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We investigate Ramsey interferometry for two separated fields oscillating with different frequencies. It is
shown that the interplay between average and relative detuning leads to interference effects not present in the
standard, single-frequency setup. For a large free-flight time of ground-state atoms before entering the first field
region, the Ramsey fringes with respect to the relative detuning become much narrower than the usual ones.
The stability of these effects with respect to phase or velocity fluctuations is discussed.
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I. INTRODUCTION

Ramsey’s method of atom interferometry with separated
oscillating fields �1� provides the basis of present primary
time standards, like cesium-beam or cesium-fountain clocks
�2�. Basically, one aims to lock an oscillator exactly at a
given atomic transition frequency to achieve stability and
accuracy of the oscillator and thus of the clock. The physical
quantity that indicates possible deviations from the reference
transition as a function of detuning is the excitation probabil-
ity of the ground-state atom after the interaction with two
separated oscillating fields, and this function shows the well-
known Ramsey fringes. Note that as long as quantum reflec-
tions of the atom at the fields and recoil effects can be ne-
glected, the operation of the interferometer in the time
domain �temporally separated pulses and fixed atom� or in
the space domain �spatially separated fields and moving
atom� is equivalent for atoms moving along classical trajec-
tories, and we shall concentrate on moving atoms hereafter.

A central requirement for frequency standards is a narrow
interference pattern with respect to detuning, to allow for a
precise lock of the oscillating fields to the atomic clock tran-
sition. It has been shown by Ramsey �1� that the width of the
central peak of the pattern is inversely proportional to the
intermediate time between the two fields T, in contrast to the
single-field �Rabi� scheme, where it is inversely proportional
to the field-crossing time. In cesium-beam standards, for ex-
ample, this motivates the use of tall “fountain” configura-
tions, limited in practice because of space constraints �3�, or
very slow �ultracold� atoms in reduced gravity �4�. Even
though the dependence on the free-flight time is better than
on field-crossing time because of the difficulty of implement-
ing a homogeneous and stable field,1 the intermediate free
flight between the two fields occurs for atomic states with an
excited component, which should be as stable as possible
against radiative decay �5�.

In this paper we investigate the use of two separated fields
with different detuning. In this case, the interference pattern
in the excitation probability will depend, in addition to the

intermediate free-flight time, on the flight time of the
ground-state atom before entering the fields. Within a semi-
classical picture, i.e., neglecting quantum reflections at the
fields, a general expression for the excitation probability as a
function of average detuning and relative detuning is derived
and discussed. It is shown that the interference pattern as a
function of the relative detuning becomes considerably nar-
rower than the usual Ramsey pattern if the initial phase dif-
ference of the fields is controlled. We have also examined the
effect of averaging over phase or entrance-time distributions.

For simplicity of the presentation, we neglect in our cal-
culations the transverse momentum transfer on the atom,
which is reasonable for moving atoms and microwave fre-
quencies or for trapped ions in the Lamb-Dicke regime and
optical fields �6,7�. For a detailed study of these recoil effects
in connection with Ramsey interferometry we refer to �8�.
For freely moving atoms interacting with optical fields, one
is led normally to consider the multibeam schemes proposed
by Kasevich and Chu or by Bordé to compensate for the
wave-packet separation due to recoil effects; see �9� for re-
views. Transverse momentum transfer with optical fields
could also be suppressed by confining the moving atoms in a
narrow waveguide �10�.2

II. HAMILTONIAN AND INTERACTION PICTURES

We consider the basic Ramsey setup where a two-level
atom initially in the ground state moves along the x axis and
crosses two separated oscillating fields localized between 0
and l and between l+L and 2l+L �Fig. 1�.

In contrast to the standard setting, we allow for different
detuning of the two fields with respect to the atomic transi-
tion frequency �21. The measured quantity is the transmis-
sion probability of excited atoms, P12, as a function of the
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1For trapped ions, though, the single-pulse Rabi scheme may be

preferred to the Ramsey scheme; see, e.g., �15�.

2For a waveguide width of 100 nm and for cesium, the energy gap
to the first transversely excited state is �E=2���0.113 MHz.
Now, a minor modification of Ref. �11� to incorporate
detuning shows that excitation mainly occurs at the “Rabi reso-
nances” ���2+	2�1/2=�E, where � is the Rabi frequency and
	=�−�21 denotes the detuning between laser frequency and
atomic transition frequency. For Rabi frequencies of the order of
2��0.016 MHz one therefore would have a detuning range
	�2�� �−0.11–0.11� MHz for which transversal excitation can
be neglected.
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detuning 	 j =� j −�21, j=1,2, where � j is the frequency
of the jth field. The Hamiltonian describing the moving
atom and the field reads in the dipole and rotating-wave
approximation and in the Schrödinger picture

H�t� =
p̂2

2m
+ ��21�2��2� + 	

j=1,2

�� j�x̂�
2

��1��2�ei�jt+i
j + �2�

��1�e−i�jt−i
j� , �1�

where � j�x�, j=1,2, are the Rabi frequencies of the two
spatially localized fields, 
1 and 
2 are their phases at t=0,
and the caret is used to distinguish operators from the corre-
sponding c numbers. Note that for �1��2 there is no inter-
action picture for which this time-dependent Hamiltonian
can be made time-independent, as it is the case for �1=�2.

In the atom-adapted interaction picture with
H0=��21�2��2� one has

HI�t� =
p̂2

2m
+ 	

j=1,2

�� j�x̂�
2

��1��2�ei	jt+i
j + �2��1�e−i	jt−i
j� .

�2�

In this interaction picture, the atom-field interaction is zero
between the fields and therefore we will favor it for the
calculation of P12.

III. SEMICLASSICAL SOLUTION OF THE SCHRÖDINGER
EQUATION

For fast enough particles, i.e., for kinetic energies
E=mv2 /2=�2k2 /2m much larger than �� and �	 j, the
center-of-mass motion of the atom can be treated classically
and independently of the internal dynamics �12�. Within that
approximation, the two-component wave function ��I�t��
which accounts for the internal dynamics in the interaction
picture is a solution of the internal Schrödinger equation

i�
d

dt
��I�t�� = HI

scl�t���I�t�� , �3�

where

HI
scl = 	

j=1,2

���x0 + vt�
2

��1��2�ei	jt+i
j + �2��1�e−i	jt−i
j�

�4�

and x0�0 is the position of the atom at time t=0. In the
following, we consider the internal dynamics for a given
kinetic energy E, i.e., for a single atom whose center of mass
follows the classical trajectory x�t�=x0+vt. We denote by t0
the time of the first interaction with the leftmost field,
t0=−x0 /v. This treatment neglects initial uncertainties in po-
sition and momentum. The general case with an initial posi-
tion and momentum distribution leads to a distribution of
entrance times t0 and it is considered later in Sec. VI.

The solution of Eq. �3� is given in terms of the evolution
operator UI�tf , ti�,

��I�tf�� = UI�tf,ti���I�ti�� , �5�

where UI�tf , ti� satisfies

i�
d

dt
UI�tf,ti� = HI

scl�tf�UI�tf,ti� ,

UI�ti,ti� = U�ti,ti� = 1̂. �6�

To obtain analytical results, we consider mesa mode func-
tions for the two fields, �1�x�=� for 0
x
 l and zero
elsewhere and �2�x�=� for l+L
x
2l+L and zero else-
where. However, by a numerical integration of Eq. �6� we
have shown the stability of the results with respect to more
realistic, smooth field shapes.

In the field-free regions the Hamiltonian in the interaction
picture is zero and thus the evolution operator is unity.
Within the jth field, the solution of Eq. �6� is given by

UI
�j��tf,ti� =
ei	j�tf−ti�/2�cos�� j��tf − ti�

2

 −

i	 j

� j�
sin�� j��tf − ti�

2

� −

i�

� j�
ei	j�tf+ti�/2ei
j sin�� j��tf − ti�

2



−
i�

� j�
e−i	j�tf+ti�/2e−i
j sin�� j��tf − ti�

2

 e−i	j�tf−ti�/2�cos�� j��tf − ti�

2

 +

i	 j

� j�
sin�� j��tf − ti�

2

�� ,

�7�

where the effective Rabi frequencies � j�= ��2+	 j
2�1/2,

j=1,2, have been defined, and �1��� 1
0

�, �2��� 0
1

�.
Now assume that at time t= t0 the atom, given initially by

��I�t0��= �1�, interacts with the first field for a time �= l /v,
evolves freely for a time T=L /v, and finally interacts with
the second field for another time �. Thus, the final internal
state is

��I�t0 + 2� + T�� = UI
�2��t0 + 2� + T,t0 + � + T� � UI

�1��t0 + �,t0�

����t0�� . �8�

This yields for the probability of a transmitted excited state
our general result
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P12�	1,	2� = ��2��I�t0 + 2� + T���2

= �sin��2��

2
��cos��1��

2
� −

i	1

�1�
sin��1��

2
�


�
�

�2�
+ e−i�	1−	2��t0+��ei	2Tei
 sin��1��

2
�

� �cos��2��

2
� +

i	2

�2�
sin��2��

2
�
 �

�1�
�2

, �9�

where 
=
2−
1 is the phase difference between the two
fields at t=0 �termed simply the “phase” hereafter�. Note that
P12�	1 ,	2� is periodic in the entrance time t0 with period
2� / �	1−	2�.

As a check we consider the limit of equal detuning,
	1=	2��, ��= ��2+�2�1/2, leading to

P12��,�� =
4�2

��2 sin2����

2
��cos����

2
�cos��T + 


2
�

−
�

��
sin����

2
�sin��T + 


2
�
2

, �10�

which is independent of t0 and coincides with the
well-known result obtained by Ramsey �1�.

For the sake of accuracy of the measurement it is impor-
tant to study possible effects related to an imperfect control
of t0 and 
. First of all, the phase 
 may show fluctuations.
Therefore we also consider the phase-averaged expression

�P12�	1,	2��
 = �
−�

�

d
 g�
�P12�	1,	2� , �11�

where g�
� is the distribution of 
. For a random, homoge-
neously distributed phase over the interval �−w
 ,w
�, one
has g�
�= �2w
�−1 for 
� �−w
 ,w
� and zero otherwise.
Then the integration can be performed analytically and it
leads to a factor of sin�w
� /w
 which multiplies the cross
terms of Eq. �9�. For w
=0 one recovers Eq. �9� with 
=0,
but for larger values of w
 the cross terms are damped and
the visibility of the interference pattern decreases.

In addition to phase fluctuations, one deals in general with
an initial momentum and position distribution of the incom-
ing atoms, such that t0 is not completely fixed by the distance
between the source and the first field and becomes a random
variable with a distribution. Its influence on the interference
pattern is studied in Sec. VI.

IV. AVERAGE AND RELATIVE DETUNING

Let us assume that the two oscillator frequencies are
�1,2=�±	. We call �=�−�21= �	1+	2� /2 the average de-
tuning and 	= �	2−	1� /2 the relative detuning. The addi-
tional parameters 	 and t0 lead to new effects in the interfer-
ence pattern that may be used to adjust � to the nominal
atomic frequency �21, i.e., to find the point �=0. The plot of
P12��−	 ,�+	� as a function of � and 	 for fixed values of
t0 and for w
=0 shows a regular pattern of maxima and
minima �Figs. 2�a� and 3�a��. A cut in the 	=0 plane would
give back the usual Ramsey pattern P12�� ,�� �see Eq. �10��
but for any other value of 	 the fringes are shifted. An in-
teresting feature is that for increasing values of the entrance
time t0 the fringe pattern becomes tilted and narrower with
respect to 	. The slope S of the lines of maxima of the
pattern can be determined from the condition �	P12��−	 ,�
+	�=0. Solving this equation in first order of 	 and � yields
for the slope, with 
=0,

S = �4�� �cot���/2� − sin����� − 8 cos���� − �T + 2�t0

+ ���2�2�1 + cos���������T + 2�t0 + ��� � ��T

+ �T cos���� + 2 sin������−1. �12�

t

|1
|2

x
0 l l + L 2l + L

t0 + τ t0 + τ + T t0 + 2τ + T

ω1, φ1 ω2, φ2

t0

FIG. 1. Scheme of the Ramsey atom interferometer. The lower
axis displays the position of the field edges, whereas the upper axis
gives the corresponding instants of time for the classical trajectory
of the moving atom.
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FIG. 2. �a� Contour plot of P12��−	 ,�+	� for w
=0, t0=0,
�=1, T=5, �=� / �2��. White color corresponds to a value of 1
whereas black corresponds to 0. The straight gray line visualizes the
slope S of the pattern, given by Eq. �12�. �b� Two cuts of for �=0
and 0.3. For all plots we use dimensionless units with �=m=1.
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This expression reproduces the actual slope perfectly as can
be seen from Figs. 2�a� and 3�a�.

A plot of P12��−	 ,�+	� as a function of the relative
detuning 	 and for fixed average detuning � is shown in
Figs. 2�b� and 3�b� for two different values of t0 and for
w
=0. This pattern becomes centered at 	=0 if �=0. Thus,
by observing the central peak shift from 	=0, given by � /S,
one may decide whether the average detuning � is zero or
not. By increasing t0 the fringes with respect to 	 become
narrower and the determination of the shift is easy even for a
poor resolution of P12.

Next, we study the effect of w
�0, i.e., of a random and
homogeneously distributed phase between −w
 and w
. It
can be seen from Fig. 4 that this leads to the above men-
tioned reduction of the visibility of the fringes. The position
of their maxima as well as their widths remain the same. For
w
=�, corresponding to a totally homogeneous phase distri-
bution, the pattern would be completely suppressed, but we
emphasize that quite large phase uncertainties �e.g.,
w
=1.0� still lead to excellent visibility of the pattern.

V. THE SYMMETRICAL DETUNING CASE

To understand better the role of t0, we shall restrict this
section to the resonance condition �=0. The only difference
from the general case ��0 is a shift of the pattern as has
been discussed above. We shall also assume w
=0 within
this section. According to Eq. �9� one finds

P12�− 	,	� =
4�2

��2 sin2����

2
�cos2�	�t0 + � + T/2��

� �cos2����

2
� +

	2

��2 sin2����

2
�
 . �13�

We plot P12�−	 ,	� in Fig. 5�a� as a function of 	 and t0. The
interference pattern with respect to 	 becomes narrower if
the initial entrance time t0 is increased. This may appear
astonishing at first sight since we expect periodicity in t0. As
is shown in Fig. 5�b�, P12 is indeed periodic in t0 for fixed
relative detuning 	, but with a detuning-dependent period
� / �	�, leading for increasing t0 to a narrower pattern as a
function of 	. An estimate for the width of the central fringe
is obtained if one expands P12�−	 ,	� in a series around
	=0. Assuming a � /2 pulse for the fields, �=� / �2��, this
gives P12�−	 ,	�=1− �T+2�t0+���2	2 /4+O�	3�, such that
the first zeros of the pattern are approximately given by

	0
± � ±

2

T + 2�t0 + ��
. �14�

The central width is inversely proportional to the sum of the
intermediate crossing time T and the entrance time t0. Basi-
cally, the narrowing is an effect of relative phase differences
between the fields. Note the roles of t0 and T in Eq. �14�: first
of all, t0 is twice as efficient as T to produce a desired width;
moreover t0 is the time for free flight of ground-state atoms,
whereas T is a free-flight time for atoms with excited
components, which are amenable to decay.

VI. ATOMIC CLOUDS

Up to now, the monochromatic case with a fixed entrance
time t0 has been considered. In general, for an incoming
cloud of atoms, the entrance and crossing times for the indi-
vidual atoms will be different, and one has to integrate P12
over all possible classical trajectories, weighted by a phase
space distribution W�x ,k�. We assume here that W�x ,k ; t�
describes a minimum uncertainty packet when its center
impinges the origin x=0 at time t= t0

c,
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FIG. 3. �a� As in Fig. 2�a�, but for t0=10. �b� Two cuts of �a� for
�=0 and �=0.3.
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FIG. 4. Phase-averaged interference pattern �P12��−	 ,�
+	��ph given by Eq. �11� for t0=0, �=1, T=5, �=� / �2��. Solid
lines and full symbols correspond to �=0, dashed lines and open
symbols correspond to �=0.3. Parameters of the phase distribution
are w
=0 �circles�, 1.0 �squares�, and 3.0 �triangles�.
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W�x,k;t� =
1

2��x�k
exp�−

�k − kc�2

2��k�2 �
�exp�−

�x − �k�t − t0
c�/m�2

2��x�2 � , �15�

where �x and ��k are the uncertainties of position and
momentum, connected by �x�k=1/2, and �kc is the mean
momentum.

Now, in Eq. �9� one has to replace � by l /v=ml /�k, T by
L /v=mL /�k, and t0 by a varying entrance time, given by
t0
c −x /v= t0

c −mx /�k when x and �k are positions and
momenta at t0

c. Thus, the excitation probability becomes

�P12�� − 	,� + 	�� = �
−�

�

dx dk W�x,k;t0
c�P12�� − 	,� + 	� .

�16�

In this equation, the x integration can be performed analyti-
cally whereas the k integration has to be performed numeri-
cally and the result is shown in Fig. 6 as a function of 	 for
fixed values of � and t0

c. For large 	 the outer fringes are
averaged out, but the central fringes survive and they exhibit

a shift for ��0. The width of these fringes can be controlled
by t0

c, as in the monochromatic case. Other phase-space dis-
tributions may of course be found in practice, but the impor-
tant point is that P12 for �=0 in Eq. �13�, is symmetrical
around 	=0 for any t0, so that the averaging will not induce
undesired frequency shifts.

VII. PHASE-RELATED SYSTEMATIC SHIFTS

The narrowing that may be achieved in the interference
pattern of P12��−	 ,�+	� by sweeping over 	 for each �,
instead of sweeping over � for 	=0 as in the usual Ramsey
method, is quite evident in Fig. 3�a� �compare the horizontal
and vertical cuts�. The narrow 	 pattern may be used in
practice to steer the unknown � until the central peak is
found at 	=0. For 
=0 or for a symmetrical phase average
around 
=0, this corresponds to the resonance condition
�=0 and serves to identify the atomic frequency. There are,
however, different physical effects that shift the central peak
and have to be taken into account. For a practical use of the
proposed two-frequency method, the systematic shifts, or
“frequency offsets,” should not be worse than the ones which
already affect the standard �one-frequency� Ramsey method.

With the help of Eq. �9� we may in particular study sys-
tematic effects in which 
 is not zero or the average of the
distribution of phases is nonzero. In the standard Ramsey
setup this is typically due to the unequal lengths of the arms
of the microwave cavity, and the corresponding offset scales
as �0=−
 /T for ��T �which is assumed to hold hereafter�,
where �0 is the value of � for the central maximum,

(a)

(b)

FIG. 5. �a� Contour plot of P12�−	 ,	� as a function of 	 and t0

for w
=0, �=1, T=5. With increasing t0, the interference pattern
with respect to 	 becomes narrower. The zeros of P12�−	 ,	� at
	� ±6 are independent of t0 and they are given by sin���� /2�
=0 according to Eq. �13�. �b� P12�−	 ,	� as a function of t0 for
	= �0,2.5,5 ,7.5,10�. P12 is periodic in t0 with a period that de-
pends on 	. We emphasize the fact that P12�0,0�=1 independent of
t0 �straight line�, indicating that the central peak remains stable
irrespective of the entrance time.
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FIG. 6. �P12��−	 ,�+	�� as a function of 	 for t0
c = �a� 0 and �b�

10. Other parameters are w
=0, l=1, L=5, kc=1, �k=0.1, �x=5.
The Rabi frequency has been chosen as a � /2 pulse for the mean
velocity, �=�hkc / �2ml�.
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� �P12��,��
��

�
�=�0

= 0.

This scaling can be found by expanding Eq. �10� around
�=0. We may immediately check from the general expres-
sion �9� that the value of � that satisfies

� �P12�� − 	,� + 	�
�	

�
�=�0�,	=0

= 0

at 	=0, which we call �0�, is also shifted by the same amount
for � /2 pulses. If the pulses deviate slightly from the � /2
case, say �=� / �2��+�, the dominant offset is still the same
in both methods �standard Ramsey and two-frequency�,
namely, −
 /T, except for a higher-order difference �0−�0�
proportional to 
��3 /T3. In other words, the two-frequency
method does not aggravate the systematic shift. We have also
performed averages over 
 similar to the ones in Secs. III
and IV, but for displaced phase distributions, not centered at

=0. Figures, not displayed, entirely analogous to Figs. 3
and 4, are observed, affected by the mentioned frequency
offset and, as with centered phase distributions, by a smaller
visibility.

Other systematic dependences might occur: we have also
examined the consequences of a linear relation or chirp be-
tween 
 and 	, 
=
0+b	. The results, however, are the
same as before, with 
0 playing the role of 
 in the expres-
sion for the frequency offset, and b being added to 2t0 with-
out altering the value of �0 or �0� at the central peak in any of
the two methods.

VIII. DISCUSSION

In this paper we have studied the interference fringes in a
Ramsey interferometer where the separated fields have dif-
ferent detuning. The excitation probability P12�	1 ,	2�, de-
rived within a semiclassical picture neglecting quantum re-
flections at the fields depends on the entrance time t0 of the
atom at the first field, and, in addition, on the initial phase
difference 
 of the two fields. Our main result is that the
interference pattern for 
=0 as a function of the relative
detuning 	= �	2−	1� /2 exhibits a shift of the central
maximum if the average detuning � differs from zero. This
shift has been quantified and it may be used to steer an os-
cillator toward the atomic frequency. The advantage of this
approach is that the width of the interference fringes versus
	 can be made very small because it is shown to be inversely
proportional to the entrance time t0.

Additionally, we have studied the effect of possible fluc-
tuations or systematic shifts in the relative phase between the
two fields. Assuming a distribution with some width w


around 
=0, we have shown that all the described features

of the interference pattern remain unchanged and only the
visibility of the fringes decreases for increasing w
. A dis-
placed phase distribution leads to a frequency offset which
does not aggravate the one already present in the ordinary,
one-frequency, Ramsey method. Moreover, we have demon-
strated the stability of the central fringes for a distribution of
velocities and thus of entrance times t0, as in the standard
Ramsey experiment.

The analysis of the experimental design and implementa-
tion of the proposed double-frequency interferometry is be-
yond the scope of this paper, where we have investigated and
predicted from a theoretical perspective the main conse-
quences that can be extracted from the general probability
formula �9� and several fluctuations and averaging effects
that may be expected. The specific experimental setting for
phase, velocity, and frequency field control would determine
their importance, but the preliminary results indicate a
remarkable stability of the positive features of the approach.

In spite of our focus on moving atoms and fields in sepa-
rate regions, we note that the same effects arise for trapped
atoms and time-varying fields. Here, the Rabi frequency in
Eq. �4� has to be replaced by a time-dependent version, but
the general result in Eq. �9� would still hold. Also, it is natu-
ral to set for all trapped atoms t0=0, corresponding to the
switching on of the Ramsey fields, but the narrowing effect
of the free-flight time parameter t0 may be achieved by a
chirp of the form 
=b	 as discussed in the previous section.
For trapped atoms, turning on and off the fields may lead to
transients and deviations from the mesa-shaped fields.3 For
simplicity, we presented only the case of mesa-shaped fields,
but we have performed numerical studies for more realistic
field shapes, used also for Stimulated Rapid Adiabatic
Passage �STIRAP� calculations �13�, and they show similar
results �14�.

As an outlook, it would be worthwhile to investigate the
Ramsey fringes for differently detuned fields beyond the
semiclassical approximation, i.e., taking into account quan-
tum reflections at the fields for very slow �ultracold� atoms.
This has been shown to yield interesting effects with a single
frequency �10�.
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3For moving atoms the temporal transients can be avoided by
sending atomic pulses when a stationary field intensity has been
settled.
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