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A finite-temperature random-phase approximation �FTRPA� is applied to calculate oscillator strengths for
excitations in hot and dense plasmas. Application of the FTRPA provides a convenient, self-consistent method
with which to explore coupled-channel effects of excited electrons in a dense plasma. We present FTRPA
calculations that include coupled-channel effects. The inclusion of these effects is shown to cause significant
differences in the oscillator strength for a prototypical case of 1P excitation in neon when compared with
single-channel and with average-atom calculations. Trends as a function of temperature and density are also
discussed.
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Radiative properties of hot dense plasmas, such as those
that occur in inertial confinement fusion devices, astrophysi-
cal environments, and high-power laser blowoffs, remain a
subject of much current interest �1�. There are two main
approaches to this problem. The first treats the atomic phys-
ics in a detailed way and incorporates the plasma effects
perturbatively. The second attempts to include the plasma
effects on an equal footing with the atomic processes, but its
typical implementation imposes severe approximations on
the atomic physics. For this second approach, one of the
earliest models was the “average-atom” �AA�, introduced by
Rozsnyai �2� who performed a series of calculations for the
radiative properties of hot, dense plasmas �3�. Although in-
troduced more than 30 years ago, the AA model still provides
one of the primary vehicles for calculating such radiative
properties �4,5�. For an atom perturbed by its plasma sur-
roundings, the AA model assumes that the quantum-
mechanical states of the atom can be described by those of a
selected ion and the electrons in its immediate surroundings,
all within a “neutrality sphere.” The effect of the other ions
and electrons is taken into account through a boundary con-
dition �ion-sphere model� or by the addition of an extra po-
tential �ion-correlation model�. The basic atomic component
of the formulation proceeds through density functional
theory �5� with the fractional occupation numbers of the AA
orbitals becoming density- and temperature-dependent
through the Fermi-Dirac distribution function.

This report describes two important ways of improving
calculations of the atomic processes within the AA frame-
work. The first includes coupling between the atomic orbit-
als. Previous implementations �3–5� of the AA approach
have been independent-electron models. The second corrects
the potential for the excited electron, which in the AA model
does not have the proper form since the removal of a corre-
sponding core electron has not been performed �6�. Use of
the finite-temperature random-phase-approximation
�FTRPA� can correct both of these deficiencies �7�. The
FTRPA approach has been formulated as a system of
coupled, partial integrodifferential equations �6�. Individual
channels are defined by the removal of an electron from a
�partially� occupied orbital. Thus independent-electron “ex-
cited states” can be created by the removal of electrons from

different occupied orbitals and placing them in different “ex-
cited” orbitals. In the FTRPA these “individually excited
states” �associated with different channels� interact through
channel coupling. Previous studies �8,9� have used the
single-channel approximation of FTRPA to compute spectro-
scopic properties of dense He and Li plasmas. In this paper,
we solve a coupled-channel form of the FTRPA equations
and examine spectral properties of a prototypical dense Ne
plasma where coupling can be expected to be more signifi-
cant than in He or Li.

In this work we shall use the ion-correlation model, which
assumes a central nucleus surrounded by electrons with the
electrons located in a large box. Inside the box, there is one
central ion and additional ions correlated to it. Their corre-
lated motion results in a potential that is added to that created
by the central nucleus. The total charge of electrons is com-
pensated by the charge of the central ion plus the total charge
of the additional ions that are distributed inside the large box.
The electrons are assumed to be in thermal equilibrium with
a large heat bath of given temperature, and their motion is
determined by one central potential. The starting point for
the description of the FTRPA is the finite-temperature �or
thermal� Hartree-Fock �FTHF� approximation, which uses
the Hartree-Fock potential �8,9�

�HF�x,x�� = −
Z

r
��x − x�� + Vext�r���x − x��

+ ��x − x�� � V�r� − r����HF�x1,x1�dx1

− V�r� − r����HF�x�,x� , �1�

where x��r� ,�� refers to both the spatial �r�� and spin ���
coordinates of the electrons, r��r��, V�r�−r���=e2 / �r�−r��� is the
Coulomb interaction potential, Z is the nuclear charge,
Vext�r� is the potential originating from the other ions, and
�HF�x ,x�� is the HF density matrix of the electrons.

The aim of the FTRPA is to calculate the linear response
function, which is obtained in the form �6�
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LFTRPA�x1,x2,x1�;z� = �
n

�n�x1,x1���n
*�x2�

�n − z
, �2�

where �n�x���n�x ,x�. In Eq. �2� �n can be interpreted as
the “excitation energy” of the finite-temperature system
and �n�x� as the transition density from the initial
�finite-temperature� state to the nth excited state of the

system. �n�x ,x�� can be expanded on the basis of HF
eigenfunctions for which the radial components are given in
terms of the orbitals P	l and the channel functions
P�	�l��nl

LM . By following the developments laid out in detail

in Refs. �6,8,9� we arrive at a coupled system of
integrodifferential equations for these FTRPA channel
functions

�Hli
HF − 
	jlj

− �nLM�P�	jlj�nli
LM �r� = − n	jlj	 �

l,l�,�

B�
lilj,ll��

	�
�

0

�

dr�v��r,r��P�	�l��nl
LM �r��P	�l��r��P	jlj

�r�

− �
l,l�,�

A�
lilj,ll��

	�
�

0

�

dr�v��r,r��P	jlj
�r��P	�l��r��P�	�l��nl

LM �r�
 − �
	i

n	ili
P	ili

�r�I	ili,	jlj

nli , �3�

where A�
lilj,ll� and B�

lilj,ll� are angular factors defined in Ref.
�8� and I	ili,	jlj

nli can be interpreted as an orthogonality term
that controls the overlap of the P�	jlj�nli

LM �r� excited orbital with
those P	ili

�r� core electron orbitals that are incorporated in
that sum �8�. The quantity v��r1 ,r2� is the multipole compo-
nent in the expansion of the Coulomb potential. This equa-
tion assumes that the HF orbitals factorize into radial and
angular components, since the external �density- and
temperature-dependent� potential in which the electrons
move is spherically symmetric. The radial functions P	ili

�r�
are eigenfunctions of the HF operator Hli

HF, which includes
the usual kinetic energy operator and centrifugal terms, as
well as the HF potential defined in Eq. �1�.

Equation �3� presents the coupled-channel FTRPA equa-
tions in differential form. These equations are coupled in two
ways, in the 	�l� and l indices. The channel indices 	�l�
represent the principal and orbital angular momentum quan-
tum numbers of the HF orbitals occupied with fractional oc-
cupation numbers from which an electron is removed and
placed into an “excited orbital.” The component index l rep-
resents an angular momentum component in the expansion
of the excited orbital; every excited orbital �in principle� can
have l=0,1 ,2 , . . . components. In the calculations presented
here for neon plasmas, we assume that two channel indices
2s ,2p and three component indices 3p ,3s ,3d are important.

The diagonal parts of the first two summations on the
right-hand side of Eq. �3� �i.e., the terms for which 	�l�
=	 jlj and l= li� can be interpreted as representing the ex-
change and direct contributions of the P	jlj

orbital to the HF
potential �li

HF, respectively. �The potential �li
HF is the radial

component in the expansion of the HF potential �HF�x ,x��
defined in Eq. �1�.� Moving these two terms to the left-hand
side of Eq. �3� results in a subtraction that creates exactly the
proper potential for the excited electron denoted as �li

N−n	 jlj,

with N designating the number of bound electrons and n	jlj
representing the �fractional� occupation number of the initial
orbital to be removed. In the zero-temperature case, this sub-

traction produces the well-known VN−1 potential that is suit-
able for calculating excited orbitals. The off-diagonal terms
contained within the first two summations on the right-hand
side of Eq. �3� �for which 	�l��	 jlj and/or l� li� represent
the coupling between the various channel and component
functions. In order to be able to compare with orbitals and
energies from the AA model �10�, we introduce on the left-
hand side of Eq. �3� the local-exchange approximation,
which results in replacement of the �li

HF by the appropriate
AA potential �li

AA; the P	jlj
orbitals then represent AA, rather

than HF, eigenfunctions.
In this work, we use the linear algebraic method �11� to

solve the set of coupled differential equations in Eq. �3�. This
method has been used with much success in electron-atom
and electron-molecule scattering �12� and has been adapted
here for handling coupled-channel eigenvalue problems. A
detailed description of the computational techniques applied
in the linear algebraic method has already been given �12�.
The linear algebraic method converts the set of coupled dif-
ferential equations into coupled integral equations and pro-
ceeds by introducing a quadrature to the integrals and a dis-
crete mesh to the functions and solving the equations on a
numerical grid. By further rewriting the equations in matrix
form, standard numerical methods can be applied to solve
the set of equations in an efficient manner.

We calculate optical oscillator strengths for a neon plasma
as this is a convenient quantity for examining the effects of
coupling between the channels. Following Csanak and Men-
eses �8�, and after angular and spin analyses, we can obtain
the dipole matrix element as

DnLM = �
l,l�

�1 l l�

0 0 0
�2�2l + 1��2l� + 1�

3
�1/2

�− 1�l−l��L1�M0

 �
0

�

dr1r1�
	�

P�	�l��nl
L=1,M=0�r1�P	�l��r1� , �4�

where we restrict ourselves to dipole transitions from the 1S
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ground state to singlet excited states, i.e., to 1P states. We
define the optical oscillator strength �OS� as

OS = 2�nLM�DnLM�2, �5�

where �nLM is the transition energy in atomic units from the
ground state of a neon atom.

We now turn to an exploration of the solution of the
FTRPA equations for systems at finite temperatures and den-
sities. Here, we examine the effects of channel and compo-
nent coupling in neon plasmas �Z=10� at various tempera-
tures and densities. The APATHY code �10� was used to
generate AA orbitals and potentials for different density/
temperature pairs. The APATHY code solves the AA equations
fully quantum mechanically for both the bound and con-
tinuum wavefunctions used in constructing the electron den-
sity. These equations are solved self-consistently, with the
correlation between the ions computed using hypernetted
chain theory �10�.

We present oscillator strengths for the solutions of the
FTRPA equations for 1P excited states where the 3p, 3s, and
3d components are dominant, for a neon plasma at various
densities for a temperature of 25 eV, in Fig. 1. We compare
the single-channel �SC� FTRPA results with the coupled-
channel �CC� FTRPA results and with the oscillator strength
computed using the AA “excited” orbitals. In the CC FTRPA
equations discussed here, the “hole” 2s and 2p channels are
coupled �i.e., 	 jlj �2s ,2p� and the “particle” 3p, 3s, and 3d
components are also coupled �i.e., nli�3p ,3s ,3d� through
the right-hand side of Eq. �3�. In the SC FTRPA equations,
the channel-coupling terms are omitted from the right-hand
side of Eq. �3�. The AA “excited” orbitals are obtained di-
rectly from APATHY and, even though as previously dis-
cussed, these “excited” orbitals are computed in an incorrect

potential, we show the resulting oscillator strengths here for
comparison purposes.

First of all we remark that the absolute energies of the CC
3l excited orbitals �not shown� are significantly lower than
the absolute energies of the 3l AA “excited” orbitals. We
recall that the FTRPA excited orbitals are computed in the
proper �N−n	 jlj potential for the excited electron, whereas the
AA “excited” orbitals are computed in the unphysical �N

potential. Consequently, the FTRPA excited states are more
tightly bound than the AA “excited” orbitals. This difference
results in transition energies for the AA calculation which are
typically higher than the FTRPA transition energies by
around 5–10 %.

The oscillator strengths from the AA calculations fall be-
tween those from the SC and CC FTRPA calculations for the
transitions where the 3p and 3s components dominate �Figs.
1�a� and 1�b��. The CC calculations differ from the SC cal-
culations by between 20–60 % for these cases. For the tran-
sition where the 3d component dominates, the AA calcula-
tions are significantly higher than the SC and CC FTRPA
calculations. The SC and CC calculations differ by around
50% over the density range considered.

As the density is increased for a given temperature, the
excited-state energy increases due to pressure ionization. The
resulting transition energy between the two bound states also
decreases as the density is increased; this behavior is a result
of the bound states becoming squeezed closer together at
higher densities. The oscillator strength for the CC solution
in which the 3p component is dominant trends slightly
downwards as the density is increased until around
0.05 g/cm3, and then increases. The SC and AA solutions
trend uniformly downwards. For the case in which the 3s
component is dominant, the CC calculations for the oscillator
strength increase linearly with density. For the solution in
which the 3d component is dominant, the oscillator strengths
obtained from both the SC and CC solutions again increase
slowly with density, until about 0.05 g/cc, where the oscil-
lator strength starts to decrease somewhat. The AA solution
strongly decreases with density. As the density is further in-
creased, the excited state will eventually move into the con-
tinuum, and the oscillator strength will then drop to zero.

In Fig. 2 we show the oscillator strengths as a function of
temperature, and at a constant density of 0.01 g/cc. We again
compare the oscillator strengths calculated from the SC
FTRPA equations with those from the full CC FTRPA equa-
tions and with those using the AA “excited” orbitals. As the
temperature is increased, the excited-state orbitals become
more tightly bound. This behavior is probably due to the
increase in the number of free electrons as the temperature is
increased, so that the remaining bound electrons feel more of
the attractive nuclear potential. The transition energy also
increases with temperature since the core �“ground state”�
electrons will be more tightly bound than the excited elec-
trons. Again, the oscillator strengths for all possible 3l solu-
tions display different trends. The oscillator strength for the
dominant 3p component transition generally increases with
temperature, for the SC, CC, and AA solutions. The oscilla-
tor strengths corresponding to the solutions in which the 3s
component is dominant and in which the 3d component is
dominant decrease with increasing temperature, for all these
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FIG. 1. �Color online� Oscillator strengths for neon 1P excita-
tions as a function of density, at a temperature of 25 eV, using our
coupled-channel approach. We show results for three transitions: �a�
the case where the 3p component is dominant, �b� the case where
the 3s component is dominant, and �c� the case where the 3d com-
ponent is dominant. We compare AA results �dashed lines� with SC
FTRPA results �dot-dashed lines� and with CC FTRPA results �solid
lines�.
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calculations, except for the AA, 3d results, where the trend is
strongly increasing. For the solution in which the 3s compo-
nent is dominant, the difference between the SC and CC
results increases as the temperature is raised, until the differ-
ence at the highest temperature considered �35 eV� is almost
70%. These differences further underscore the importance of
including channel coupling in the calculations. The differ-
ences between the SC and CC solutions for the other cases
are smaller in magnitude, around 20 or 30 %, and are fairly
constant over the range of temperatures.

Finally we note that the SC transition energies are very

similar to the CC transition energies, for all temperature and
density cases, although the oscillator strengths can be quite
different, due to differences in the component functions. This
behavior implies that CC effects on any spectra will be lim-
ited to the magnitude of spectral lines, rather than to their
position. However, it is clear that FTRPA calculations will
result in differing positions of spectral lines when compared
with AA calculations. We have also shown that AA calcula-
tions can result in oscillator strengths which can be markedly
different from oscillator strengths from FTRPA calculations,
and which also can display different trends as functions of
plasma density and/or temperature.

In this paper we have extended previous work �6,8,9� on
the finite-temperature random-phase approximation �FTRPA�
by including channel-coupling effects in solving the FTRPA
equations. We have used the linear-algebraic method �11� for
the solution of the coupled equations, which relies upon the
AA code APATHY �10� to generate the temperature- and
density-dependent AA orbitals. We have presented coupled-
channel oscillator strengths for neon plasmas at various tem-
peratures and densities. The effect of channel coupling on
these quantities was observed to be significant. In future
work we intend to explore the possibility of using a fully
nonlocal Hartree-Fock exchange potential in the finite-
temperature formalism instead of the local-exchange ap-
proximation used currently in the AA model.

We thank W. Daughton for invaluable advice in the run-
ning of the APATHY program and D. Kilcrease for useful dis-
cussions, as well as B. Rozsnyai and S. Manson for helpful
comments on this work. This work was performed under the
auspices of the U.S. Department of Energy through the Los
Alamos National Laboratory.
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FIG. 2. �Color online� Oscillator strengths for neon 1P excita-
tions as a function of temperature, at a density of 0.01 g/cm3, using
our coupled-channel approach. The calculations and transitions
shown are for the same cases as in Fig. 1.
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