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We have previously calculated the cross section for radiative formation of the interesting bound state
consisting of a positron bound to helium, where the atomic electrons are in the triplet spin state. That process
uses the metastable triplet helium system as target, and, as expected, it has a very small cross section. In this
paper we examine a more probable process in which the state of interest is produced in an exchange rear-
rangement collision between a positronium atom and the singlet helium ground state: Ps+He�1Se�
→PsHe+�3Se�+e−. The present calculation is done in the plane-wave Born approximation, using simple initial
and final wave functions and compares post and prior forms.
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I. INTRODUCTION

In our previous paper �1� about the weakly bound system
consisting of a positron and a helium atom in the triplet spin
state we briefly reviewed the history of this problem. It took
many years between the first unsuccessful attempt �2� to es-
tablish binding and the first rigorous variational demonstra-
tion �3� that the system is nonrelativistically stable against
breakup. In addition, if the total spin �including the positron�
S=3/2 the annihilation must be into at least three photons
and therefore relatively slow. In Ref. �1� we estimated the
cross section for the simplest way of forming the system—
radiative capture of a positron in collision with the lowest-
lying triplet state of helium. As expected, this cross section
was very small.

Another obvious process capable of producing the bound
system is the exchange rearrangement collision Ps+He�1Se�
→PsHe+�3Se�+e−, where the electron of the positronium
atom replaces one of the atomic electrons to form the triplet
spin state. In fact, as conjectured in Ref. �2� and shown in
Ref. �3�, the bound state is best described not as a positron
bound to the triplet helium atom but as a positronium atom
bound loosely to a helium ion with the two electrons appro-
priately symmetrized. �For this reason we use the symbol
shown above to represent the bound state, and we suggest the
chemical name “Positronium Helide ion” for it.� In the
present calculation we use the Born approximation with
simple initial and final wave functions that simulate the exact
wave functions to obtain a first estimate of this rearrange-
ment cross section.

II. FORMULATION

The total Hamiltonian for the system consisting of three
electrons �ri�, one positron �x�, and a helium nucleus fixed at
the origin is �in Rydberg atomic units�

H = T − �
i=1

3
4
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+

4

x
− �

i=1

3
2

�i
+ �

i�j=2
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rij
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where the kinetic energy operator is T=−�i=1
3 �i

2−�x
2, where

�i= �x� −r�i�, and where rij = �r�i−r� j�. Since we are doing the

plane-wave Born approximation the initial wave function has
the form

�I =
1
�3
�eik�·R� 1�Ps��1��He�r�2,r�3�	�2�3 − �2�3

�2

�1�+

+ cyclic permutation of �1�,�2�,�3�� , �2�

where �Ps���=exp�−� /2� /�8	 and the final wave function
has the form

�F =
1
�3

�eik��·R� 3�PsHe+�r�1,r�2,x���1�2�3�+

+ �cyclic permutation of �1�,�2�,�3�� . �3�

The spin functions � and � represent up and down spins,
respectively, and we have assumed that the initial positro-
nium atom is itself in the triplet long-lived state with total
spin projection M = +1. The relationship between the final
momentum k� and the incident momentum k is derived from
the energy equation:

EPs + EHe +
k2

2
= EPsHe+ + k�2 = EPs + EHe+ − EB + k�2.

Using the known value for the energy of the helium ground
state EHe=−5.807 448 and Frolov’s value �4� of the binding
energy EB=0.001 187 4 we obtain the expression k�
=�k2 /2−1.806 261. The threshold momentum of the inci-
dent Ps atom is k=1.900 663, corresponding to an energy
ETh=24.5756 eV.

After using the orthonormal properties of the spin func-
tions and the antisymmetry of the spatial wave function
�PsHe+ we can write two forms of the Born approximation as
follows:

MI =
1
�2
� d
�e−ik��·r�3�PsHe+�r�1,r�2,x��

+ e−ik��·r�2�PsHe+�r�1,r�3,x���VIe
ik�·R� 1���1��He�r�2,r�3� , �4a�
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MF =
1
�2
� d
e−ik��·r�3�PsHe+�r�1,r�2,x��VF�eik�·R� 1���1��He�r�2,r�3�

+ eik�·R� 2���2��He�r�1,r�3�� . �4b�

�The factor of 3 is canceled by the three identical terms that
appear.� We denote the volume element by d
, but it is actu-
ally the 12-dimensional volume over the three electronic co-
ordinates and one positronic coordinate. The two forms of
the perturbation VI,F refer to the partial Hamiltonians whose
eigenfunctions are the initial and final wave functions, re-
spectively. That is, VI,F=H−HI,F, where
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�Note that because of the symmetry of both forms of the
potential it is clear that the two terms in brackets in Eqs. �4�
give identical results. We will keep only one term in each
case and double the result.� At this point we will introduce
three fairly severe simplifications, designed to make the in-
tegrals in the matrix element tractable.

�i� First, we use the open-shell approximation for the
ground-state helium atom:

�He�r2,r3� = NI�e−�ar2+br3� + e−�br2+ar3�� , �6�

where a=2.183 170 865, b=1.188 530 838, and NI
=0.708 930 737. This wave function gives a value of the
helium energy within about 1% of the exact value, and it has
the form of two hydrogenic s-wave electrons, one seeing the
full nuclear charge �Z�2� and the other shielded �Z�1�.

�ii� Bearing in mind the fact that the positronium helide
ion wave function looks like a Ps atom weakly bound to a
helium ion, we approximate it as follows:

�PsHe+�r�1,r�2,x�� = NF�F�R1��Ps��1��He+�r2� − �1 ↔ 2�� , �7�

where the Ps center-of-mass coordinate is R� i= �x� +r�i� /2 and
�He+�r�=exp�−2r��8/	. In our previous work �1� we took
the form F�R�= �e−�R−e−�R� /R to describe the motion of the
center of mass and fixed the two parameters at �
=0.048 733 and �=0.248 145. The resulting wave function
gives the asymptotic form of F and the expectation value of
x in agreement with the results of the well-converged calcu-
lation of Frolov �4� and also gives quite reasonable values
for other expectation values, as shown in Ref. �1�. With these
values of the parameters the normalization constant is NF
=0.085 0.53.

�iii� Finally, we restrict the calculation to S waves. This
involves replacing the plane waves in the initial and final
wave functions by the spherical Bessel functions j0�kR1� and
j0�k�r3�, respectively. The S-wave cross section will be a
lower bound to the complete Born cross section.

III. CALCULATION OF THE MATRIX ELEMENT

�i� With the approximations described above the Born ma-
trix elements take the following forms. First, MI�k�

=MI
Dir�k�+MI

Exch�k�, where the two terms come from the two
terms in our form of the PsHe+ wave function:
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Several things should be noted about these expressions. First,
the factor 1 / �2 appearing in Eqs. �8� comes from the spin
parts of the wave functions, and the extra factor of 2 is from
the two identical terms in Eqs. �4�. Then we have arranged
the terms in the potential in Eq. �8a� to make it obvious that
the direct matrix element vanishes identically since its inte-
grand is antisymmetric under interchange of r�1 and x�. We
have isolated the r�3 integral in Eq. �8b� since that integral is
particularly easy to carry out. The remaining integrals take
the form

MI
Exch�k� =

128	2bNINF

�2�k�
2 + b2�2�

0



dxx2� dr�2�Ps��2�F�R2�e−ar2

�� dr�1�He+�r1�j0�kR1��Ps��1�� 1

�2
+ g�b,x�

−
2

x
− g�b,r1� +

2

r1
−

1

r12
� + �a ↔ b , �9�

� dr�j0�k�r�
e−cr

�z� − r��
=

8	c

�k�2 + c2�2g�c,z� and g�c,z�

=
1

z
�1 − e−cz	cos k�z +

c2 − k�2

2k�c
sin k�z
� .

�10�

In Eq. �9� the r�2 and r�1 integrals depend on ri, x, and r̂i · x̂
only, so they are two-dimensional integrals leading to func-
tions of x, for the first three terms in the square bracket. We
integrated them numerically, after which the integral over x
could also be readily evaluated. The last term in the bracket
is of a different form, and its evaluation is discussed in the
Appendix.

�ii� In the same way MF�k�=MF
Dir�k�+MF

Exch�k� and the
two terms this time are
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MF
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Again the last two terms in the bracket in Eq. �11a� vanish by
symmetry, but the other two terms remain. After making a
change of variables the second double integral simplifies:

� dR� 1F�R1�j0�kR1� � d��1�Ps
2 ��1�

=
4	

k
�

0



dR�e−�R − e−�R�sin kR =
4	��2 − �2�

�k2 + �2��k2 + �2�
,

�12�

where we have made use of the fact that the Ps wave func-

tion is normalized. The r�3 integral can also be carried out
analytically; it gives rise to a function similar to g�c ,r2� that
appears in Eq. �9�. Finally, the last integral over r2 can be
performed analytically,

MF
Dir�k� =

− 210NINF	5/2b��2 − �2�
�k2 + �2��k2 + �2��k�2 + b2�2�2�b2 − b + k�2� − ab

b�a + 2�3

+
�a + b + 2��a + 2b + 2 − k�2/b� − k�2

��a + b + 2�2 + k�2� � + �a ↔ b .

�13�

In the exchange matrix element the r�3 integral again is easy,
and it yields the following expression:

32	bNIe
−ar2

�k�2 + b2�2 �g�b,r1� + g�b,r2� − g�b,x� − 2g�b,0��

+ �a ↔ b . �14�

Each term in the expression for MF
Exch�k� separates in the

same way as did the simple terms in MI
Exch�k�. For example,

the first term in Eq. �14� when inserted in Eq. �11b� yields

− 32�	NINFb

�k�
2 + b2�2 �

0



dxx2� dr�1g�b,r1�e−�2r1+�1/2�j0�kR1�

�� dr�2F�R2�e−�ar2+�2/2� + �a ↔ b , �15�

and fairly straightforward numerical integration can evaluate
it.

IV. RESULTS AND DISCUSSION

Once the two forms of matrix elements have been evalu-
ated for a range of momenta k the total cross sections can be
obtained from the formula

�I,F�k� =
1

4	

v�

v
�MI,F�k��2a0

2

=
1

	

�k2/2 − 1.806 262

k
�MI,F�k��2a0

2. �16�

We show the results we have obtained in both I and F ap-
proximations in Table I and in Fig. 1. From the latter one can
see that the two approximations are very close near threshold
and up to their joint maximum, but they deviate considerably
as k increases. Despite the rough quality of the present
calculation—the Born approximation, the limitation to S
waves, and the difference between post- and prior forms—
the present results should be useful in designing experiments
to produce and detect the positronium helide ion. Although
there are now many theoretically verified particle-bound
states containing at least one positron, there are only two
such systems �besides positronium itself� that have been ex-
perimentally observed: the positronium negative ion �5�, and
positronium hydride �6�. We would like to think of positron
physics as not merely a mathematical subject, so we will add
a brief discussion of possible experimental detection of pos-
itronium helide, with the hope that we may stimulate interest

TABLE I. Nonradiative formation cross sections in units of
10−3 Å2.

k �1/a0� �I �F

1.91 2.12 1.63

2.0 3.42 3.48

2.2 1.26 2.36

2.4 0.344 1.20

2.6 0.0874 0.564

2.8 0.0214 0.254

3.0 0.0050 0.113

FIG. 1. Nonradiative formation cross sections in units of
10−3 Å2: �F is solid and �I is dashed.
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in this reaction among our experimental colleagues.
Experimental verification of the formation of PsHe+ is not

simple in spite of the fact that the present reaction has a
much larger cross section than does the radiative reaction
discussed earlier �1�. This is partly because of its very small
binding energy and partly because there are several compet-
ing reactions. It seems that the best way of verifying that this
system has been produced by the reaction discussed here is
to begin with a beam of Ps atoms of sharply defined energy
and detect the outgoing electrons and their energy distribu-
tion. Several reactions generate outgoing electrons:

Ps + He → PsHe+ + e−�threshold energy 24.58 eV� , �17a�
→Ps + He+ + e−�threshold energy 24.59 eV� , �17b�
→He + e+ + e−�threshold energy 6.80 eV� , �17c�

and some others involving excitation of either Ps or He at-
oms. But the electron energy of the first, interesting, reaction,
Eq. �17a�, is uniquely determined by conservation of energy
�when we assume the helium nucleus is infinitely massive�,
while the other two, Eqs. �17b� and �17c�, have three-body
final states, and the electron must share its energy, giving rise
to a continuum of electron energies. So one should look for a
sharp electron energy to detect the formation of PsHe+.

Reaction �17b� may not interfere too badly with detection
of the peak which lies slightly above the upper continuum
limit. Unfortunately, the cross section �7� for reaction �17c�
is several orders of magnitude larger than for the formation
reaction �17a� in which we are interested, and the peak
would lie buried in its continuum. This probably means that
the only way that the peak signifying formation of PsHe+

could be distinguished from the competing electron con-
tinuum would be if it were extremely narrow. This would
require significant improvements in the energy control of Ps
beams beyond the present state of the art �7�. One remaining
possibility involves the use of an anticoincidence setup,
which would reject any electrons that were accompanied by
a positron; the rejection efficiency would need to be almost
perfect.
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APPENDIX

The evaluation of the last term in the matrix element
MI

Exch�k� appearing in Eq. �9� is somewhat more difficult
than the others, since the integrand does not separate conve-
niently into a product of functions of r�1 and r�2 as the others
do. We used two different techniques to simplify this inte-
gration. The first is quite similar to the method described in
the Appendix of our previous paper �9� and involves a para-
metric integral. The second is simpler, involving an expan-
sion in Legendre polynomials which turns out to converge
extremely rapidly.

Taking the vector x� as the polar axis, we expand in the
usual way:

1

r12
= �

L

r�
L

r�
L+1 PL�r̂1 · r̂2�

= �
L

r�
L

r�
L+1

4	

2L + 1 �
m=−L

L

YLm��1,�1�YLm
* ��2,�2� , �A1�

where the symbols � and � refer to the lesser and greater of
the pair r1 and r2, respectively. The advantage of this expan-
sion lies in the fact that each term in the sum has the two
coordinates separated. When this expansion is inserted into
the integral in Eq. �9� it becomes clear that only those terms
with m=0 survive, since the rest of the integrand involves
the polar angle only. For this reason Eq. �9� can be rewritten
as

MI
Exch��k��12 = −

128	2bNINF

�2�k�2 + b2�2�
L
�

0



dxx2� dr�2�Ps��2�

�F�R2�e−ar2PL�x̂ · r̂2� � dr�1�He+�r1�j0�kR1�

��Ps��1�PL�x̂ · r̂1�
r�

L

r�
L+1 + �a ↔ b . �A2�

Now each of the dr�i integrals involves integration over the
polar angle and the radius only and depends on the magni-
tude of x. The usefulness of this way of calculating depends
on the speed of convergence in L; in the present case only
three terms were necessary. Both methods gave essentially
the same values.
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