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We study the behavior of ultracold bosonic atoms held in an optical lattice. We first show how a self-trapping
transition can be induced in the system either by increasing the number of atoms occupying a lattice site or by
raising the interaction strength above a critical value. We then investigate how applying a periodic driving
potential to the self-trapped state can be used to coherently control the emission of a precise number of
correlated bosons from the trapping site. This allows the preparation and transport of entangled bosonic states,
which are of great relevance to novel technologies such as quantum-information processing.
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INTRODUCTION

Ultracold atoms held in optical lattices are currently at the
center of intense theoretical and experimental investigation.
The experimental parameters of these systems can be con-
trolled extremely precisely, and in addition, the high degree
of isolation from the environment permits their quantum dy-
namics to remain coherent over long time scales. Conse-
quently such systems provide an attractive way of investigat-
ing quantum many-body physics and provide an excellent
starting point for engineering and manipulating entangled
states, which are vital for implementations of quantum-
information processing.

Bosons confined in an optical lattice provide an almost
ideal realization �1� of the Bose-Hubbard �BH� model, and a
recent experiment directly observed the quantum phase tran-
sition between a superfluid and a Mott insulator �2�. Theo-
retical work �3,4� has shown how this transition may be in-
duced in an alternative way: by applying an additional
oscillatory driving field to suppress the intersite tunneling by
means of the quantum interference effect termed coherent
destruction of tunneling �CDT� �5�. In this work we show
how such an oscillating driving field can be used to manipu-
late the dynamics of a different ground state of the BH
model—the self-trapped state. In particular we demonstrate
an effect analogous to photon-assisted tunneling �PAT�, in
which certain driving frequencies induce a coherent oscilla-
tion of an integer number of bosons between the trapping site
and its nearest neighbors. Combining this effect with CDT
allows us to control the emission of a definite number of
bosons from the trapping site and manipulate their speed of
propagation through the optical lattice, and thus enables the
self-trapped state to be used as a quantum beam splitter or as
a coherent source of entangled bosons.

STATIC PROPERTIES

The BH model is described by the Hamiltonian

HBH = − J�
�j,k�

�aj
†ak + H . c . � +

U

2 �
j

nj�nj − 1� , �1�

where aj�aj
†� are the standard annihilation �creation� opera-

tors for a boson on site j, nj =aj
†aj is the number operator, J

is the tunneling amplitude between neighboring sites, and U

is the repulsion between a pair of bosons occupying the same
site. This description is valid �1� if the largest potential en-
ergies present in the system are smaller than the excitation
energy to the first excited Bloch band, and that the interac-
tion can be described by a short-range pseudopotential. We
initialize the system in a state in which all the bosons occupy
a single lattice site. As the Hubbard interaction is repulsive,
it might be thought that such a state would be extremely
unstable. Surprisingly, however, this is not necessarily the
case and, depending on the strength of the interaction and the
filling of the lattice site, this highly localized configuration
can persist for long times. In such cases the bosons are said
to be “self-trapped” �6�.

Self-trapping has been recently observed experimentally
in Bose-Einstein condensates of roughly 1000 atoms �7,8�
and can be understood qualitatively by an energetics argu-
ment. The presence of the optical lattice causes the energy
spectrum of noninteracting bosons to be confined to a Bloch
band of width 4J. Consequently, if the potential energy per
particle of the trapped condensate is much higher than this, it
cannot be converted into the kinetic energy of free bosons
and the trapped state cannot decay. Its stability thus depends
critically on the absence of dissipative processes in optical
lattice systems.

To describe this effect quantitatively, we consider a two-
site BH model holding N bosons. If the system is initialized
in the state �N ,0� �a Fock state with N bosons occupying one
site with the other site empty�, then the primary tunneling
process will be to the state �N−1,1�. Truncating the Hilbert
space to just these two states produces an effective two-level
model

Htwo-lev = 	V�N� J
N

J
N V�N − 1�
� , �2�

where V�n�=Un�n−1� /2 is the potential energy of n bosons
occupying one site. It is useful to visualize the time evolution
of the system geometrically by making use of the Bloch
sphere representation. Parametrizing Htwo-lev in terms of the
Pauli matrices,

Htwo-lev =
U

2
�N − 1�2I + J
N�x +

U

2
�N − 1��z, �3�

reveals that we can interpret it as an interaction between
the Bloch vector � and a fictitious magnetic field
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B= (J
N ,0 ,U�N−1� /2). Thus under the influence of the
Hamiltonian the Bloch vector will simply make a Larmor
orbit about B. This form of time evolution is shown in Fig.
1�a� for a strongly interacting seven-boson system. It can be
clearly seen that, as expected, the Bloch vector traces out a
circular orbit centered on B. Since for these parameters B is
almost parallel to the sz axis, the radius of this orbit is rather
small, and thus the system exhibits a high degree of self-
trapping.

To assess the degree of self-trapping more precisely we
measure the overlap of the system’s state with the initial
state, pi�t�= ���i ���t���2, since when self-trapping occurs this
quantity is close to unity. The circular motion shown in Fig.
1�a� equates to a very-small-amplitude sinusoidal oscillation
of pi. As U is reduced, the angle between B and the sz axis
increases, and as a result the radius of the Larmor orbit made
by the Bloch vector increases �Fig. 1�b��. Consequently the
degree of trapping is reduced and the amplitude of oscilla-
tions of pi is larger. If U is decreased even further �Fig. 1�c��,
the self-trapping effect is lost and the two-level approxima-
tion breaks down. In this case the Bloch vector rapidly leaves
the surface of the Bloch sphere and its erratic time evolution
corresponds to an irregular quasiperiodic behavior of pi,
which can take very low values.

In the inset of Fig. 2 we plot the minimum value of pi
attained in the seven-boson system during a time interval of
100 as a function of the interaction strength. For small values
of U no self-trapping occurs, and thus pi

min is zero. As U is
increased, however, the oscillations in pi are quenched, and
for U /J�3 it can be seen that the effective two-level model
describes the dynamics extremely well. From Eq. �3� we can
obtain a criterion for the crossover to the self-trapped regime,
by defining the transition to occur when pi

min drops below a
value �. This yields a value for the critical value of U,

UC

J
=

2

N − 1

 N�

1 − �
. �4�

This boundary is plotted in Fig. 2 for �=0.90 and 0.75.
Although the self-trapping regime is more easily achievable
for large boson numbers since UC�1/
N, it is even possible
in a system of just two bosons if the interaction strength can
be raised sufficiently. This has recently been achieved ex-
perimentally �9,10� in gases of trapped rubidium atoms.

DYNAMICAL PROPERTIES

We now consider dynamically controlling the self-trapped
state by applying a harmonic driving potential

H�t� = HBH + K sin �t�
j

jnj , �5�

where K is the amplitude of the driving field and � is its
frequency. Such a potential can be applied to an optical lat-
tice by applying a phase modulation to one of the laser fields
which provide the standing-wave potential �11�. We first con-
sider the case of extracting a single boson from the trapping
site. As the occupation of the trapping site changes from N to
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FIG. 1. �Color online� Time evolution of a two-site system con-
taining seven bosons. The system is initialized in the state �7,0� �the
north pole of the Bloch sphere� and evolves under the full BH
Hamiltonian �1�. To the left we show the evolution on the Bloch
sphere, projected onto the �sx ,sy� plane, and to the right the overlap
of the system with the initial state pi�t�. �a� Strong interaction,
U /J=8. The system is described well by the two-level model �3�
and periodically traces out a circle on the Bloch sphere. Corre-
spondingly, pi makes high-frequency oscillations of small ampli-
tude, indicating that self-trapping is occurring. �b� Intermediate in-
teraction, U /J=4. The radius of the circular orbit is larger, but the
two-level approximation is still good. The oscillations in pi are now
of larger amplitude, showing that the trapping effect is reduced. �c�
Weak interaction, U /J=1. The two-level approximation now breaks
down, and the system’s time evolution is correspondingly more
complicated. The value of pi rapidly drops as the trapping effect has
now been completely lost.
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FIG. 2. �Color online� The dashed lines plot the value of the
Hubbard interaction UC �Eq. �4�� at which the occupation of the
self-trapped site can fall to 75% �dash-dotted line� and 90% �dashed
line� in an undriven two-site system. These provide weak and strong
estimates for the boundary between the untrapped and self-trapped
regimes. Inset: comparison of the two-level approximation with the
full BH Hamiltonian for a seven-boson system. For U /J�1 the
two-level approximation breaks down, but becomes increasingly
accurate as U is increased.
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N−1 there is a corresponding loss of potential energy
�E=VN−VN−1=U�N−1�, where Vn is defined as in Eq. �2�.
When a system possesses such a large energy gap, Floquet
analysis may be used to show �4,12� that extremely fine con-
trol over the tunneling dynamics is possible at multiphoton
resonances—that is, when m�=�E, m=1,2 , . . .. In general
when this condition is satisfied, the system is able to ex-
change energy with the driving field to overcome the energy
gap, and so tunneling is restored �PAT� �13�. However, at
particular values of the amplitude of the driving field, CDT
will occur when the Floquet quasienergies of the system be-
come degenerate and the dynamics of the system will be
frozen. For a sinusoidal driving potential these degeneracies
occur at the zeros of Jm�K /��, the mth Bessel function of
the first kind. Thus at a photon resonance it is possible to
produce dramatic differences in the tunneling rate by making
small changes in the amplitude of the driving field to move
the system between CDT and PAT.

In Fig. 3�a� we plot pi
min obtained in a five-boson system

driven at a frequency of �=4U. This corresponds to the
m=1 photon resonance. For K=0 the system is self-trapped,
and consequently pi remains near unity. Increasing K, how-
ever, causes the value of pi

min to rapidly drop to zero, dem-
onstrating how PAT overcomes the self-trapping effect. As K
is increased further, pi

min exhibits a number of extremely
sharp peaks centered on K /�=3.83, 7.01, and 10.17—the
zeros of J1�K /��.

Away from these zeros, the driving field causes a single
boson to tunnel symmetrically from the trapping site to its
neighboring lattice sites and from there to continue propagat-
ing through the optical lattice with a renormalized tunneling
�5� Jeff=JJ0�K /��. If we therefore choose a value of K such
that Jeff=0, the particle will not be able to propagate further
and will thus just make a Rabi-like oscillation between the
trapping site and its neighbors. This situation is illustrated
schematically in Fig. 4�a�. We show in Fig. 3�b� the time
dependence of the occupation of the trapping site and its
neighbor. Initially we set K /�=3.83 �a zero of J1� and no
tunneling occurs: for this value of K /�, CDT reinforces the
self-trapping effect. At t=10 we alter the amplitude of the
driving to K /�=2.40 �a zero of J0� and a very clear particle
oscillation occurs, in which the occupation of the trapping
site cycles between 5 and 4 and that of the neighboring sites
oscillates between 0 and 0.5.

We can apply a similar method to induce the emission of
an larger number of bosons, Nem, by noting that the energy
difference per particle takes the remarkably simple form

�E/Nem = �VN − �VN−Nem
+ VNem

��/Nem = U�N − Nem� . �6�

Thus by driving the system at the correct frequency we can
induce the emission of a given number of particles. In Fig.
3�c� we show the response of the five-boson system to a
driving field of frequency �=3U, which induces the emis-
sion of two bosons. As before we can observe peaks in pi

min

centered on the zeros of J1�K /�� at which CDT occurs,
while between them PAT causes pi

min to take low values.
Figure 3�d� shows the effect of switching the amplitude of
the driving field to a value of K /�=2.40. We can again see
that this has the effect of inducing a Rabi-like oscillation
between the trapping site and its neighbors, but in this case
the oscillation indeed consists of two bosons, and has a
longer period.

In Fig. 5 we show how combining the PAT effect with
CDT allows the population of the self-trapped state to be
reduced step by step. The system is initialized with five
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FIG. 3. �Color online� Response of a five-site system, holding
five bosons �U=16�, to a sinusoidal driving field. �a� For a driving
frequency �=4U, the value of pi

min rapidly drops as K is increased
from zero, indicating that the initial state is rapidly destroyed by
PAT. At a sequence of sharp peaks centered on the zeros of
J1�K /�� �vertical dashed lines� CDT instead causes the system to
be frozen in its initial state. �b� Time dependence of the occupation
numbers of the lattice sites. For t�10, K /� is set to be the first zero
of J1, and CDT suppresses any oscillations. For t�10 we set
K /�=2.40 which produces a sinusoidal oscillation of a single bo-
son from the central site �n=0� to its two neighbors �n= ±1�. �c� As
in �a� but for a frequency of �=3U. Again pi

min peaks at the zeros of
J1�K /��, although the peaks are rather broader. �d� As in �b�, but
for �=3U. When K /� switches to a value of 2.40 the number
densities show a slow sinusoidal oscillation, in which the occupa-
tion of the central site varies between 5 and 3—i.e. a two-boson
oscillation.

XX X X

2−3 −2 −1 0 1 3

X X

X X

−3 −2 −1 0 1 2 3

(a)

(b)

FIG. 4. �a� Schematic version of the process illustrated in Fig.
3�b�. The driving field excites a boson from the trapping site
�n=0�. If J0�K /��=0, CDT suppresses the single-boson tunneling
processes �marked by X�, and so a Rabi-like oscillation occurs be-
tween the trapping site and its neighbors. �b� Changing the driving
parameters to stabilize the self-trapping isolates the remaining
bosons in the trapping site, but the escaped particle is able to propa-
gate through the optical lattice with a renormalized tunneling am-
plitude Jeff.
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bosons in the central site and is initially driven at �=4U.
Driving the system at K /�=3.80 induces CDT which stabi-
lizes the self-trapped state. At t=5 the value of K /� is
changed to 2.40 which induces the Rabi-type oscillation be-
tween the trapping site and its neighbors, as schematically
shown in Fig. 4�a�. After a half-integer number of these os-
cillations we then alter the driving parameters to �=3U,
K /�=3.80, which traps the remaining four bosons in the
trapping site. For these parameters, however, the single-
particle tunneling is not quenched and so the ejected boson is
able to propagate through the optical lattice away from the
trapping site, as shown in Fig. 4�b�. The emitted particle
smears out to an extent as it moves through the lattice but
nonetheless the atom pulse remains quite clearly defined af-

ter propagating through several lattice spacings. By repeating
this procedure with appropriate driving frequencies we can
successively reduce the occupation of the trapping site in
integer steps and thereby produce a sequence of well-
defined, phase-coherent atom pulses.

CONCLUSIONS

We have shown how self-trapping arises in cold bosons
confined in an optical lattice. The lifetime of this state will be
principally limited by losses from three-body collisions,
which increase rapidly with particle number. For N=5 a life-
time of 0.2 s has been measured �14�, which indicates that
coherent driving effects should nonetheless be observable.
Applying a resonant driving field to the self-trapped state can
either stabilize the trapping �when CDT occurs� or can in-
duce a Rabi-like particle oscillation. The interplay between
these effects makes it possible to control the emission and
propagation of a precisely defined number of particles and
thus enables the self-trapped state to be used as a controllable
source of mesoscopic entangled states. These have many
possible applications in quantum information, such as link-
ing distant quantum registers and providing a channel for
quantum communication. Further practical issues to consider
include the role of the background trapping potential, and
finite-temperature effects.
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FIG. 5. �Color online� Time evolution of the particle density of
a five-boson system. The driving parameters are chosen �see text� to
produce the emission of single bosons at t
5 and 25, and thus the
occupation of the trapping site falls in steps as 5→4→3. The emit-
ted particle bursts move away from the central site at a roughly
constant speed and disperse slightly as they propagate through the
lattice.
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