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The Berry phases for coherent states and squeezed coherent states of Landau levels are calculated. Coherent
states of Landau levels are interpreted as a result of a magnetic flux moved adiabatically from infinity to a finite
place on the plane. The Abelian Berry phase for coherent states of Landau levels is an analog of the Aharonov-
Bohm effect. Moreover, the non-Abelian Berry phase is calculated for the adiabatic evolution of the magnetic
field B.
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I. INTRODUCTION

Since the famous work of Berry �1�, the geometric phase
has been widely investigated and its generalizations have
been made in many ways �2–5�. Recently much concern has
been concentrated on the geometric phase of entangled states
as well as mixed states �6,7�. The coherent state is an impor-
tant physical concept both theoretically and experimentally
�8,9�. It can be generated from an arbitrary reference state,
and in this Brief Report Landau levels are chosen to be such
reference states. Though coherent states of Landau level
have been studied in Refs. �10,11� and Berry’s phase for
coherent states as well as squeezed coherent states of a one-
dimensional harmonic oscillator have been illustrated in Ref.
�12�, Berry’s phase for coherent states of Landau levels,
which is highly degenerate and with an additional parameter,
i.e., the magnetic field B, is still worthy of further investiga-
tion.

This paper is organized as follows. In Sec. II, we show
how to get the coherent states of Landau levels, and these
states can be regarded as a result of a magnetic flux moved
adiabatically from infinity to a finite place on the plane. In
Sec. III, we calculate the Abelian and non-Abelian Berry
phases for coherent states of Landau levels. The Abelian
Berry phase is just like an alternative version of the
Aharonov-Bohm �AB� effect; the difference between them is
that in our case the cyclic motion of the magnetic flux results
in the phase shift. In Sec. IV, we provide the explicit form of
the Hamiltonian and Berry’s connections for squeezed coher-
ent states of Landau levels. A conclusion and discussion are
given in the last section.

II. COHERENT STATES OF LANDAU LEVELS

The motion of a free electron in the two-dimensional xy
plane in a static magnetic field along the z direction is de-
scribed by the following Hamiltonian:

H =
�2

2�
��px +

e

c
Ax�2

+ �py +
e

c
Ay�2� , �1�

where � is the mass of the electron, � is the Planck constant,
−e is the electron charge, c is the speed of light in the

vacuum, px and py are the linear momenta, and Ax and Ay are
vector potentials of the magnetic field satisfying �xAy −�yAx
=B. For simplicity the Zeeman term is not included.

We introduce the following operators:

�x = px +
e

c
Ax, �y = py +

e

c
Ay, �± = �x ± i�y , �2�

from which one can form a pair of operators b† and b which
satisfy the commutation relation �b ,b†�=1:

b =	 c

2 � eB
�−, b† =	 c

2 � eB
�+. �3�

In this case we can rewrite the Hamiltonian in a simpler
form,

H0 = � ��b†b + 1/2� , �4�

where �=eB /c�, and b†,b are raising and lowering opera-
tors between Landau levels with b† 
n�=	n+1 
n+1�, b 
n�
=	n 
n−1�. The energy of the Landau levels is En= ���n
+1/2�. One knows that Landau levels are highly degenerate.
In the degenerate space of Landau levels we can introduce
another pair of raising and lowering operators,

a =	 c

2 � eB
�− px − ipy +

e

c
Ax + i

e

c
Ay� ,

a† =	 c

2 � eB
�− px + ipy +

e

c
Ax − i

e

c
Ay� .

We choose the symmetric gauge Ax=−�y /2�B and Ay

= �x /2�B, and then a,a† are commutative with b,b† and
�a ,a†�=1. Therefore the Hamiltonian commutes with a and
a†. The ground state is defined as 
0,0�=	Be / �2�c� �
�exp�−Be�x2+y2� / �4c� ��, and all other eigenstates of this
system can be generated from the 
0,0� state with raising
operators 
n ,m�= �1/	n !m!�b†na†m 
0,0�. The states 
n ,m�
are also orthogonal and normalized bases for this system.
States with the same n are in the same energy level, and
states with the same n but different m stand for the different
degenerate states on the same energy level.

The coherent states of Landau levels are generated in the
following way, as in �12�:*Electronic address: chenjl@nankai.edu.cn
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n���,m� = exp��b† − �*b�
n,m� ,

where �=X1+ iX2. The Hamiltonian for the coherent states is

H = D���H0D†��� = � ���b† − �*��b − �� +
1

2
� , �5�

where D���=exp��b†−�*b�, and the eigenstates of this
Hamiltonian are always combinations of the degenerate
states with the same energy:


n���� = �
m

fm
n���,m� , �6�

where fm are arbitrary complex numbers which make 
n����
normalized. We put Eq. �3� back into Eq. �5�; this makes the
Hamiltonian easier to understand, and we get

H =
�2

2�
���x −	2 � eB

c
X1�2

+ ��y +	2 � eB

c
X2�2� .

�7�

We found that the magnetic vector potential has an added
constant vector potential. This can be regarded as a result of
a magnetic flux perpendicular to the plane moving adiabati-
cally from infinitely far to a finitely far position on the plane.
In the following we would like to show how we get the
result.

We can assume that the added magnetic flux is a
Gaussian-form magnetic field centered at �x0 ,y0�, B�
= ��0 /��2�exp−��x−x0�2+ �y−y0�2� /�2�, where � is re-
ferred to as the spread or standard deviation for the Gaussian
function. We may choose the symmetric gauge with respect
to �x0 ,y0�, i.e., � ·A
x=x0,y=y0

=0. The nonsingular vector po-
tential for this added magnetic field is

Ax� =

�0�exp�−
�x − x0�2 + �y − y0�2

�2 � − 1��y − y0�

2���x − x0�2 + �y − y0�2�
,

Ay� = −

�0�exp�−
�x − x0�2 + �y − y0�2

�2 � − 1��x − x0�

2���x − x0�2 + �y − y0�2�
.

�8�

One may observe that B� has nothing to do with the Hamil-
tonian �1� when x0 ,y0→	. Now we assume that the electron
in the plane is in a certain eigenstate, for example, 
0,0�. In
this case the electron is localized near the origin because
�x�= �0,0 
x 
0,0�= �y�=0, �x2+y2�=2c� /Be. Let �


 �	x2+y2�, so when the flux moves adiabatically to a place
�x0 ,y0� which is finitely far from the electron �i.e.,
x0 ,y0� �	x2+y2��	2c� /Be�, we assume that the electron
is still distributed around the origin and Ax�,Ay� near the origin
of the plane can be regarded as constants. Then the Hamil-
tonian for the electron will be of the form �7� with

X1 =	 e

2 � Bc

�0y0�exp�−
x0

2 + y0
2

�2 � − 1�
2��x0

2 + y0
2�

,

X2 =	 e

2 � Bc

�0x0�exp�−
x0

2 + y0
2

�2 � − 1�
2��x0

2 + y0
2�

. �9�

This modification of the Hamiltonian also corresponds to the
transformation �x ,y�→ �x+�x ,y+�y�, where

�x =

�0x0�exp�−
x0

2 + y0
2

�2 � − 1�
�B�x0

2 + y0
2�

,

�y =

�0y0�exp�−
x0

2 + y0
2

�2 � − 1�
�B�x0

2 + y0
2�

. �10�

So the state �00�x ,y�= 
0,0� will become �00�x+�x ,y+�y�.
Since the distribution of the electron is near the origin, one
also makes sure that �x�x0, �y�y0.

The coherent states of Landau levels are nothing but the
shifted eigenstates of Landau levels in the phase space; here
we assume such a shift happens in real space �00�x ,y�
→�00�x+�x ,y+�y�. When the conditions above are satis-
fied, this assumption is reasonable. It is B� that causes this
small shift. We may see from Eq. �10� that the direction of
B�, i.e., the sign of �0, is related to the direction of the shift.
When �0
0 the shift is parallel to the direction of the flux,
and vice versa. Interestingly, if the flux circles the electron
once, the electron will also circle the origin in a much
smaller loop once. This is the reason why the Berry phase
emerged as we will show in the next section.

III. BERRY’S PHASE FOR COHERENT STATES OF
LANDAU LEVELS

We know that the Landau levels are highly degenerate,
and so are the coherent states of Landau levels. Berry’s phase
for degenerate states was presented in �3� and may have a
non-Abelian nature. We calculated the Berry connections as
follows:

�n���,m
�X1

n����,m�� = �− iX2��n,n��m,m� + �	n� + 1�n,n�+1

− 	n��n,n�−1��m,m�,

�n���,m
�X2

n����,m��

= iX1�n,n��m,m� + �i	n� + 1�n,n1�
+ i	n��n,n�−1��m,m�,

�n���,m��B
n����,m��

=
1

2B
��	m��m,m�−1 − �*	m� + 1�m,m�+1��n,n�

+
1

2B
	n�m��n,n�−1�m,m�−1 −

1

2B
	�n� + 1��m� + 1�

��n,n�+1�m,m�+1. �11�

In the degenerate space, i.e., between states with the same n,
the Berry connections become
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AX1

m,m� = − iX2�m,m�, AX2

m,m� = iX1�m,m�,

AB
m,m� =

1

2B
��	m��m,m�−1 − �*	m� + 1�m,m�+1� . �12�

We found that AX1
and AX2

are Abelian. With the adiabatic
theorem for degenerate states proved in �13� and to a higher
order in �14�, we know that the 
fm
 in Eq. �6� will not change
during the arbitrarily slow evolution of X1 and X2. Also, be-
cause the Berry’s connections of X1 and X2 are Abelian, the
fm will gain a Berry phase factor, which is the same for all m,
after an adiabatic evolution in the X1-X2 plane. The Berry
phase is

n = i�
C

�n���
�X1

n����dX1 + �n���
�X2


n����dX2

= �
C

X2dX1 − X1dX2 = − 2S , �13�

where C is the path of the adiabatic evolution of �X1 ,X2� in
the X1-X2 plane and S is the area of C. This result appeared
in �12� for nondegenerate coherent states. The result is also
the same as the phase in �15�. However, in our case it is the
moving magnetic flux that moves the electron instead of a
moving potential well.

With the interpretation in the above section, we can see
from Eq. �9� that, when the magnetic flux circles the electron
for one loop, the �X1 ,X2� will also enclose an area, and this
gives the Berry phase. For example, we let �x0 ,y0� move
around the origin in a circle with the radius R for one loop.
The Berry phase will be

� = − 2S� = −
e�0

2�1 − e−R2/�2
�2

4� � cBR2 . �14�

This can be viewed as an alternative version of the AB effect.
The different between them is that we move the magnetic
flux instead of the electron.

One may see from Eq. �11� that AB
m,m� is non-Abelian, so

the change of B will give a non-Abelian Berry phase. As the
non-Abelian Berry phase in such a system has not been
shown in the literature before, in the following we would like
to give a simple example to illustrate it. We assume X1=0
during the evolution and the other two parameters undergo
the loop in Fig. 1. We can get the eigenvalues of matrix AB as
�� / �2B� and the corresponding eigenstates 
n��� ,��. The
states before evolution, Eq. �6�, can be rewritten in the new
base as


n�iX21,t = 0�� = �
�

�n�iX21�,�
n�iX21��
n�iX21�,�� . �15�

After the system undergoes an evolution as shown in Fig. 1,
the state may become


n�iX21,t = ��� = �
�

e−i�� S��n�iX21�,�
n�iX21��
n�iX21�,�� ,

�16�

where S� is the area enclosed by X2 and ln�B� as in Fig. 1.
However, if X1�0, the calculation will involve a path-
ordered integral and become very complicated.

IV. BERRY’S PHASE FOR SQUEEZED COHERENT
STATES OF LANDAU LEVELS

The Hamiltonian for squeezed coherent state is

H = D���S���H0S†���D†��� , �17�

where H0 is defined in Eq. �4�, �=rei�, and

S��� = exp�1

2
�b+2 −

1

2
�*b2� . �18�

The eigenstates for this Hamiltonian, i.e., the squeezed co-
herent states, are


n��,��,m� = D���S���
n,m� . �19�

In the same way, we put Eq. �3� into Eq. �17�, and we can get

H =
1

2�
e−2r�cos��/2��x� + sin��/2��y��

2

+ e2r�− sin��/2��x� + cos��/2��y��
2� , �20�

where �x�=�x−	2�eB /cX1, �y�=�y +	2�eB /cX2. For r=0,
Eq. �20� reduces to Eq. �7�. For r�0, one can see from this
Hamiltonian that the squeezing operation S��� caused an an-
isotropy in the plane. More clearly, if we set �=0 Eq. �20�
will become H= �e−2r�x�

2+e2r�y�
2� /2�; in other words, the

kinetic energies �x�
2 /2� and �y�

2 /2� are squeezed by the
factors e−2r and e2r, respectively.

Now we consider the Berry connections of squeezed co-
herent states:

�n��,��,m� �

�r
�n���,��,m��

= �−
1

2
e−i�	n��n� − 1��n,n�−2

+
1

2
ei�	�n� + 1��n� + 2��n,n�+2��m,m�,

FIG. 1. Loop of the adiabatic evolution in the X2 - ln�B� plane.
The magnetic field B appears in Berry’s phase in the logarithmic
form.

BRIEF REPORTS PHYSICAL REVIEW A 75, 024101 �2007�

024101-3



�n��,��,m� �

��
�n���,��,m��

=
i sinh�2r�

4
�e−i�	n��n� − 1��n,n�−2

+ ei�	�n� + 1��n� + 2��n,n�+2��m,m�

+
i sinh2r

2
�2n� + 1��n,n��m,m�,

�n��,��,m� �

�B
�n���,��,m��

=
1

2B
�2 sinh2 r

2
	n�m��n,n�−1�m,m�−1

− 2 sinh2 r

2
	�n� + 1��m� + 1��m,m�+1�n,n�+1

+ ei�sinh r	m��n� + 1��n,n�+1�m,m�−1

− e−i�sinh r	�m� + 1�n��m,m�+1�n,n�−1�
+

1

2B
��	m��m,m�−1 − �*	m� + 1�m,m�+1��n,n�.

�21�

To our knowledge, the Berry connection with respect to B

has not appeared in the literature before. With these results,
the Berry phase is not hard to obtain. If anisotropy existed in
two-dimensional electron gas systems, its Hamiltonian
would be of the form of Eq. �20�.

V. CONCLUSION AND DISCUSSION

In this Brief Report, we have calculated the Berry’s phase
for coherent states as well as squeezed coherent states of
Landau levels. The Hamiltonian of the coherent states of
Landau levels is interpreted as a result of a magnetic flux
perpendicular to the plane, and it is moved adiabatically
from infinity to a distance away from the electron so that
some approximations are satisfied. The cyclic adiabatic mo-
tion of this magnetic flux caused the Berry phase of coherent
states of Landau levels. This is an analog of the AB effect.
The non-Abelian phase is also of interest; the magnetic field
B appears in the Berry phase in the form of ln�B�. So when
B→0 the Berry phase will be very sensitive to B and be-
come indefinite, and the reversion of the magnet field is pro-
hibited if we want to get this phase. Reference �16� also
states this phenomenon that near the level crossing point the
Berry phase sometimes vanishes.
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