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Quantum Brownian motion for periodic coupling to an Ohmic bath
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We show theoretically how the periodic coupling between an engineered reservoir and a quantum Brownian
particle leads to the formation of a dynamical steady-state which is characterized by an effective temperature
above the temperature of the environment. The average steady-state energy of the system has a higher value
than expected from the environmental properties. The system experiences repeatedly a non-Markovian
behavior—as a consequence the corresponding effective decay for long evolution times is always on average
stronger than the Markovian one. We also highlight the consequences of the scheme for the Zeno-anti-Zeno
crossover which depends, in addition to the periodicity 7, also on the total evolution time of the system.
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I. INTRODUCTION

Fundamental research on open quantum systems has tra-
ditionally focused on interactions between the reduced sys-
tem and its natural environment [1,2]. Recent theoretical and
experimental developments in engineering the properties of
the environments open a new avenue by creating artificial
controlled reservoirs with which the reduced system interacts
[3-5]. These developments make it possible, €.g., to observe
directly the appearance of decoherence [4,5] and to study
non-Markovian dynamics of open systems in new regimes
[6,7]. Moreover, reservoir engineering and environment-
mediated schemes allow the indirect control of quantum sys-
tems [8,9]—quantum control being the essential ingredient
in the development of quantum simulators. Generally speak-
ing, the importance of open-system studies stems from their
central role in understanding the quantum-classical border
[10-12] and from the role of decoherence as an obstacle for
creating quantum-information processors [13,14]. Reservoir
engineering provides a so far largely unexplored way to ap-
proach these issues which have both fundamental and appli-
cative character.

We focus on the reservoir engineering schemes for a para-
digmatic open-system model, i.e., quantum Brownian motion
(QBM) [1,2,15-19], which has a wide variety of applications
ranging from quantum optics [20] and nuclear physics [21]
to chemistry [22]. An earlier study has revealed various types
of non-Markovian dynamics of QBM for structured reser-
voirs [6], i.e., time-independent engineered reservoirs [23].
Here, we concentrate on a scheme where the system is forced
repeatedly to experience non-Markovian behavior due to the
structured reservoir. We show that this corresponds to the
case when the engineered reservoir is periodically switched
off and on—and can also be seen as an initial step toward
more sophisticated time-dependent reservoir engineering
techniques. We call this switch off-on scheme shuttered res-
ervoir and consider the cases where the duration of each
period is on the non-Markovian time scale [24].

So far time-dependent reservoir engineering schemes
have been considered mostly for few-level systems [25].
Here, we give an example of the effects of periodic system-
environment interaction for a more complicated quantum
system, namely, a harmonic oscillator. Our results can find
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applications, e.g., in the field of linear quantum amplifiers. In
that context, the switching off-on action corresponds to shut-
tering the pumping lasers, which may lead to interesting ef-
fects such as the enhancement or reduction of the gain of the
amplified field [26].

It is worth noting that artificial engineered reservoirs have
recently been created for a trapped ion system by applying
electric noise to the trap electrodes and by using laser light
[4,5]. Thus, one can think of creating shuttered reservoirs by
shuttering the noise that is applied to trap electrodes or by
shuttering the laser light.

The theoretical description of the system dynamics that
we consider is based on the recursive use of the appropriate
master equation and allows analytical solutions to be found.
For a small number of shuttering periods, one can control the
appearance of the quantum Zeno (QZE) and anti-Zeno ef-
fects (AZE) [28-30] for the reduced system by tailoring the
properties of the environment [7]. In this paper we concen-
trate on intermediate time dynamics (intermediate number of
periods) and on the steady-state properties of the reduced
system for long times (large number of periods). We show
that for a large number of cycles the system always reaches a
steady state that is not in thermal equilibrium with the envi-
ronment at temperature 7 but can be described by an effec-
tive temperature T,;>T and by the corresponding thermal
state. The steady-state value of the average system energy is
given by the ratio of the effective time-averaged diffusion
and dissipation constants.

The scheme has also interesting fundamental conse-
quences for the appearance of the QZE and AZE. As was
shown in Ref. [7], for a small number of cycles, one can
control the appearance of the QZE or AZE by changing the
environment parameters. In this paper we show that for a
large number of cycles the system always experiences an
AZE. In other words, the decay of the system is stronger than
the Markovian one for a large number of periods. Thus, for
short evolution times the system may experience the QZE
which for long times turns to the AZE. This demonstrates
that the appearance of the quantum Zeno or anti-Zeno effect
in QBM depends also on the total evolution time of the sys-
tem (or number of measurements) and demonstrates the rich-
ness of Zeno dynamics in QBM when compared to more
simple systems, e.g., two-level atoms.
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The paper is organized in the following way. Section II
introduces the quantum Brownian motion model for a har-
monically bound particle and introduces the basic properties
and parameters for the structured reservoirs we use. These
form the framework for Sec. III in which the formal treat-
ment of an open system with a shuttered reservoir is carried
out, leading to the concept of recursive master equation. The
results for the heating function dynamics are presented in
Sec. IV, and a discussion concludes the paper in Sec. V.

II. QUANTUM BROWNIAN MOTION

We consider a harmonic oscillator linearly coupled with a
reservoir modeled as an infinite set of noninteracting oscilla-
tors [1,2,15-19]. The dynamics of a damped harmonic oscil-
lator is described, in the secular approximation, by means of
the following generalized master equation in the interaction
picture [6,31]:

dp(t) A(?) + (1)
dr 2

A() - 1)
il LA AT
2

[2ap(t)a’ ~ a'ap(1) - p(1)a'a]

[2a"p(1)a — aa’p(t) - p()aa’]. (1)

In this equation, ¢ and a' are the annihilation and creation
operators, and p(7) is the reduced density matrix of the sys-
tem harmonic oscillator. The non-Markovianity is character-
ized by the time dependence of the coefficients A(r) and (¢)
appearing in the master equation—these are known as diffu-
sion and dissipation coefficients, respectively [6,31].

The diffusion coefficient appearing in the master equation
(1), to second order in the dimensionless coupling constant g,
can be written in units of % as [6,16]

}’2

1+

A(r) =2g%kgT {1 = e[ cos(wyt) = (1/r)sin(wyt) I},

2)

where the assumption of the high-temperature reservoir, 7
=kgT/ wy> 1, has been used. The dissipation coefficient (z)
can be written as

gzw r2
W) = r2—°{1 — e *[cos(wyt) + rsin(we) ). (3)

+1

Above, r=w./ w, is the ratio between the environment cutoff
frequency w, and the oscillator frequency wy, kg the Boltz-
mann constant, and 7 the temperature of the environment.

A commonly used environment for open quantum systems
is described by an Ohmic reservoir spectral density with the
Lorentz-Drude cutoff [1]

2
J(w)=— —. (4)

The spectral distribution is given by
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2
(o) = J(@)[n,(w) + 1/2] = ng(‘f coth(w/KT), (5)

c wz
where n,(w) is the occupation of the environment mode at
frequency w and Eq. (4) has been used. For high T, Eq. (5)

becomes

2nT @
I((D)= B W,

T w0t (©)
The central parameter r=w,./ w, describes how on resonant
the oscillator is with the reservoir. When r> 1, the intensive
part of the environment spectrum overlaps with the oscillator
frequency and the decay coefficients A(r)+y(r)>0 for all
times. Consequently, the master equation is of Lindblad type
[32,33]. When r<1, the most intense part of the environ-
ment spectrum lies in a small frequency range and the on-
resonant intensity is small. The decay coefficients A(r)+ ¥(z)
acquire temporarily negative values and the master equation
is of non-Lindblad type [27].

The full solution of the master equation (1) can be found,
e.g., in Refs. [6,31]. In what follows, we study the time evo-
lution of the heating function (n(z)) with n=a'a the quantum
number operator. The dynamics of (n(¢)) depends only on the
diffusion coefficient A(7) and on the classical damping coef-
ficient y(r) [31]. Furthermore, the quantum number operator
n belongs to a class of observables not influenced by the
secular approximation [18,31].

The solution for the heating function, valid for all times
and all initial states, is given by [6,27]

1
(n(t))y =€ n(0)) + 5(@"”’) - 1) +Ap(0), (7)
where the quantities Ap(r) and I'(r) are defined in terms of

the diffusion and dissipation coefficients A(r) and (z), re-
spectively, as follows:

I'(t= 2f Yty)dty, (8)
0

Ar(?) =e‘”’)f e"DA(1))dt, . 9)
0

For short times the system experiences non-Markovian dy-
namics and for long times, after Markovian heating, the sys-
tem reaches a thermal steady state with its environment. This
typical dynamics is modified in the context of the scheme
presented in the next section.

III. SHUTTERED RESERVOIR AND RECURSIVE
MASTER EQUATION

We are interested in the reduced system dynamics when
its engineered artificial reservoir is switched off and on in a
repeated manner with period =—for this purpose we use the
term shuttered reservoir. At the end of each period the engi-
neered reservoir is switched off, and switching on initiates a
new time evolution period for the system. Consequently,
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each switching off and on process will reset the correlations
between the system and the environment. For an experimen-
tal realization of the scheme, one can, e.g., uncouple the
system from the engineered bath in a periodic way. The du-
ration of the free evolution period has to be chosen long
enough to avoid correlations between different system-bath
coupling periods, i.e., the duration of the free evolution has
to exceed the bath correlation time.

By resetting the correlations between the system and the
environment, the system oscillator is forced to experience
non-Markovian dynamics in a periodic way. Consequently,
the system remains repeatedly in the non-Markovian regime.
Following this scheme, the solution for the reduced density
matrix and the heating function dynamics can be obtained by
the recursive use of the master equation given by Eq. (1). In
other words, the master equation is solved for each evolution
period by using as an initial state of the system the one
obtained at the end of the previous period. In the case we
consider, the free evolution between system-reservoir inter-
action periods can be neglected in the calculations [34].

This recursive use of the master equation (1) leads, as-
suming an initial Fock state, to the following equation for the
density matrix of the reduced system:

20 ) aptoa’ - o' ant) - Lot

+ y_l(ﬂ(a*p(r)a - Jaa'plo) - épmaa*).

(10)

Here, time t=m7 where m indicates the number of the pe-
riod. The decay coefficients are written as

71(7)—1f dr'TAW) +A(1)] (11)

and

ya(D = f dr'TAG) = A1), (12)
7Jo

It can be shown that the master equation (10) corresponds
formally to the case where the reduced system dynamics is
modified by periodic nonselective measurements. Thus, our
shuttered reservoir and initial state are equivalent to perform-
ing periodically nonselective measurements of the energy of
the oscillator [35]. For a formal study of nonselective mea-
surements and master equations, see Ref. [36].

We are mostly interested in the case where the oscillator
is initially in its ground Fock state [n=0) (such as a laser-
cooled single trapped ion) though the results for the steady
state presented in the following are valid for all initial states.
For an initial ground state, the solution of the master equa-
tion (10), in terms of the quantum characteristic function
(QCF) y, reads

X&§)=6Xp[—(vﬂﬁ>+ )§P} (13)

where the heating function is given by
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Ar(7
<n<r-mr)>< SO 1)(1 eTO) . (14)

The solution given in Eq. (13) is obtained by using certain
algebraic properties of the superoperators of the correspond-
ing generalized master equation; for more details see Refs.
[6,27,31]. Moreover, the QCF of Eq. (13) corresponds to a
thermal state at all times (cf. Ref. [37]) and its time depen-
dence is given by (n(7)).

Equation (14) reveals that there exists a steady-state value
for the heating function (n),, and its value can be easily
obtained by taking the limit of the number m of periods
going to infinity. We obtain from Eq. (14)

(n).= lim (nfo)) = =L

1
-—. 15
m—oo e_F(T) 2 ( )

It is important to notice that the steady-state value depends
on the duration 7 of the periods. Moreover, since A and y
depend on r, consequently also I" and A depend on r [cf.
Egs. (8) and (9)], and the steady-state value may also depend
on the form of the environmental spectral density applied in
each period, and not only on its temperature 7.

As a cross check, it is easy to see that with increasing
duration of the period 7 we obtain correctly the result
without shuttering. The denominator in Eq. (15),
1/(1-eT™), goes to unity with increasing 7 and we obtain
(n),=Ap(7)—1/2. This matches the long-time result without
shuttering, which can be calculated by taking the limit
t—oo in Eq. (7).

To gain more physical insight, we expand exp[-I'(7)],
which appears explicitly and implicitly in Eq. (15), with re-
spect to I'. Keeping the terms to lowest order in I', and
neglecting the term 1/2 since we consider the high-

temperature case, we obtain
T
f dr'A(t")
1Jo
(n)s==

f dr' (it
0

Moreover, this equation is valid also in the Markovian limit
since with the Markovian values for A and 7y we obtain
(n),=kgT/ vy, which matches the high-temperature Markov-
ian result [38].

Equation (16) demonstrates that the ratio between the
time-averaged diffusion and dissipation gives the steady-
state value of the average system energy in the presence of
shuttered reservoirs. Here, the average is taken over a single
period of duration 7. The system is not in thermal equilib-
rium with its environment and has an effective temperature
T which is different from the temperature 7 of the environ-
ment. Moreover, the steady-state average energy of the sys-
tem can be controlled by the period duration 7 and the envi-
ronment “on-resonance” parameter r.

The steady state of the system is a thermal state [see Eq.
(13)], with (n(r))={n),. The corresponding effective tempera-
ture can be written as

(16)
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FIG. 1. (Color online) The short-time behavior of the heating
function displaying (a) Zeno and (b) anti-Zeno effect. In the Zeno
effect, the shuttered reservoir reduces the heating of the oscillator
while for the anti-Zeno case the heating is enhanced when com-
pared to the dynamics with the traditional unshuttered reservoir.
The parameters are g=0.1, 7=0.5/ w,, n1=kgT/ wy=10. r=(a) 10 and

(b) 0.1.

W
Teff= k_0<n>v (17)
B

This differs from the environment temperature 7' since
(n),#n. Moreover, since the system reaches an effective
thermal state, it eventually satisfies the detailed balance con-
dition with appropriate modifications to the transition rates
given by the shuttered reservoir.

We have presented above the formalism and the cross
checks for its validity. In the following section we continue
with the results for the heating function dynamics from Eq.
(14) and the steady-state values of the average system energy

from Eq. (15).

IV. THE SYSTEM DYNAMICS
A. Short- and intermediate-time dynamics

Figure 1 displays the heating function dynamics over a
couple of first shuttering periods. It illustrates how the sys-
tem exhibits the (a) Zeno and (b) anti-Zeno effect. For vari-
ous types of non-Markovian dynamics with traditional un-
shuttered reservoirs in this regime see Fig. 1 in Ref. [6] and
for a study of the Zeno—anti-Zeno crossover see Ref. [7]. The
key aspect for this paper is that both effects are possible for
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FIG. 2. (Color online) The heating function dynamics for inter-
mediate times when the system approaches a steady state. In (a) 0
<w.t<0.15X10% showing the small-time enlargement of (b)
where 0<<w.t<10* The parameters correspond to those used in
Fig. 1 except 7=1/w,. The solid line is for an unshuttered reservoir
showing the thermalization to (n)/77=1 in (b). The dashed line is for
the case of pure anti-Zeno dynamics by a shuttered reservoir for all
times. The dotted line is for a shuttered reservoir when the dynam-
ics begins as Zeno type (reduced heating) but crosses later to anti-
Zeno behavior (increased heating). This crossing between the solid
and dotted lines, which occurs at w.z=800, is shown in detail in

(a).

short evolution times. Moreover, one can control which one
appears by controlling the periodicity 7 and the properties of
the environment. Note that the figure includes also the non-
Markovian dynamics within each period and not only the
coarse graining in 7 [cf. Eq. (14)].

Examples of the heating function dynamics for intermedi-
ate times, when the system approaches the steady state, are
displayed in Fig. 2. The results demonstrate clearly that dy-
namics that begin with reduced heating, and therefore as
Zeno type for short evolution times, become anti-Zeno for
long times. This can be observed as a crossing between the
dotted and solid lines in Fig. 2(a) which shows in detail the
passage from the Zeno to the anti-Zeno region.

Moreover, Fig. 2(b) demonstrates that the approached
steady-state value for the dotted line is around 3.5 times the
one expected from the temperature of the environment. Fur-
thermore, it is striking that there exists a crossing between
the dotted and dashed lines in Fig. 2(b). In another words,
the dynamics that starts as Zeno type shows for long times
more pronounced anti-Zeno character than the case that al-
ready initially begins as anti-Zeno type. As a consequence,
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the highest steady-state values of the energy for long times
are reached for the parameters that in short times give the
QZE and reduced decay.

The results above clearly demonstrate that the appearance
of the QZE and AZE is time dependent in QBM. There exists
a crossover between the two effects in time. The fact that the
appearance of these effects depends on the total evolution
time of the system, in addition to the periodicity 7, is in
contrast to more simple systems like two-level atoms. It has
been shown in Ref. [7], which studied the controlling of the
Zeno and anti-Zeno effects in QBM for short times, that the
appearance of the QZE and AZE depends on the quantum
number n for QBM. Even though the time averages of the
effective decay coefficients remain fixed, this n dependence
allows the crossover from Zeno to anti-Zeno effect to occur
with time. When the system heats, the expectation value (n)
increases with time, and the system experiences a crossover
from the Zeno to the anti-Zeno region. This is not possible
for a two-level system and demonstrates that the Zeno-anti-
Zeno phenomenon has more variety in QBM than in more
simple systems.

B. Long-time dynamics and steady state

The results presented in the previous section suggest that
the heating function with shuttered reservoirs approaches as-
ymptotically values that are higher than with the unshuttered
reservoirs. Actually, this is also indicated by the analytic so-
lution given in Eq. (14) where the denominator is always
between 0 and 1. The system, which is forced repeatedly to
go through non-Markovian behavior, experiences enhanced
dissipation compared to the Markovian one. The system
reaches a steady state since the time-dependent diffusion and
dissipation coefficients, A and v, respectively, have well-
defined time-averaged values over 7.

By using Eq. (15) one can calculate the steady-state sys-
tem energy as a function of 7, r, and the coupling constant g.
The magnitude of the coupling constant, in the region of the
validity of the model (weak coupling, g<<1) does not affect
the steady-state energy. Moreover, {n),, as a function of r,
varies in a rather small range for =1 and then reaches a
stable value for increasing r. Thus, the most interesting pa-
rameter here is the shuttering interval 7. This conclusion can
be reached also by making a series expansion of (n),, with
respect to small 7. The dominant term contains only 7, and
the parameters r and g come into play only in the higher-
order terms.

Figure 3 displays the steady state (n) as a function of ,
where for other parameters some convenient values have
been chosen. As expected, for increasing 7, the average en-
ergy of the steady-state approaches the one with unshuttered
reservoir and corresponds to the temperature of the environ-
ment. When the duration of the periods 7 is decreased, the
steady-state energy of the system increases rapidly. This can
be explained by studying the behavior of A and vy as a func-
tion of time. For the typical spectral density we use in this
paper [cf. Eq. (4)], A initially increases in the non-
Markovian region faster than 7y [cf. Egs. (2) and (3)]. The
feature is enhanced in the time-averaged values of these

PHYSICAL REVIEW A 75, 032105 (2007)

FIG. 3. Steady-state value of the heating function (n), as a func-
tion of the shuttering period 7. Parameters are a=0.1, r=10,
n=10.

quantities when 7 decreases and demonstrates quantitatively
the behavior seen in Fig. 3.

Naturally, energy conservation has to be satisfied. It re-
quires work to periodically shutter the reservoir. In other
words, it takes work to periodically couple the system with
the reservoir. This can be seen as the origin of the increased
system energy and the energy is conserved since the mini-
mum work required exceeds the oscillator energy [39].

V. DISCUSSION AND CONCLUSIONS

The creation of artificial environments and reservoir engi-
neering techniques open new avenues to study the non-
Markovian dynamics of open quantum systems and to im-
prove the capability for the control of quantum systems. We
have taken here an initial step toward time-dependent reser-
voir engineering by considering the case when a structured
reservoir is switched on and off in a periodic manner (shut-
tered reservoir).

The results for quantum Brownian motion show that the
interaction of the reduced system with the shuttered reservoir
changes the system dynamics drastically compared to the
conventional dynamics. For short times the system may ex-
hibit Zeno or anti-Zeno behavior depending on the properties
of the environment. A striking dynamical feature arises for
long times—the system always reaches a steady state in
which the average system energy is larger than the one cor-
responding to the temperature of the environment. The shut-
tered reservoir forces the system to experience non-
Markovian behavior periodically and the steady-state
properties are consequently given by the time-averaged prop-
erties of the diffusion and dissipation between successive
reservoir shuttering events.

One of the interesting consequences is that the appearance
of Zeno or anti-Zeno effects becomes dependent on the total
evolution time of the system. What starts as a Zeno effect for
short and intermediate times turns to the anti-Zeno effect
when the steady-state regime is approached. The Zeno stud-
ies in simple systems, such as a two-level system, show how
either the Zeno or the anti-Zeno effect appears. Here, we
have demonstrated that a crossing between the two effects
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occurs with time and in QBM the Zeno phenomenon is very
rich.

In the future, advanced reservoir engineering techniques
may allow new ways to implement quantum control. We
have shown here that shuttered reservoir gives rise to inter-
esting dynamical effects. A next step is to study the case
where the properties of the environment remain the same for
a given “on period” but vary between different periods. Very
precise ways to control the system properties by using reser-
voir engineering combined with laser cooling may open new
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possibilities for the development of general quantum simula-
tors for open systems whose dynamics is traditionally te-
dious to solve by analytical means.
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