key ingre-
dient being provided by the state-space distance between
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states corresponding to two slightly different sets of coupling
constants. The expectation is that at the critical points a small
change of the control parameters should result in an en-
hanced modification of the state structure and this in turn
should be detected by a greater state-space distance, i.e., sta-
tistical distinguishabiliy, between the associated quantum
states. In spite of its apparent naivety, this metric-based ap-
proach turns out to be able to provide an effective way to
obtain qualitative as well as quantitative information about
the zero-temperature phase diagram of a large class of non-
trivial quantum systems, i.e., quasifree fermionic systems [6]
and matrix-product states [7]. The conceptual appeal of the
fidelity approach for detecting boundaries between different
phases lies in its universal geometrical as well as
information-theoretic nature; in principle no a priori knowl-
edge of the symmetry-breaking mechanism and of the asso-
ciated order parameters is required.

In this paper we are going to extend the fidelity approach
to finite temperature. This generalization can be achieved by
exploiting the mixed-state fidelity introduced by Uhlmann
[8] and related to the statistical distance between two density
operators (Bures distance). This finite-temperature extension
of the fidelity approach is a nontrivial technical step neces-
sary to analyze the signatures of QPTs at nonzero tempera-
ture and, more in general, to investigate the potential useful-
ness of the fidelity notion in the study of classical, i.e.,
temperature-driven phase transitions [9]. In the following we
will focus on the first task. Moreover, we will provide an
explicit finite-temperature extension of another concept that
has been recently used in the context of QPTs and inspired
the whole fidelity program: the Loschmidt echo [10,11].

The paper is organized as follows: In Sec. II, we analyti-
cally calculate the mixed-state fidelity of thermal states and a
numerical analysis is used to demonstrate the signatures of
QPTs at finite temperature. In Sec. III, we calculate the
Loschmidt echo through a similar procedure. Section IV con-
tains the conclusion.

II. MIXED-STATE FIDELITY OF THERMAL STATES

Let us consider the set of (mixed) quantum states S(H)
:={pe L(H)/p=0,trp=1}. The mixed-state fidelity is given
by [8]
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Flpo.p1) == tr\pi*popy”. (1
This quantity measures the degree of distinguishability be-
tween the two quantum states p, and p;. The fidelity is re-
lated to the statistical Bures distance: D(py,p;)=+2(1-F).
We will use Eq. (1) to compare two different thermal states,

Pu=Z," exp(— B,H,),

Z, = trexp(- B,H,),(a=0,1). (2)
We define

Frya,(Bo.B1) = F(Z, e Potlo 7z 1=t (3)

In particular one can consider the cases (i) H,=H(\,), \;
=No+ON; Bo=PB1=p; (ii) H,=H(B.), B1=Po+ P

The first case (i) is useful to study the finite-temperature
signatures of a QPT occurring at some points, say A, in the
parameter space. The second case (ii) is considered for
studying temperature driven phase transitions. Here the S
dependence of the Hamiltonian can be the result of the pres-
ence of, e.g., a chemical potential term (grand canonical en-
semble) or of self-consistently determined coupling, e.g., a
mean-field BCS pairing term. In this paper we will focus on
case (i), while the use of mixed-state fidelity for analyzing
temperature driven PTs will be addressed in a forthcoming
work.

A. Commuting Hamiltonians

Let us start by considering the simple case where the two
Hamiltonians H, and H, commute; then

172

P POP{/2=PIPO=(ZOZI)_1 exp(— BoHo + B1H,).  (4)

Therefore by using the definition (1)
F(po.p1) = (ZyZ,)™"tr exp[— (ByHy + B1H,)/2]
=(292))7"22 expl= (BoEa+ BiEY/2].  (5)

where H,|W,)=ES|W¥,) (@=0,1). In particular if, moreover,
Hy=H, one immediately finds that fidelity of thermal states
can be expressed entirely in terms of partition functions,

Z[(Bo + ,31)/2] ©)
VZ(B)Z(B))

We note in passing that this relation seems to suggest the
possibility of making a direct connection between the metric
or statistical notion of fidelity and purely thermodynamical
quantities as well as the viability of the fidelity approach
even for classical systems [9]. We would like also to observe
that Eq. (6) also gives the (pure-state) fidelity between the
pure quantum states that one associates to the thermal states
po and p; through the kind of classical-quantum correspon-
dence discussed in [12] [see Eq. (1) there].

To further exemplify this commuting case let us consider
diagonal fermionic Hamiltonians H,=3,€’c|c;. One has

F(Bo-B1) =
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palB) =2, TL e Pucicicn=TT (14 e Pucty I [1 4 (e Pk
k k

—1cheg].
From this one finds

1 + o~ Boci+Bre)/2

Fhign,(Bo:B1) = H (7)

V(1 + e P (1 + e D)

In the zero-temperature limit ﬁ—>00 from the above equa-
tion, it is easy to check that Vk, €k6k>0:.7-"H a1, (®,0)=1,
wheras if 3k, 6k6k<0:>fH #,(%0,9)=0. Th1s 51tuat10n is
the one that encounters in the X Y—model analysis of [5] in the
critical line with anisotropic parameter y=0. There indeed
when the magnetic field N (which plays the role of a chemi-
cal potential in the fermionic picture) is changed in the range
[-1,1] one has exactly that one of the single-particle eigen-
values changes sign and this results in a vanishing fidelity

[S].
B. A more general case

Now we move to consider a more general case directly
relevant to the XY and mean-field BCS-like models. The
Hamiltonian is given by

=D H =, €f(n+n_) + Af(—icjc’, +He), (8)
k k

where n;: —c,tck and the ¢;’s are fermionic operators, i.e.,
{ck,ck,} S~ The Hilbert space factorizes H=®;H;. One
has Hk®H—k span{|00>k,_k, 11>k,—k’ Ol>k,—k? 1O>k,—k} The
first (last) two vectors span the even (odd) parity sector. The
Hamiltonian (8) has a trivial action over the odd sector, i.e.,
H{|oaq= €;1x _» where

Lo =110}, 1 {10] g + [01) {01 . 9)

Neglecting a constant €, Hj|,4q can be rewritten as Hy|yqq
:=0,. In the even parity sector, the Hamiltonian (8) can be
expressed as

H|even = 261115 {11 |5 g + (= iAZ|11), 4£00]; _; + H.c.).
(10)

Neglecting the same constant €, as we do in the odd parity
sector one can write

H|oven = 2€T3 4+ 2007, (11)

where J;:=1/2(ng+n_;—1), J:= l/2(—ichik+H.c.). For ev-
ery k, the operators J; := 1/2(c,tcik+H.c.), J,J; span a su(2)
Lie algebra such that the even (odd) sector of H; ® H_; is the
J=1/2 (J=0) irreducible representation. Therefore with ob-
vious notation o}=2J; and o}=2J} one can write

HIC:= chcl|even ® chcy|odd= (61?0724- AIC:U%) @ 02 = AlileLcY ® 02
=( ei(o,f/z)%. Aloy, e—i(&,‘:/Z)zrkX) ®0,, (12)

where

AL =€)+ (AD?,
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Jy = cos Bfo; + sin 6y,

607 := tan™' (A/€]).

Moreover,
exp(= BHy) = 0;(Ba) & i s
Pa= H (Zg)_lgg(ﬁa) D 1k,—k’ (13)
k
where
0¢(B) = exp(= BALJY) = cosh(BAY) — Ji sinh(BAY)
(14)

is a 2 X 2 operator in the even sector, and
Zy =2 +2cosh(BAy). (15)
The fidelity for the two thermal states is then given by

2 +try Qk(,[ﬁ)mg (ﬁo)Qk(/gl)m
=11 .
A Zk

Fhrig.t,(Bo:Bi

(16)

So, apart for the trivial terms in the odd sector in order to
compute the fidelity, one has to consider the products
01(81/2)0%(By)04(B,/2). As this is a product of 2X2 ma-
trices, one has

Vel (B) el By en (B

=Tt ed(Bo) el (B)] +2 det[ 2By 0L (B))].

Note that here det[0%(5B,)0:(8;)]=1, then substituting the
above equation to Eq. (16) leads to a simple expression of
the fidelity

2t VT 02(By) 04 (B))] +2 |

(17)
p 27

Frigu,(Bo,B1) =

Now, we are left to compute the trace of {(By)e;(B)).
The matrix product Qk(ﬁo)gk(ﬁl) can be written as

THL0Y(By)@(B1)] = Tr(e AMoisei g PiMoisg-icuon)
= Tr{{cosh(ByA) = sinh(BeA}) o]
X iUk BIALTL: oy
=2 cosh(ﬂvo)cosh(BlA ) — smh(,BOA )

XTr(e'mk"km'kze'ﬁl k”kze_m"a’“), (18)

9-6
where ;=75

The following trace can be evaluated as

Tr(e % kg e P Al&”kze_i"k”k'*)
= Tr{e™2%%k{ gy, cosh(B,A}) — sinh(8,A;) ]}
= cosh(,BlA;)Tr(e_izak”/ﬁakz) -2 sinh(,BlA,l()cos(Zak)
=-2 sinh(,BlA,i)cos(Zak). (19)
Substituting Eq. (19) into Eq. (18) leads to
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Tr[0}(By) 24(81)] = 2[cosh(ByAY)cosh(B A)
+ smh(ﬁoAg)smh(ﬂlA,}()cos(02 - 0,1()]

Bringing all the terms together one eventually finds

Fiigtr,(Bos B1) = T + cosh(BoAD L1 + cosh(B AT}
k
X (1 + %[1 + cosh(ﬂoAg)cosh(,BlA}()
N

+ sinh(,BlAg)sinh(,BlA}{)cos(6’2 - 0,1{)]”2) .

(20)

It is easy to check that

B 1 & -6
Fun (8. —— T[T )
k
[45%)
2

i.e., one recovers the zero-temperature result [5].

=[] |cos

k

: 21

C. Numerical analysis

We use XY model as an example to demonstrate our main
idea. Here, two Hamiltonians are Hy=H(y,\) and H,=H(y
+ 8y, N+ 6N) where

How =3 (12

Sk G +)\0‘Z) (22)

i+1

where 7y defines the anisotropy and N represents external
magnetic field along the z axis. Obviously, when y=1, the
XY Hamiltonian (22) reduces to the transverse Ising Hamil-
tonian. &y and O\ represent small perturbation to the Hamil-
tonian. of', a e {x,y,z} are usual Pauli operators in the ith
lattice point. It is well known that this model, by means of a
Jordan-Wigner transformation, can be mapped onto a quasi-
free fermionic Hamiltonian of the type (8) (i.e., €,=cos Zﬁ,ﬂ
-\, Ap=7ysin —) Through a stralghtforward calculation, it
can be obtamed that AP=A(y,\) and A=A (y+5y,\
+ 6N) where

2k 2 2k
A= \/(COSTW—)\) + v sin® Tﬂ-, (23)

and 0,‘f=cos‘1[ cos &—)\ )/A,‘Z] (a=0, 1, Ny=\, )\
=N+06N). We plot the mixed-state fidelity according to the
analytical expression obtained above Eq. (20). We choose the
number of spins to be 200, and the perturbation to be 1072. In
Fig. 1, we consider four different temperatures; S=117 -1
B=107J"", B=2017J"", and B=100 J!, respectively. At low
temperature, e.g., 8=100 J~', the sharp decay of fidelity in
the critical region clearly displays the QPT, which happens at
zero temperature. What is more, the pattern of fidelity in low
temperature is very similar to the ground-state fidelity [5]
of the XY model. This similarity is natural because, as we
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FIG. 1. (Color online) Mixed-state fidelity of finite-temperature
thermal state of the XY model. The fidelity is a function of \ and 1.
Here, we choose the spin number N=200 and the parameter
perturbation SA=38y=10"2. The temperatures of system in the
above four figures are chosen to be 8=1 17!, B=10J-!, =20 J!,
and B=100J"!, respectively. At low temperatures, e.g.,
B=100 J~!, the mixed-state fidelity clearly shows the signature of
QPT which occurs at absolute zero temperature. When the tempera-
ture increases, the decay of fidelity becomes less sharp and finally
the signature of QPT disappears due to the thermal excitation.

mentioned above, the mixed-state fidelity approaches
ground-state fidelity when the temperature decreases to zero.
When the temperature increases higher, e.g., 8=10J7! or
B=20 17! the decay of fidelity, though less sharp due to the
thermal excitation, still early shows the signature of QPT.
However, when the temperature becomes large enough, e.g.,
B=1 17!, the dramatic decay of ground-state fidelity at the
critical point is totally washed out by the thermal excitation
and the signature of QPT at the critical point eventually dis-
appears. In Fig. 2, we plot the mixed-state fidelity of thermal
state of the transverse Ising model. This is actually a cross
section of Fig. 1 at y=1. The decay of fidelity clearly indi-
cate the critical point of transverse Ising system.

It is important to stress that these numerical findings, be-
sides illustrating the possibility of detecting and studying the
finite-temperature signatures of QPTs, show that the ground-
state fidelity approach to criticality is endowed with some
robustness against “perturbations” of the ground state. In this
case, in fact we have seen that mixing the ground state
with excited eigenstates does not destroy the peculiar behav-
ior of fidelity in the neighborhood of the QPTs, i.e., the fi-
delity drop.

III. LOSCHMIDT ECHO

In Refs. [10,11], the concept of Loschmidt echo has been
used to investigate quantum criticality. The Loschmidt echo
measures the sensitivity of a system to a small perturbation
in its Hamiltonian. Specifically, when the system is in a pure
state |¥'(0)), Loschmidt ehco is given by the inner product of
the pure state |¥'(0)) under two evolutions with a slight dif-
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FIG. 2. (Color online) A cross section of Fig. 1 with y=1, i.e.,
mixed state fidelity of finite-temperature thermal state of transverse
Ising model. Here, the same as that in Fig. 1, the spin number is
chosen to be N=200 and the parameter perturbation S\=35y=1072,
Four curves represent four different temperatures: B=1J71,
B=1071"", B=201"!, and B=100J~!, respectively. The decay of
fidelity, though becomes less sharp with the increase of the tempera-
ture, well indicates the critical point of the transverse Ising model.

ference in Hamiltonians Hy=H(y,\) and H;=H(y+dy,\
+6N),

Ly, (1) = KV (0)|expliHorlexp[— iH ][ P (0)*. (24)

When the parameters y(y+dy) and N(\+6\) are far from
the critical point, i.e., Hy and H; are in the same phase, the
system is not sensitive to the perturbation. Loschmidt echo
approximately remains at unit EHO,Hl(t)zl even for a long
time. However, when y(y+dy) and N(\+6\) are near the
critical point, Hy and H; maybe in two different phases and
thus have totally different symmetry. Then the system is very
sensitive to this tiny perturbation and Loschmidt echo
EHO,Hl(t) change abruptly to zero. The resulting picture is
that the asymptotic value of the Loschmidt echo (for infi-
nitely long times) is directly related to the closeness of the
system to the critical points, i.e., the closer the systems to
the QPT the smaller the asymptotic value of the Loschmidt
echo. On the other hand, even the short-time behavior brings
about information about the QPTs. Indeed, for short times
the decay of the Loschmidt echo appears to be gaussian
~exp(—at?), where the rate « has a diverging derivative (as
a function of, e.g., magnetic field) at the critical point [11].

Now we show how to generalize the notion of Loschmidt
echo in a natural way to the thermal state case. This natural
extension to the realm of mixed-state can be obtained by
using Eq. (1),

Lp,.”,HO,Hl(f) i= F(p,, U, (1) Uy(0) piy U(T)(f) U,(1)),

U,=exp(-iH,) (a=0,1). (25)

In particular, one can chose p;,=exp(—BH,), then Eq. (25)
simplifies and one can define
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Ly, (B.) = F1Zg'e P10, 25 U (0)e P (1)]
=7, Fle P, Uj(0)e U, (1)]
=F HO,U';'(z)HOU,(z)(IB’ B). (26)

Then, from the above equation and Eq. (17), one finds

Ly u (B0 =11@) 2+ Tile(Bei(B]+2) (27)

k

with
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Q?( B) = R0k p=BAL O e—i(ag/z)okx’

01(B) = Uj(1)e i 7kee PN iy (1) (28)

Notice now that the unitary operator U,(z) can be written
as U, (1)= O T=iM 1 =i (0120 Then,

T 0%B)e(8)] = Tx( 2Ty~ BAL O =i (12) 01 (011200 it Ay =i (0120

.0 0 . ol Al .ol
% ol (/201 BA T y=i(12) 1 i (O4/2) 0 it Ay, e 0o

0 . Ll . 0 . Al . 0 0y,/f
— Tr(g_:BAkUkze'akaxeltAkUkze_’ak”kxe_BAk”kze’akgkxe_”Ako'kze_lako'kx) — Tr(e_ﬁAk‘Tkze_BAkv o’kZV) , (29)

. ol .
where V=e!®%ke~ Mk~ %% Using the formula ¢*=cosh x—sinh x, one have

Tr 0Y(B)2,(8)] =2 cosh?(BAY) + sinh*(BAY) Tr(o, V0. V). (30)

The following trace is evaluated as

. . ol . oAl ) ol oAl
TI'((TkZV’ (Tsz) — TI'(O'kzemkUk"eltAkUkze GOy Ukzelakgkxe ”Aka'kze ’ak‘Tkx) — Tr(o.kzelaka'kxeztAkUkzg tZa’kO'kxe l[AkUkzelakUkXO'kZ)

. a1 . Al . .
= Tr(e?% kel Mk~ 2% ke~ MOk = Tr{[cos(tA,i) +i sin(A,lct)e’zak"k*a'kze"zak"kﬂ X [cos(tA,I() —i sin(tA,I()O'kZ]}

=2 cos?(tA}) + sin*(tA}) Tr(o,e> % ko e~ 2%k) = 2 cos?(tA;) + 2 sin®(tA,)cos(4ay) . (31)

Substituting the above equation to Eq. (30) leads to
Ti{0)(8)0,(B)] =2 cosh*(BAY) + 2 sinh*(BAY) X [cos*(tA})
+sin?(tA})cos(4a) ] = 2[ 1
—sin’(2a;) sin2(A,it)]cosh(2,8A2)
+2 sin?(2a)sin®(A}1). (32)

Bringing all the terms together, we give an explicit ex-
pression for the Loschmidt echo for the class of Hamilto-
nians (8)

Ly, (B.0) = T[1 +cosh(BAD]™!
k
X (1 + %{[1 —sin?(6) — 6})sin*(A1)]
\J

X cosh(2,8A2) + sinz(ﬁg - Gi)sin2(A,£t) + 1}1/2)

(33)
It is immediate to check that in the zero-temperature limit
one recovers the result obtained in [10],

‘BHm
l:HO,HI(,g,l‘) _ H \/1 — sinz(ﬁg - 0;)sin2(A,it).
k

Numerical analysis

Similarly to Sec. II, we now study mixed-state Loschmidt
echo given by Eq. (33). In Fig. 3, we plot the Loschmidt
echo at an instant t=10 s. The parameters are the same as
that in Figs. 1 and 2. Similar to the ground-state Loschmidt
echo in Ref. [10], the decay of mixed-state Loschmidet echo
of a thermal state at a finite temperature well indicates the
critical point. With the increase of the temperature, the decay
of the mixed-state Loschmidt echo at critical point becomes
less sharp until finally disappears. Figure 4 is a cross section
of Fig. 3 at y=1, i.e., a mixed-state Loschmidt echo of trans-
verse Ising model. Similarly to the mixed-state Fidelity of
transverse Ising model in Fig. 2, the critical point is clearly
indicated by the Loschmidt echo. With temperature increase,
the decay of Loschmidt echo at critical point becomes less
evident, and finally disappears for sufficiently high tempera-
ture.

IV. CONCLUSIONS

In this paper we have shown how to extend to finite tem-
perature the fidelity approach to quantum phase transitions
advocated in Refs. [5,6]. This generalization relies on the
notion of mixed state fidelity applied to (Gibbs) thermal
states. Mixed-state fidelity is strictly related to the Bures
metric measuring the statistical distance between two density
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FIG. 3. (Color online) Mixed-state Loschmidt echo finite-
temperature thermal state of the XY model at an instant =10 s.
Here, we choose the spin number N=200 and the parameter
perturbation SA=38y=10"2. The temperatures of system in the
above four figures are chosen to be S=1 171, =10 1!, =20 J!,
and B=100 J~!, respectively. Similar to the mixed-state fidelity ap-
proach, the critical region is well indicated by Loschmidt echo at an
instant when the system is at a low temperature. However, the sig-
nature of QPT disappears when the temperature increases to very
high value.

operators, therefore this approach has a geometrical as well
as an operational meaning and two of them are deeply inter-
twined. We provided an explicit analytical expression for
both the fidelity and Loschmidt echo for an important class
of quasifree fermionic Hamiltonians including, e.g., the XY
model. A numerical analysis of these quantities has been per-
formed; it clearly shows how the influence of the zero-
temperature critical points extend over a finite range of tem-
peratures. Besides representing a nontrivial generalization of
the former zero-temperature results, the findings reported in
this paper suggest directions for further investigations, the
most prominent being the possibility of using (mixed) state-
space metrical quantities to study temperature driven phase
transitions both in the quantum and in the classical case [9].
The fact that simple geometrical notions seem to provide a
unified frame for studying all these different kinds of critical
phenomena is, we believe, conceptually quite appealing. Be-
fore concluding this paper, we would like to mention that our
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FIG. 4. (Color online) A cross section of Fig. 3 with y=1, i.e.,
mixed-state Loschmidt echo (at an instant) of finite-temperature
thermal state of transverse Ising model. Here, the same as that in
Fig. 3, the spin number is chosen to be N=200 and the parameter
perturbation S\=48y=1072. Four curves represent four different
temperatures: 8=1J"!, 8=10J7!, B=20J7!, and B=1001J7!, re-
spectively. The critical point is well indicated by Loschmidt echo
when the temperature is not too high.

current study is focused on quasifree quadratic fermionic
Hamiltonians. Both the quantum phase transition in the XY
model and the BCS transition in the BCS model can be de-
scribed by this Hamiltonian. There is also another kind of
phase transition, e.g., the BEC transition in dilute gases,
which should be described by a quasifree quadratic bosonic
Hamiltonian [13]. We anticipate that similar results could be
obtained through an analogous calculations (see, e.g., the
Dicke model example in Ref. [5]). A detailed discussion on
quasifree quadratic bosonic Hamiltonian will be given in fu-
ture research.
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