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The equation of state of a dilute two-component asymmetric Fermi gas at unitarity is subject to strong
constraints, which affect the spatial density profiles in atomic traps. These constraints require the existence of
at least one nontrivial partially polarized �asymmetric� phase. We determine the relation between the structure
of the spatial density profiles and the T=0 equation of state, based on the most accurate theoretical predictions
available. We also show how the equation of state can be determined from experimental observations.
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We consider the T=0 thermodynamics of a dilute asym-
metric Fermi gas comprising two species of equal mass with
s-wave interactions at unitarity. This has been recently real-
ized in 6Li experiments �1–4�. We shall discuss the phase
structure in the microcanonical and grand-canonical en-
sembles, and its manifestation in cold atomic traps using the
local density approximation �LDA�. The theoretical treat-
ment of the grand-canonical ensemble is much simpler than
the microcanonical ensemble as it consists of only pure
phases. We discuss here the most general model-independent
equation of state satisfying known constraints. For model-
dependent analyses see �5–7�.

Phase structure. We show the main defining features of a
grand-canonical phase diagram in Fig. 1. The two species are
labeled “a” and “b.” The symmetry a↔b allows us to con-
sider only the region below the �a=�b line where the locally
averaged number densities and chemical potentials satisfy
nb�na and �b��a, respectively. The asymmetry of the sys-
tem may thus be characterized by the dimensionless ratios:

x = nb/na � 1, y = �b/�a � 1. �1�

Note that only x measures a physical asymmetry. There are
four distinct regions: Vac—the vacuum, Na—the fully polar-
ized phases �x=0� comprising only species “a,”
PPa—partially polarized phase�s� �0�x�1�, and SF—the
fully paired symmetric superfluid phase �x=1�.

We shall discuss only two phase transitions: one between
the fully polarized phase Na �where x=0� and a partially
polarized phase PPa �0�nb�na�, and another between a
�possibly different� partially polarized phase and the sym-
metric fully paired phase SF �where x=1�. At unitarity, phase
transitions occur along rays characterized solely by their
slope yx. The two transitions we shall discuss are thus de-
scribed by the two universal parameters y0 and y1, which
naturally satisfy y0�y1. A major point of this paper is to
place an upper bound Y0 on y0 �y0�Y0�, a lower bound Y1

on y1 �Y1�y1�, and to show Y0�Y1, which implies that the
inequality y0�y1 is strict. This directly implies the existence
and stability of one or more partially polarized phase�s� PPa.
Possible phases in the region PPa include LOFF states �10�,
states with deformed Fermi surfaces �11�, and p-wave super-
fluid states �12�. If several of these states exist and are stable,
the corresponding phase transitions will be characterized by
additional universal parameters yx.

Functional forms of thermodynamic potentials. At unitar-

ity, the energy density E�na ,nb� and the pressure P��a ,�b�
have the form

E�na,nb� = 3
5��nag�x��5/3, � =

�6�2�2/3�2

2m
, �2a�

P��a,�b� = 2
5���ah�y��5/2, � =

1

6�2�2m

�2 �3/2

. �2b�

Note that g�x�= f3/5�x�, where f�x� was introduced in �8�: The
use of g�x� rather than f�x� significantly simplifies the for-
malism �9�. The T=0 thermodynamic properties of the sys-
tem are completely determined by the functional form of
g�x� or h�y�. The number densities and chemical potentials
are simply na,b=�P /��a,b and �a,b=�E /�na,b, respectively.
As we show here, the functions h�y� and g�x� are tightly
constrained by current Monte Carlo simulations, analytic cal-
culations, and experimental results. The energy density and
pressure are related via the Legendre transform �9�:

P��a,�b� = �ana + �bnb − E�na,nb� = 2
3E�na,nb� . �3�

Physical constraints. The thermodynamics of three phases
are known. The vacuum has vanishing pressure PVac=0, the
fully polarized phase Na is a free Fermi gas �FG�,

PFG��a� = 2
5��a

5/2, �4�

and the pressure of the fully paired phase SF is symmetric in
�a and �b, and is described by a single parameter �,
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FIG. 1. �Color online� Grand-canonical phase diagram of a two-
component Fermi gas at unitarity and T=0. Various phases are
separated by phase transitions along the straight lines extending
from the origin with constant slopes yx. The dotted line follows the
sequence of phases in a sample trap.
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PSF��+� =
4

5

�

�3/2�+
5/2, where �± =

�a ± �b

2
. �5�

These provide the limiting forms for h�y� and limiting values
of g�x�, �see Eqs. �6a� and �7a� below�.

The phase transition at y=y0 defines the border of the
region where �b=y0�a is tuned to keep species “b” out of
the system. Since the interspecies interaction is attractive, the
critical �b must be negative y0�0. We will provide an upper
bound Y0 �y0�Y0�.

Note that PSF��+� depends only on the average chemical
potential �+. This insensitivity to the chemical potential dif-
ference �− is due to the existence of an energy gap 	 in the
spectrum. The phase transition at y=y1 marks the line where
�− becomes large enough to break the superfluid pairs. In the
phase SF, �− is constrained by the size of the physical gap
�−�	 �8�. This provides a lower bound Y1�y1, see below
and �9�.

�Recall from Eq. �1� that we are only considering regions
where 0��−= ��−��.

If no stable partially polarized phase exists, then the re-
gion PPa will vanish, being compressed into a single first-
order transition line where pressure equilibrium is estab-
lished PFG��a�=PSF��+� �6,8�. This would occur at y=yc

= �2��3/5−1�y0�y1, and would imply that Y0�Y1. We ar-
gue below that Y0 is strictly less than Y1, and therefore rule
out this possibility.

Finally, thermodynamic stability requires that the pressure
and energy density are convex functions, which implies that
g�x� and h�y� are also convex �9�. The constraints on h�y� are

h�y� = 	1, if y � y0,

�1 + y��2��−3/5, if y � �y1,1� ,
�6a�

h��y� 
 0, �6b�

y0 � Y0 � yc � Y1 � y1 � 1. �6c�

The corresponding constraints on g�x� are

g�0� = 1, g�1� = �2��3/5, �7a�

g��x� 
 0, �7b�

g��0� � Y0, g��1� � �g�1��1 + Y1
−1�−1,g�1�/2� . �7c�

Equations �6a� follow directly from Eqs. �2b�, �4�, and �5�,
Eq. �7a� from Eq. �2a�, and the interval in Eq. �7c� from the
properties of the Legendre transform and Eq. �6c� �9�.

Parameters. For Fig. 2 we used

� = 0.42�1�, Y0 
 − 0.5, Y1 = − 0.09�3�, y1 = 0.05.

We obtain estimates for Y1 and � from Monte Carlo data
�13–15�. The latest Monte Carlo estimates for the symmetric
systems give �=0.42�1� �14,15� and 	 /�F=0.504�24� �15�,
where �F is the Fermi energy of the free gas with the same
density. This gives yc
−0.099�15�, and the constraint
�−�	 gives Y1= ��−	 /�F� / ��+	 /�F�=−0.09�3� �8,9�.
Since within the statistical errors Y1
yc, the possibility of an

empty PPa region at unitarity cannot yet be ruled out by this
value of Y1, as was noted earlier by Cohen �8�.

We now estimate Y0. Let e0 be the energy required to add
one particle b to a fully polarized gas of density na. Consider
adding a large, but infinitesimal amount of b, 1�Nb�Na.
In the thermodynamic limit, the required energy per particle
will be the critical chemical potential �b=�na

2/3g��0� defin-
ing the transition y0. If the added particles repel, the energy
will be Nbe0, and �b=e0. If they bind, the additional binding
energy must be included, giving �b�e0. In this way, e0 pro-
vides a bound for �b and g��0�=y0�Y0=e0 / ��na

2/3�.
Consider adding a single b fermion, with coordinate r0, to

a system of Na a fermions with coordinates rn. Let
rnm= �rn−rm�. The wave function for the b fermion in the
background of fixed a sources is

��r0;�rn�� = 
n

An
exp�− r0n�

r0n
, �8�

and it satisfies the zero-range interaction boundary condi-
tions if the following Na conditions are met:

�−  +
1

a
�An + 

m�n

Am
exp�− rnm�

rnm
= 0. �9�

For uniform distributions where the lowest state has constant
Am=A, approximating the sum as an integral gives
−a−1=4�na /2. This continuum approximation is not very
accurate in the unitary limit, since  is comparable to the
inverse interparticle spacing and 3 /na
4�. To estimate
corrections, the equations can be solved for various lattice
configurations. We find that  deviates from the continuum
result by a factor of 0.84�3� for simple lattice configurations
and perturbations �see �9� for details�. We now estimate the

y0 = Y0 yc ≈ Y1 y1

y = µb/µa
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FIG. 2. �Color online� Example of a function h�y� and the cor-
responding function g�x� shown as thick lines. Maxwell’s construc-
tion for phase coexistence leads to a linear g�x� for x� �0.5,1.0�,
interpolating between the two pure phases shown with lighter lines.
This corresponds to the kink and/or first-order phase transition at
y=y1 in h�y�. Various other sample functions are lightly sketched
within the allowed �dotted� triangular region.
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energy of the system using the wave function

��r0;�rn�� = �SD��rn����r0;�rn�� , �10�

where �SD is a Slater determinant for a free Fermi gas and
obtain e0
−�22 /m �9�:

e0 
 �4��2naa/m , if a → 0−,

− 0.71�5��2�4�na�2/3/m , if a → ± � ,

− �2/�ma2� , if a → 0+.

�11�

Note that this result interpolates between the correct leading
order BEC and BCS results. This estimate assumes that the
fluctuations of the number density na�r� on a scale of the
order 1 / affect  very little. The result is consistent with
this assumption, as discussed in �9�. The constraint at unitar-
ity is thus

Y0 
 − 0.54�4� � yc = − 0.099�15� . �12�

If Y0 is strictly less than yc, then convexity in g�x� and h�y�
implies yc�Y1 �see Fig. 2�.

Trap profiles. For large systems with a slowly varying
confining potential, gradient terms may be neglected, and the
LDA employed to determine the density distribution by in-
troducing spatially varying effective chemical potentials,

�a,b�R� = �a,b − V�R� . �13�

Lagrange multipliers �a,b fix the total particle numbers Na
and Nb. The LDA may be inaccurate near phase boundaries
where the densities change rapidly. The gradient terms will
smear out these transition regions and provide an additional
surface tension proportional to the local curvature �16�.

In the LDA, the density profile may be constructed from
the local densities na,b using Eq. �13� �explicit formulae are
provided in �9��. The dotted line in Fig. 1 shows the se-
quence of phases contained in a sample trap. Since
2�−=�a−�b is fixed, traps contain the sequence of phases
encountered along a 45� line through such a diagram. In this
example, the center of the cloud �V�0�=0� is in the SF phase
at the cross. The phase transitions will occur for y=y1,
y=y0, and y=−� for V�R1�=V1, V�R0�=V0, and V�Rvac�
=Vvac, respectively, with R0�R1�Rvac. As noted above, ad-
ditional phase transitions may exist between R0 and R1.

Experiments. Accurate measurements of the density pro-
files would allow for a complete extraction of h�y� and g�x�.
For example, using x=nb�R� /na�R� and the expressions for
�a,b, we have g2/3�x�g��x�= ��b−V�R�� / ��na

2/3�R�� from
which g�x� may be extracted using the boundary condition
g�0�=1 �9�.

For harmonic traps, the locations of the main phase tran-
sitions, Rvac��Vvac, R0��V0, and R1��V1, are completely
determined by the Lagrange multipliers �a,b, and the univer-
sal numbers y0 and y1. Within the LDA, we obtain the fol-
lowing model independent relationship, to be compared with
the recent MIT data �3� �see Fig. 3�:

� =
1 − y1

1 − y0
=

Rvac
2 − R0

2

Rvac
2 − R1

2 
 0.70�5� . �14�

To extract more information, one must consider a specific
functional form for h�y� and g�x�. We have analyzed a large
sample of allowed functions h�y� and g�x�, a few of which
are sketched in Figs. 2 and 3. We find that the total polariza-
tion P= �Na−Nb� / �Na+Nb� is quite insensitive to the func-
tional form. However, the critical polarization Pc—where the
innermost phase transition approaches the center of the trap
R1=0—is quite sensitive to y1. The MIT experiments �1,3�
measure Pc=0.70�5�. If y1=0, then one obtains
Pc�0.80. . .0.85. However, if one considers y1
0.05
�g��1�
0.04�, then values of Pc
0.7 and smaller emerge,
compatible with those measured in �1,3�. Using Eq. �14�, this
gives a value of y0=g��0�
−0.4. Our estimate for
Y0
−0.54�4� is consistent with this extracted experimental
value within existing uncertainties.

Within the Eagles-Leggett extension of the BCS model
�17�, one obtains the values y0=0, yc=0.105, and y1=0.107
�see �7,9��, which would correspond to a parameter
�=0.893, as opposed to the �=0.70�5� extracted from
experiment. At the same time, the spatial layer for the
PPa region would be very thin, namely �R0

2−R1
2� / �Rvac

2 −R1
2�

=1−�=0.107, compared with our estimate 1−�
0.30�5�.
Our analysis is strictly valid only at T=0. The deviations

in Fig. 3 are most likely finite temperature effects. The re-
gions of the phase diagram most sensitive to T�0 are those
with small �, thus, the transition radii in traps with small
asymmetry will be most affected. For large polarizations, the
temperature should not affect the SF phase which is gapped,
but will affect phases with zero or small gap excitations. This
could alter the values of y1 slightly and y0 significantly. We
thus caution against taking the extracted numbers in this sec-
tion too seriously until a similar finite temperature analysis is
presented.

Since Y1�0 �as determined from the value of the pairing
gap�, a positive y1 suggests a first-order phase transition out
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FIG. 3. �Color online� Measured transition radii from Ref. �3�.
The upper plot shows the normalized data �crosses� on top of data
generated from several randomly generated functions h�y�. The
lower plot shows the parameter � defined in Eq. �14�.
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of the SF phase for a critical �−�	. This conclusion is also
consistent with the form of the quasiparticle spectrum com-
puted in �15�, which has a minimum at a finite momentum.

In conclusion, we have shown that thermodynamic con-
straints, accurate Monte Carlo simulations, analytic esti-
mates, and experimental data place tight constraints on the
equation of state of the asymmetric T=0 unitary gas. These
constraints imply that there exists a region where one or
more nontrivial partially polarized phases exist. These
phases likely exhibit very interesting microscopic physics. In
particular, any ungapped polarized phase is unstable towards
the formation of a state with two symbiotic superfluids at
T=0 �12�. The tight constraints on the forms of g�x� and h�y�
we present will help locate these phases.

Note added. Chevy �18� independently arrived at similar

conclusions. The latest MIT analysis �19� agrees with our
conclusion that the SF phase occupies the center of the trap
and shows that the LDA is applicable. In a recent variational
Monte Carlo study, the results of Lobo et al. �20� agree with
our lower bound obtaining Y0=−0.58�1��yc=−0.099�15�,
and Lobo et al. concluded that the transition at y1 is first
order. This is consistent with our results: their function f�x�
is very similar to our g5/3�x� �see �9��.
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