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In this Rapid Communication a generalization of the BEC-BCS crossover theory to a multicomponent
superfluid is presented by studying a three-species mixture of Fermi gas across two Feshbach resonances. At
the BEC side of resonances, two kinds of molecules are stable which gives rise to a two-component Bose
condensate. This two-component superfluid state can be experimentally identified from the radio-frequency
spectroscopy, density profile, and short noise measurements. As approaching the BCS side of resonances, the
superfluidity will break down at some point and yield a first-order quantum phase transition to normal state,
due to the mismatch of three Fermi surfaces. Phase separation instability will occur around the critical regime.
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INTRODUCTION

During recent years, one major progress in quantum gases
is achieving the crossover from a Bose condensation of mol-
ecules to a fermionic BCS superfluid in two-species fermi-
onic gases across Feshbach resonance. Meanwhile, the mul-
ticomponent Bose gases also attract considerable interest,
mainly because of the effects related to internal phase coher-
ence. Here we arise an interesting question that how the
crossover process happens if the molecular BEC is a multi-
component one, and it will be intriguing to achieve a fermi-
onic multicomponent superfluid which should be more at-
tractive than its bosonic counterpart.

Lucky, this question is not only an academic one, but also
closely relates to current experiments on lithium and potas-
sium gases. Recently an accurate measurement of the scat-
tering lengths between the lowest three hyperfine spin states
of lithium, denoted as �1�, �2�, and �3�, respectively, finds that
there is a Feshbach resonance between �2� and �3� at 81.1 mT
followed by another resonance between �1� and �2� at
83.4 mT, as shown in Fig. 1 �1�. A similar feature has also
been found between three hyperfine spin states of potassium,
where two resonances are located at 20.21 and 22.42 mT,
respectively �2�. Note that both the �1�-�2� molecule and the
�2�-�3� molecule are stable at the BEC sides of two reso-
nances �3�, we consider the case that the numbers of atoms in
different species satisfy N2=N1+N3, therefore we have a
two-component molecular condensate deeply in the BEC
side. The main purpose of this Rapid Communication is to
present a mean-field theory to describe two-component BEC-
BCS crossover using lithium gas as an example �4�.

On the other hand, it is also interesting to look at the
system from the BCS side. Note that the normal state has
three different Fermi surfaces, how the system copes with
gaining paring energy and Fermi surface mismatch is a long-
standing problem for both condensed matter and high energy
physics. Recent experiments on two-species mixture with
population imbalance �5� have revealed many interesting
phenomena such as superfluid-normal transition and phase
separation, and also caused a considerable amount of theo-
retical interests �6�. Another point of this Rapid Communi-
cation is to demonstrate that similar effects will also occur in
the three-species mixture as it approaches the BCS side. A

global phase diagram constructed by the mean-field theory is
shown in Fig. 1.

Before proceeding, we would like to remark on the stabil-
ity of the system against atom loss, which is the major con-
cern of experiments. There are three sources of atom loss:
atom-molecule inelastic collision, molecule-molecule inelas-
tic collision, and the Efimov states. In order to reduce the
atom-molecule inelastic collision, one can initially prepare
the system deeply in the BEC side where all the atoms are
bound and the number of unbound atoms is very few, and
then adiabatically tune to the resonance regime. The inelastic
collision between molecules could be largely suppressed by
the Pauli exclusion principle as all molecules contain species
�2�. As for the Efimov states, it is unlikely that it will signifi-
cantly affect the three-body loss rate in this case �see detailed
discussion in Refs. �7,8��. Although the stability of this sys-
tem remains to be seen in future experiments, qualitatively
speaking it is very promising that it can have a reasonably
long lifetime for experimental study, and we hope the theory
discussed below will motivate more research in this system.
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FIG. 1. �Color online� An illustration of the scattering lengths
a12 and a23 as a function of magnetic field and the phase diagram
for the three-species mixture with N2=N1+N3. The relation be-
tween scattering lengths and magnetic field is obtained from the
measurement of Ref. �1�. In this range of magnetic field a13 is much
smaller than the other two, and is not shown here. Restricted in
homogeneous states, a first order quantum phase transition from the
two-component superfluid state to the normal state is found above
the first resonance. Incorporating imhomogeneous states, the phase
separated state will take over around the critical magnetic field. The
locations of phase boundary will depend on the density and the
concentration.
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MEAN-FIELD THEORY OF TWO-COMPONENT
SUPERFLUID

Following the idea of crossover theory �9�, we write down
a BCS-like wave function which contains pairing between
�1� and �2� and between �2� and �3� �10�

��� = �
k

�uk + vk�k2
† �−k1

† + wk�k2
† �−k3

† ��0� . �1�

Note that the interaction between �1� and �3� is much weaker
in the range of magnetic field from 78 to 88 mT, comparing
to those between �1� and �2�, and between �2� and �3� �1,2�,
we neglect the pairing between �1� and �3� because both of
them try to pair with �2� first for energetic consideration, and
also because the critical temperature to achieve �1�-�3� pair-
ing is too low to reach in current experiments.

Here we would like to emphasize the symmetry and order
parameters of this state. First, there are two independent pair-
ing order parameters, �1= ��2

†�1
†� and �2= ��2

†�3
†�. Further-

more, as both species �1� and �3� pair with species �2�, the
operator �3

†�1, which in fact converts �2�-�1� pair into a �2�-
�3� pair, acts as a Josephson tunneling between two compo-
nents, and the wave function Eq. �1� automatically gives an-
other order parameter �= ��3

†�1� which is related to the
relative phase between two components.

The Hamiltonian under consideration is written as

H = 	
k�

�k��k�
† �k� + 	

k,k�,i

g2i�k2
† �−ki

† �−k�i�k�2, �2�

where �k�=�2k2 / �2m�−��, �=1,2 ,3, and i=1,3. As in the
two-species mixture, g2i is related to the scattering lengths
via 1/g2i=m / �4	�2a2i�−	km / ��2k2�. The interaction be-
tween �1� and �3�, which is neglected here, can be turned on
as perturbation in a more detailed study elsewhere, and it
will not affect the qualitative features discussed here.

With the Hamiltonian Eq. �2� the free-energy for the
quantum state of Eq. �1� is given by

F = 	
k

�
ka�vk�2 + 
kb�wk�2� + 	
kk�

g21ukvk
*uk�

* vk�

+ g23ukwk
*uk�

* wk�, �3�

where 
ka=�k1+�k2 and 
kb=�k2+�k3. The constraint �uk�2
+ �vk�2+ �wk�2=1 can be imposed by a Langrange multiplier
	k�k��uk�2+ �vk�2+ �wk�2−1�. Minimizing the free-energy
with respect to uk, vk, and wk gives �F /�uk=�F /�vk
=�F /�wk=0, which are


�k �1 �2

�1
* �k − 
ka 0

�2
* 0 �k − 
kb

�
uk

vk

wk
� = 0, �4�

where �1=−g21	kukvk
* and �2=−g23	kukwk

*. Thus �k satis-
fies the equation

�k
3 − Ak�k

2 + Bk�k + Ck = 0, �5�

where Ak=
ka+
kb, Bk=
ka
kb− ��1�2−��2�2 and Ck
= ��1�2
kb+ ��2�2
ka. The lowest solution of Eq. �5� is

�k =
1

3
�Ak − 2
Ak

2 − 3Bk cos��	 − �k�/3�� , �6�

where �k=arctan�3
3Kk / �2Ak
3 −9AkBk−27Ck�� and Kk

=Ak
2Bk

2 −4Bk
3 +4Ak

3Ck−18AkBkCk+27Ck
2 �11�.

For the wave function satisfying Eq. �4�, the free-energy
is given by F=	k�k− ��1�2 /g21− ��2�2 /g23. It can be verified
that the long wavelength behavior of �k is precisely
−���1�2+ ��2�2�m / ��2k2�, therefore the divergency in the sum-
mation over �k can be exactly canceled out by the renormal-
ization terms in g21 and g23. Furthermore, �F /�� j

*=0 �j
=1,2� yield two coupled self-consistency equations. Differ-
ential Eq. �5� with respect to �1

*, one finds that ��k /��1
*

satisfies

�3�k
2 − 2Ak�k + Bk�

��k

��1
* = �1��k − 
kb� . �7�

Thus �F /��1
* gives

m

4	�2a12
= 	

k
� �k − 
kb

3�k
2 − 2Ak�k + Bk

+
1

�2k2/m
� , �8�

and similarly we have

m

4	�2a23
= 	

k
� �k − 
ka

3�k
2 − 2Ak�k + Bk

+
1

�2k2/m
� . �9�

Apart from increasing of gaps, another feature of the
BEC-BCS crossover is the shift of chemical potentials,
which is determined with the help of number equations.
From Eq. �4� we can get uk /vk= �
ka−�k� /�1

* and wk /vk

= ��k��k−
ka�− ��1�2� / ��1
*�2�. Therefore two number equa-

tions are given by N1=	k�vk�2=	k�1/ �1+ �uk /vk�2
+ �wk /vk�2�� and N3=	k�wk�2=	k��wk /vk�2 / �1+ �uk /vk�2
+ �wk /vk�2��, respectively.

We solve these four coupled equations numerically, and
the results are shown in Fig. 2, which exhibit the common
features of BEC-BCS crossover. From Figs. 2�a� and 2�b�,
one can see that the gaps increase and the chemical potentials
decrease as the magnetic field changes from the BCS side to
BEC side. Figures 2�c� and 2�d� display the momentum dis-
tributions for three different species. One can see that the
momentum distributions become much broader at the BEC
side compared to those at the BCS side, which indicates that
the real space sizes of two kinds of Cooper pairs are much
smaller. This solution also allows one to calculate the energy
of this superfluid state ESF.

QUANTUM PHASE TRANSITION FOR HOMOGENEOUS
SYSTEM

As we have mentioned, in the normal state the Fermi
surface of species �2� is larger than those of species �1� and
�3� for the concentration N2=N1+N3, it will cost a lot of
kinetic energy of two minority species to form pairs. Thus
one expects that there is a quantum phase transition from this
two-component superfluid state to the normal state as ap-
proaching the BCS side.

At mean-field level, we simply take the normal state as a
noninteracting normal state, and its energy EN is the total
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kinetic energy of three species. In Figs. 3�a� and 3�b� we plot
the energy difference 
E=EN−ESF for different densities and
concentrations. A quantum phase transition occurs when 
E
becomes negative, i.e., the normal state has lower energy.
The critical point is usually located around the first Feshbach
resonance, and its exact location depends on density and
concentration. We find that the critical point will be pushed
toward the BCS side either when the density of atoms in-
creases or when the radio N1 :N3 increases �12�. We also
notice that one cannot connect the quantum state of the form
Eq. �1� to a normal state by continuously varying the param-
eters, therefore this transition should be a first order quantum
phase transition.

PHASE SEPARATION INSTABILITY

There is possible phase separation instability in both nor-
mal state and the two-component superfluid state. Approach-
ing the first resonance from the normal state, a12 becomes
larger while a23 is still not larger, the energy may be lowered
if the normal state separates into a phase separated state con-
structed as follows: in one region it is �k�uk

+vk�k2
† �−k1

† ��p=0
pF �p3

† �0� and in another region it is

�k=0
kF �k2

† �p=0
pF �p3

† �0�. The energy of this state is shown in Fig.
3�c� for a typical density and concentration. We find that
around the critical magnetic field the energy of the phase
separated state is lower than both two homogeneous states.

In the superfluid phase �=�2F / ����1�2���2�2� is always
positive, indicating the interaction between different compo-
nents to be repulsive. Hence one needs to consider whether
the repulsion is so strong that it leads the two-component

condensate spatially separating into two condensates, with
�2�-�1� molecules staying in one side and �2�-�3� molecules
staying in another side. Here we also calculate the energy of
this type of phase separated state, and find that the energy is
very close to, but usually slightly higher than, the energy of
the homogeneous state in all ranges of magnetic field.

Combining the discussion on the homogeneous states and
the phase separation instability, we draw the conclusion on
the phase diagram illustrated in Fig. 1. We remark that the
effects missing in the mean-field theory, including the inter-
action energy of normal state and quantum fluctuations in
superfluid phase, will give quantitative corrections to this
phase diagram. However, the qualitative feature, which is
guaranteed by the physical understanding at two ends, should
hold.

EXPERIMENTAL SIGNATURES OF THE TWO-
COMPONENT SUPERFLUID

At the end of this paper, we point out some experimental
signatures to reveal the unique features of the two-
component supefluid state. To detect the coherence between
two components, one can look at the radio-frequency spec-
troscopy, which can be described by Hrf=�3

†�1+H.c. and has
already been widely used in fermion experiments �13�. Ap-
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FIG. 2. �Color online� The solution to the mean-field equations.
�a� and �b� As the change of magnetic field, the evolvement of two
pairing order parameters �1 �solid line� and �2 �dashed line� �a�,
and the chemical potential �a=�1+�2 �solid line� and �b=�2

+�3 �dashed line� �b�. �c� and �d� The momentum distributions for
�1� �dashed line�, �2� �solid line�, and �3� �dashed-dotted line� at
80.5 mT �c� and 84 mT �d�. Here we have chosen n2=1.14
�1011 cm−3 and N2 :N1 :N3=1:0.5:0.5. The two arrows in �a� and
�b� indicate the locations of Feshbach resonances. kF is the Fermi
momentum for the majority species �2�, and �0=�2kF

2 / �2m�.
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FIG. 3. �Color online� �a� and �b� 
E as a function of magnetic
field. �a�: N2 :N1 :N3=1:0.5:0.5 and kFa0=1�10−4 �solid line�,
kFa0=0.5�10−4 �dashed line�, and kFa0=2�10−4 �dashed-dotted
line�. �b� kFa0=1�10−4 and N2 :N1 :N3=1:0.5:0.5 �solid line�,
N2 :N1 :N3=1:0.4:0.6 �dashed line�, and N2 :N1 :N3=1:0.6:0.4
�dashed-dotted line�. �c� Comparison of the energy between the
phase separated state �dashed line�, the two-component superfluid
state �solid line� and the normal state �dotted line�. kFa0=1�10−4

and N2 :N1 :N3=1:0.5:0.5. For all figures the unit of energy density
is EF=�2kF

5 / �20	2m�, kF is the Fermi momentum of the major spe-
cies �2� in its normal state, and a0=0.052 917 7 nm. Two arrows
indicate the locations of Feshbach resonances.
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plying a rf field in this superfluid state will induce a time-
perodic oscillation of the atom number in both species �1�
and �3�, which can be a direct evidence of phase coherence
between two components.

A direct signal to distinguish this state from the normal
state is an in situ measurement of the density profile. In the
superfluid state the density profiles of different species have
to satisfy n2�r�=n1�r�+n3�r� everywhere, and the Thomas-
Fermi radii are the same for all species. In contrast, in the
normal state the Thomas-Fermi radius of the majority species
is larger than those of two minority species, and n2�r� does
not equal n1�r�+n3�r� everywhere. For a noninteracting nor-
mal state, at the center of the trap, n2 / �n1+n3�=N2

2/3 / �N1
2/3

+N3
2/3��1.
Analyzing the noise correlation in time-of-flight image

allows one to measure the second-order correlation function
G���k ,k��= �n̂�kn̂�k��− �n̂�k��n̂�k�� �14�. In this state
G21�k ,k��= �ukvk�2
�k+k�� and G23�k ,k��= �ukwk�2
�k+k��,

which shows strong pairing correlation between opposite
momentums. Here, one remarkable feature is the effective
exclusive correlation between �1� and �3�, and it shows up in
G13�k ,k��=−�vkwk�2
�k−k�� as a dip at equal momentum.
This arises from the fact that the atom in the quantum state
�2,−k� can only pair with either �1,k� or �3,k�, thus the
quantum state with momentum k cannot be occupied by both
�1� and �3�.

ACKNOWLEDGMENTS

The author acknowledges Tin-Lun Ho for insightful dis-
cussion and helpful comments on the manuscript, Zuo-Zi
Chen for numerical assistance, Cheng Chin for helpful dis-
cussion on the scattering properties of lithium, and Eric
Braaten for a helpful conversation on Efimov states. This
work was supported by NSF Grant No. DMR-0426149.

�1� M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 �2005�.
�2� C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,

083201 �2004�.
�3� Following the terminology used in the discussion of two-

species mixture, we call the high field regime as the BCS side
and the low field regime as the BEC side.

�4� Recently, there are several theoretical papers appearing to ad-
dress the physics of three-species �or more than three species�
mixture, for instance, A. G. K. Modawi and A. J. Leggett, J.
Low Temp. Phys. 109, 625 �1997�; T. Paananen, J.-P. Marti-
kainen, and P. Törmä, Phys. Rev. A 73, 053606 �2006�; P. F.
Bedaque and J. P. D’Incao, e-print cond-mat/0602525; T. Luu
and A. Schwenk, e-print cond-mat/0606069; Akos Rapp et al.,
e-print cond-mat/0607138; C. Honerkamp and W. Hofstetter,
Phys. Rev. Lett. 92, 170403 �2004�; C. Wu, J. Hu, and S.
Zhang, ibid. 91, 186402 �2003�, however, most of them are in
the regime away from Feshbach resonances.

�5� M. W. Zwierlein et al., Science 311, 492 �2006�; G. B. Par-
tridge et al., ibid. 311, 503 �2006�; M. W. Zwierlein et al.,
Nature �London� 442, 54 �2006�; Y. Shin et al., Phys. Rev.
Lett. 97, 030401 �2006�.

�6� See, for instance, C.-H. Pao, S.-T. Wu, and S.-K. Yip, Phys.
Rev. B 73, 132506 �2006�; D. E. Sheehy and L. Radzihovsky
Phys. Rev. Lett. 96, 060401 �2006�.

�7� For the case two out of three scattering lengths are larger, the
Efimov states definitely exist only when both a12 and a23 are
greater than 1986.1lvdW, where the van der Waals length lvdW

=62.5a0 �130a0�, for lithium �potassium� �see Sec. 9.1 of Ref.
�8��. The scattering lengths of lithium and potassium atoms are

far from satisfying this requirement, unlikely to support the
Efimov state. On the other hand, even though there might be
some three-body bound states in a range of magnetic field, it
can only affect the loss rate when the bound state is close to
threshold at a certain particular value of magnetic field �see
Sec. 6.5 of Ref. �8��. The stability in most ranges of magnetic
field will not be significantly affected.

�8� E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 �2006�.
�9� A. J. Leggett, in Modern Trends in the Theory of Condensed

Matter, edited by A. Pekalski and R. Przystawa �Springer-
Verlag, Berlin, 1980�; D. M. Eagles, Phys. Rev. 186, 456
�1969�; M. Randeria, in Bose-Einstein Condensation, edited by
A. Griffin, D. W. Snoke and S. Stringari �Cambridge Univer-
sity Press, Cambridge, England, 1995�.

�10� This wave function can be written in an equivalent but more
intuitive way as �p�ūp+ v̄p�p2
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