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We present a general quantum theory capable of describing photon statistics under the combined effects of
four-wave mixing and Raman scattering inside optical fibers. Our theory is vectorial in nature and includes all
polarization effects. Our analysis shows that spontaneous Raman scattering degrades the pair correlation in all
cases but the extent of degradation depends on the pumping configuration employed. In a single-pump con-
figuration, photon pairs can be created with polarization either parallel or orthogonal to the pump. Our results
show that the orthogonal configuration can improve the extent of quantum correlation considerably over a
broad bandwidth. In the case of a dual-pump configuration, we show that imbalance of two pump powers can
be used to improve the quality of photon pairs. We show that orthogonally polarized pumps can generate
photon pairs automatically in a polarization-entangled state. In particular, orthogonal pumping with circular
polarizations produces such an entangled state with relatively high quality. We also quantify the quality of
polarization entanglement as well as energy-time entanglement constructed using correlated photon pairs.

DOI: 10.1103/PhysRevA.75.023803 PACS number�s�: 42.50.Dv, 42.65.Lm, 42.65.Yj, 03.67.Mn

I. INTRODUCTION

Entangled photon pairs are essential for quantum tech-
nologies requiring delivery of quantum information over sig-
nificant distances �1�. Conventionally, such photon pairs are
generated by spontaneous parametric down conversion �2,3�.
Practical implementation of quantum communication re-
quires a photon source with high brightness and relies on its
compatibility with fiber-optic networks �4�. Several tech-
niques based on periodically poled lithium niobate
waveguides �5,6� have been developed to realize such
photon-pair sources.

The phenomenon of four-wave mixing �FWM� occurring
inside optical fibers provides a natural way to generate cor-
related photon pairs in a single spatial mode directly inside
fibers �7–17�. Indeed, FWM has been used to realize polar-
ization �18,19� and time-bin �20� entanglement. Although
FWM in principle can generate correlated photon pairs with
an efficiency higher than other techniques �21–23�, in prac-
tice, the performance of fiber-based photon-pair sources is
severely deteriorated by the phenomenon of spontaneous Ra-
man scattering �SpRS� that accompanies FWM inevitably
�24�. SpRS originates from the retarded molecular response
to the underlying third-order nonlinearity �25,26�, and it
leads to a serious limitation on the available range of photon-
pair frequencies and the degree of quantum correlation
�7–17�.

Existing theories cannot describe the impact of SpRS on
photon-pair correlation because of a complete neglect of the
Raman contribution �21–23�. For this reason, empirical fit-
ting is widely used for the experimental data �7–17�. As
FWM becomes a promising way toward creating fiber-based
correlated photon sources, it is important to develop a gen-
eral theory that can explain the experimental data and pro-
vide guidance for improving the performance of such
sources. In this paper, we develop a general quantum theory
capable of describing photon statistics under the combined
effects of FWM and Raman scattering inside optical fibers,

including both the spontaneous and stimulated contributions.
Preliminary results of this study were published recently in
Ref. �27�. Moreover, our theory is vectorial in nature and
includes all polarization effects. We use this theory to quan-
tify the impact of SpRS on photon-pair generation in various
pumping configurations and propose specific schemes for
generating photon pairs with high quality.

This paper is organized as follows. In Sec. II, we present
the general formalism. We apply it in Sec. III to study
photon-pair generation when a single pump beam is
launched into a fiber and consider two situations in which the
photon pair is polarized either parallel or orthogonal to the
pump. Section IV deals with several different dual-pump
configurations including when the two pumps are polarized
either parallel or orthogonal to each other with linear or cir-
cular polarizations. In Sec. V, we investigate the impact of
SpRS on the energy-time and polarization entanglement
schemes. The final section summarizes the main results of
this paper.

II. VECTORIAL QUANTUM THEORY OF FWM

A quantum theory of nonlinear optical phenomenon in
optical fibers has been developed before in the context of
soliton squeezing �28–30�. Working in the Heisenberg pic-
ture with a Hamiltonian that includes the third-order nonlin-
earity, the two polarization components of the field operator

Âi�z ,�� �i=x ,y�, associated with the slowly varying envelope
of the electromagnetic field at the carrier frequency �0, are
found to satisfy �30�

�Âi

�z
= i�

j
�

−�

�

d��Rij
�1��� − ���Âj�z,��� + i��0�

jkl
�

−�

�

d��

�Rijkl
�3� �� − ���Âk

†�z,���Âl�z,���Âj�z,��

+ i���0�
j

m̂ij�z,��Âj�z,�� , �1�
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where Rij
�1� describes the linear dispersive properties of the

fiber including its birefringence and Rijkl
�3� governs various

third-order nonlinear effects.
In Eq. �1�, the field operator is normalized to have a com-

mutation relation of the form

�Âj�z,��,Âk
†�z,���� = � jk��� − ���, j,k = x,y . �2�

In our notation, Âj
†�z ,��Âj�z ,�� represents the operator for

the photon flux for the jth polarization component. Further,
m̂ij is the noise operator resulting from the presence of a
phonon reservoir. Conservation of the commutation relation
for the optical field in Eq. �2� at any point z inside the optical
fiber requires that the Hermitian operator m̂ij satisfy the fol-
lowing commutation relation:

�m̂ij�z,��,m̂kl�z�,���� = i��z − z���Rklij
�3� ��� − �� − Rijkl

�3� �� − ���	 .

�3�

In the case of optical fibers, the third-order nonlinear re-
sponse function has the general form �31�

Rijkl
�3� ��� =

�

3
�1 − fR�������ij�kl + �ik� jl + �il� jk�

+ �fRRa����ij�kl +
�

2
fRRb�����ik� jl + �il� jk� , �4�

where Ra��� and Rb��� are the isotropic and anisotropic parts
of the Raman response, respectively, and fR represents their
fractional contribution to the nonlinear refractive index. The
nonlinear parameter �=n2�0 / �caeff�, where aeff is the effec-
tive mode area �32�. By substituting Eq. �4� into Eq. �3�, the
commutation relation for the noise operator takes the form

�m̂ij�z,��,m̂kl�z�,����

= i�fR��z − z��
�Ra��� − �� − Ra�� − �����ij�kl

+
1

2
�Rb��� − �� − Rb�� − ������ik� jl + �il� jk�� . �5�

The simpler scalar form of Eq. �1� has been successfully
used to describe quantum squeezing in optical fibers
�29,33,34�, timing jitter in communication systems �35�, and
Raman noise in fiber-optic parametric amplifiers �24,36�.
Here we use Eq. �1�, in its most general vector form, to
investigate the impact of SpRS on photon-pair generation
through FWM inside optical fibers. As FWM describes non-
linear interaction among multiple optical waves of different
frequencies, it is more useful to write Eq. �1� in the spectral
domain. Defining the Fourier transform as Âi�z ,��
=�−�

� Âi�z ,��exp�i���d�, we obtain

�Âi�z,��
�z

= i�
j

R̃ij
�1����Âj�z,�� +

i��0

�2��2�
jkl
� � d�1d�2

�R̃ijkl
�3� ��2 − �1�Âk

†�z,�1�Âl�z,�2�

�Âj�z,� + �1 − �2� +
i���0

2�
�

j
� d�1

�m̂ij�z,� − �1�Âj�z,�1� , �6�

where a tilde denotes the Fourier transform and m̂ij�z ,	� is a
Fourier component of m̂ij�z ,�� in Eq. �1�.

It is easy to show from Eq. �2� that the frequency-domain
field operator satisfies the commutation relation

�Âj�z,�u�,Âk
†�z,�v�� = 2�� jk���u − �v� . �7�

In the spectral domain, the commutation relation of the noise
operator given in Eq. �5� takes the form

�m̂ij�z,	u�,m̂kl
† �z�,	v��

= 2���z − z����	u − 	v�

�
ga�	u��ij�kl +
1

2
gb�	u���ik� jl + �il� jk�� , �8�

where ga and gb are Raman gain or loss coefficients corre-
sponding to the isotropic and anisotropic Raman response
functions Ra and Rb, respectively, and they are defined as

ga�	�=2�fR Im�R̃a�	�� and gb�	�=2�fR Im�R̃b�	��. They
are related to the Raman gain measured for linearly copolar-
ized and orthogonally polarized pumps as �31� g
 =ga+gb

and g�=gb /2. Here, R̃
�	� with 
=a ,b is the Fourier trans-

form of R
��� defined as R̃
�	�=�−�
� R
���exp�i	��d�. Since

R̃a�0�+ R̃b�0�=1, the parameter fR represents the fractional
contribution of the Raman response to the nonlinear refrac-
tive index �25,26�.

Equations �6� and �8� represent the main results of this
section. In the following sections, we use them to investigate
photon statistics under different pumping configurations. In
the case of a photon-pair source, the pumps are always much
more intense than the signal and the idler fields. Hence they
can be treated classically and assumed to remain undepleted.
Moreover, in most experimental situations, the pump pulses
are wide enough and fibers are short enough that the
dispersion-induced pulse broadening is negligible. As a re-
sult, the pumps can be assumed to be quasicontinuous such
that Aj�z ,��=Apj�z�2����−�p�, where �p is the pump fre-
quency. For convenience, we renormalize the pump field am-
plitude such that �Apj�2 provides the pump power of the jth
polarization component at �p. As short fibers are generally
used for photon generation, we neglect fiber losses in the
following analysis.

III. SINGLE-PUMP CONFIGURATION

In this section, we focus on the case in which FWM is
induced by a single pump wave launched at �p. Energy con-
servation requires 2�p=�s+�i, where �s and �i are frequen-
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cies of signal and idler photons, respectively. We assume that
the pump is linearly polarized along a principal axis of the
fiber, say, the x axis. It is easy to show �32� that the Kerr
nonlinearity only imposes a phase modulation on the pump
wave such that Apx�z�=Ap��z�, where ��z�=exp�i�kx��p�
+�P0�z	, Ap is the input pump field amplitude, P0= �Ap�2 is

the pump power, and kx��p�� R̃xx
�1���p� is the propagation

constant.

A. Signal and idler evolution

It turns out that the FWM process can be decoupled into
two independent “eigen” processes shown in Fig. 1 such that
the created photon pairs are polarized either �a� parallel or
�b� orthogonal to the pump. Of course, the phase-matching
conditions for these two processes are not the same. The
process �a� is phase-matched in practice through fiber disper-
sion by appropriately locating the pump wavelength. In con-
trast, the process �b� is affected by fiber birefringence �32�.
We discuss the phase-matching issue in more detail in Sec.
III D.

If we use �=�s in Eq. �6� and retain only the first order
terms at this frequency and at its conjugate frequency �i
=2�p−�s, we obtain the Heisenberg equations for the two
polarization components of the signal in the form

�Âj�z,�s�
�z

= i�kj��s� + �� j�	sp�P0�Âj�z,�s�

+ i�
 j�	sp�Apx
2 Âj

†�z,�i� + iApxm̂jx�z,	sp� ,

�9�

where j=x ,y for the process of Figs. 1�a� and 1�b�, respec-

tively, kj��s�= R̃jj
�1���s� is the propagation constant at fre-

quency �s, and 	sp=�s−�p is the signal-pump frequency
separation. The idler equation can be obtained by exchanging
the subscripts s and i.

The complex quantities �x and �y take into account the
nonlinear phase shift produced by the pump through cross-
phase modulation as well as the effects of Raman scattering.
They are given by

�x�	sp� = 2 − fR + fRR̃a�	sp� + fRR̃b�	sp� , �10�

�y�	sp� = 2�1 − fR�/3 + fRR̃a�0� + fRR̃b�	sp�/2. �11�

The Raman effects enter through R̃a and R̃b, as discussed in
Sec. II. In the absence of Raman contribution �fR=0�, �x=2
and �y =2/3, as expected from the standard theory of cross-
phase modulation �32�. Also note that �x�0�=2 even when

Raman contribution is included because R̃a�0�+ R̃b�0�=1.
The FWM efficiency is related to 
 j and is different for

the two eigenprocesses. More specifically,


x�	sp� = �1 − fR� + fRR̃a�	sp� + fRR̃b�	sp� , �12�


y�	sp� = �1 − fR�/3 + fRR̃b�	sp�/2. �13�

In practice, the first term dominates, indicating that copolar-
ized FWM is roughly three times more efficient than the
orthogonally polarized one. For this reason, most recent ex-
periments have focused on the copolarized configuration
�7–16�. However, this approach has a serious drawback be-
cause SpRS is also maximized when the signal and idler are
copolarized with the pump. Moreover, the Raman process
also changes the refractive index through the Kramers-
Kronig relation and thus affects the FWM efficiency �26�.
The magnitude of 
x decreases by about 20% when the sig-
nal is detuned far beyond Raman gain peak. In contrast, 
y
exhibits much less dependence on 	sp because of relatively
small Raman scattering from the orthogonally polarized
pump. This will be discussed in detail in the following sub-
sections.

Equation �9� in combination with the corresponding idler
equation can be solved analytically because of their linear
nature. The resulting solution for the signal amplitude at the
end of a fiber of length L is given by

Âj�L,�s� = �� j�L,�s�Âj�0,�s� + � j�L,�s�Âj
†�0,�i�

+ N̂j�L,�s����L� , �14�

where the first two terms are due to FWM but the last one
describes the impact of Raman scattering. The coefficients
appearing in this equation are given by �32�

� j�L,�s� = �cosh�gjL� + �i� j/2gj�sinh�gjL��eiKjL, �15�

� j�L,�s� = �i�
 j/gj�Ap
2 sinh�gjL�eiKjL, �16�

N̂j�L,�s� = i�
0

L

m̂jx�z,	sp��Ap� j�L − z,�s�

− Ap
*� j�L − z,�s��dz , �17�

where the parametric gain coefficient gj is given by gj
2

= ��
 jP0�2− �� j /2�2 and Kj = �kj��s�−kj��i�� /2. Further, the
extent of phase mismatch is governed by

� j = kj��s� + kj��i� − 2kx��p� + 2�P0�� j − 1� . �18�

In practice, the signal and idler fields are filtered spec-
trally to limit their bandwidth using an optical filter. The
filtered field can be written as

Âuj�z,�� =
1

2�
�

−�

�

Hu�� − �̄u�Âj�z,��exp�− i���d� ,

�19�

where Hu��− �̄u� is the filter transmission function centered
at �̄u �u=s , i� and assumed to be polarization independent. In

ωp

ωsωi

ω

ωp
ωsωi

ω

FIG. 1. Illustration of the relative frequencies and polarizations
for the pump, signal, and idler in the single-pump configuration.
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the following discussion, we denote the signal as the anti-
Stokes wave and assume �̄s��p. The idler field then lies, by
definition, on the Stokes side of the pump.

B. Photon-pair generation rate

As the two FWM processes in Fig. 1 have the same form
of solution, we simplify the following analysis by dropping
the polarization subscript j in Eqs. �14�–�19�. The two cases
shown in Fig. 1 can be compared by choosing the appropri-
ate form of � j, 
 j, � j, and gj with j=x or y. The generation
rate of photon pairs is related to the photon flux Iu, defined as

Iu��Âu
†�L ,��Âu�L ,���, where u=s for signal photons, u= i

for idler photons, and the angle brackets denote average with
respect to the vacuum input state and a thermally populated
phonon reservoir. Such an average can be performed analyti-
cally and results in the following expression:

Iu =
1

2�
�

−�

�

�Hu�2���u�2 + N�	up�sgn�	up�

� �1 + ��u�2 − ��u�2�	d�u, �20�

where Hu�Hu��u− �̄u�, �u���L ,�u�, �u���L ,�u�,
sgn�	uv�= ±1 depending on the sign of 	uv, and

N�	uv� = 
n�	uv� when 	uv � 0,

n�	uv� + 1 when 	uv � 0.
� �21�

Here n�	uv�= �exp���	uv� /kBT�−1�−1 is the phonon popula-
tion at frequency 	uv=�u−�v and at temperature T. As the
magnitude of � in Eq. �16� is determined by the phase-
matching condition, photon flux peaks at the location where
this condition is satisfied.

Equation �20� is quite general as it includes both the spon-
taneous and stimulated processes. For correlated photon-pair
generation, the pump power is kept low enough that �P0L
�1 to prevent stimulated scattering. Moreover, the filters
have a bandwidth much narrower than the phase-matching
bandwidth and are positioned at the center of the phase-
matching window where Re����0. In this case, Eq. �20�
reduces to

Iu = ��u���P0
uL�2 + P0L�gR�Nup� , �22�

where 
u, gR, and Nup are calculated at the frequency 	̄up
= �̄u−�p �u=s , i� and the filter bandwidth ��u is defined as
��u=��Hu��− �̄u��2d� /2�. Further, gR=g
 and g� for the
processes shown in Figs. 1�a� and 1�b�, respectively.

When pump pulses of duration of �p at a repetition rate of
B are used �for a continuous pump, �pB=1�, the photon
counting rate is related to Iu as Ru= ��u�pB�Iu �21�, where �u

is the detection efficiency. As expected, the photon counting
rate consists of two terms: One originates from FWM and
grows quadratically with both pump power P0 and fiber
length L; the other is due to SpRS and grows only linearly
with the product P0L.

Figure 2 shows the normalized photon flux, defined as
I� /���, at a typical pumping level of �P0L=0.1. This value
corresponds to a 1.25 GHz photon flux created by FWM

with a continuous-wave pump and a 1 nm filter at 1550 nm.
The fiber parameters used in the 1550 nm regime are n2
=2.6�10−20 m2/W, a peak Raman gain of 0.62
�10−13 m/W �32,37,38�, and a temperature of T=300 K.
The Raman spectra are taken from Ref. �25�. The photon pair
is assumed to be copolarized with the pump. When

�	̄up� /2��1 THz, the phonon population n�	̄up��1 and
SpRS generates a similar amount of signal and idler photons.

When �	̄up� /2��4 THz, n�	̄up��1 and SpRS creates much
more noise photons on the idler �Stokes� than the signal
�anti-Stokes�. Moreover, below 15 THz frequency detuning,
SpRS noise photon flux is significantly larger than that cre-
ated by FWM in both signal and idler, especially in the low-
frequency regime. It is negligible for the signal detuned be-
yond 15 THz, but it still contributes considerably to the idler
located on the Stokes side. Although the dominance of SpRS
can be reduced by increasing the pump power, this approach
reduces the photon-pair quality significantly because of an
increase in stimulated FWM �see next section�. For this rea-
son, SpRS remains a dominant degradation source for the
correlated photon pairs generated within the Raman gain
bandwidth.

C. Self- and cross-correlation coefficients

An important way to characterize the quality of a photon-
pair source is the degree of quantum correlation, given by the
ratio between the true coincidence counting and the acciden-
tal one. Consider first the self-correlation coefficient of the
signal �or idler� photons defined as �39�

�u��� = �Âu
†�L,t�Âu

†�L,t + ��Âu�L,t + ��Âu�L,t��/Iu
2 − 1,

�23�

where u=s and i for the signal and idler photons, respec-
tively. As before, the average can be calculated analytically
using Eqs. �14�–�19� to yield

FIG. 2. Normalized photon flux as a function of pump-signal
detuning. The solid and dashed curves show photon flux for idler
�Stokes� and signal �anti-Stokes�, respectively. The two fluxes are
the same �thin dotted curve� when they are created by FWM alone
�the first term in Eq. �22��.
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�u��� =
1

�2�Iu�2��
−�

�

�Hu�2���u�2 + N�	up�sgn�	up�

��1 + ��u�2 − ��u�2��e−i�u�d�u�2

. �24�

For optical filters with a bandwidth much narrower than
the phase-matching bandwidth, �u and �u can be treated as
constant. In this case, the self-correlation coefficient reduces
to a remarkably simple expression �u���= ��u����2, where
�u��� is the autocorrelation function of the filter response
defined as

�u��� =
1

2���u
�

−�

�

�Hu��u − �̄u��2e−i�u�d�u. �25�

It is easy to show that �u�����u�0�=1. Thus the signal as
well as the idler photons exhibit the bunching effect, irre-
spective of whether they are created through FWM or SpRS.
This is expected as spontaneously generated photons are of a
thermal distribution for individual signal �or idler� wave
�1,39,60�. Indeed, their thermally distributed nature is di-
rectly reflected in Eq. �24�, which can be written in the

simple form �u���= ��Âu
†�L , t+��Âu�L , t���2 / Iu

2.
Because of the photon-bunching feature of spontaneous

scattering �for both FMW and SpRS�, a Hanbury-Brown–
Twiss type experiment performed for measuring self-
correlation cannot be used to test the dominance of single
photons or to show the existence of SpRS. Note that the
self-correlation is also independent of pump power when
narrow band filters are used. The decrease in the experimen-
tally recorded values at low pump powers observed in Ref.
�16� is likely due to dark counting.

Although photons generated by FWM as well as SpRS
follow a thermal distribution, FWM-generated signal pho-
tons are strongly correlated with the idler photons but SpRS-
generated ones are not, since FWM-created photons are in a
two-mode squeezed state �39,60�. This quantum correlation
between the signal and idler photons is quantified by the
cross-correlation coefficient defined as �39�

�c��� = �Âi
†�L,t�Âs

†�L,t + ��Âs�L,t + ��Âi�L,t��/�IsIi� − 1,

�26�

where �Âi
†�L , t�Âs

†�L , t+��Âs�L , t+��Âi�L , t�� is the biphoton
probability of the signal-idler pair. By using Eqs. �14�–�17�,
the pair correlation in its most general form is given by

�c��� =
1

�2��2IsIi
��

−�

�

H��s���i�s + N�	sp�sgn�	sp�

���i�s − �s�i��e−i�s�d�s�2

, �27�

where H��s��Hs��s− �̄s�Hi��i− �̄i� with �i=2�p−�s. As
the magnitudes of � and � are maximized when the FWM
efficiency is maximum, �c peaks when the center frequencies
of the two filters are tuned to the centers of the phase-
matched spectral window with �̄s+ �̄i=2�p. The magnitude

of �c decreases when either filter is detuned away from this
condition, as also observed experimentally in Refs. �15,16�.
It turns out that Eq. �27� can be written in a simple form of

�c���= ��Âs�L , t+��Âi�L , t���2 / �IsIi�. This is a direct result of
the thermally distributed nature of spontaneous scattering.

The general expression in Eq. �27� can be used to find the
quantum correlation under low-power conditions such that
�P0L�1. Far from the phase-matching condition ���kL�
�1�, FWM becomes negligible, and SpRS dominates. In this
case, Eq. �27� reduces to

�c��� = ��c����2� sin��kL/2�
�kL/2

�2�2�Re�
s�/gR�2 + �n + 1/2�2

n�n + 1�
,

�28�

where �k=k��s�+k��i�−2k��p� is the linear phase mis-
match and �c��� is the cross-correlation of the two filter re-
sponses defined as

�c��� =
1

2����s��i
�

−�

�

Hs�� − �̄s�Hi��̄s − ��e−i��d� .

�29�

Clearly, �c→0 for ��kL��1, indicating independent creation
of the signal and idler photons. This is expected in view of
the fact that they are generated from thermal phonon states.

To generate correlated photon pairs, the signal and idler
are tuned to the phase-matching peak. Equation �27� in this
case reduces to

�c��� =
��c����2��� Re�
s��2 + �gR�n + 1/2��2	

���
s�2P0L + �gR��n + 1�����
s�2P0L + �gR�n�
.

�30�

The pair correlation decreases with increased pump power
because of an increased probability of multiphoton genera-
tion, as observed experimentally �10,15,16�. SpRS intro-
duces considerable accidental coincidence counting and thus
reduces the correlation magnitude. For a pure FWM process
without SpRS, 
s is real and the pair correlation reduces to
�c���= ��c����2 / ��
sP0L�2.

D. Comparisons of the two processes in Fig. 1

Figure 3 shows �c�0� as a function of pump-signal detun-
ing for the two polarization configurations of Fig. 1 at a
typical pumping level of �P0L=0.1, assuming an identical
shape for the two optical filters so that ��c�0��2=1. As men-
tioned earlier in a previous section, the FWM efficiency is
reduced roughly by a factor of 3 in the case of orthogonal
configuration. For a fair comparison of the two configura-
tions, we increased the input pump power P0 by a factor of 3
in the orthogonal case to ensure that FWM creates nearly the
same number of photons in the two cases.

Several conclusions can be drawn from Fig. 3. In general,
SpRS degrades pair correlation over a broad spectral range
extending from 0 to 40 THz when the photon pair is copo-
larized with the pump �dashed curves�. Even when the signal
is close to the pump �frequency detuning �1 THz� and is far
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away from the Raman peak, pair correlation is reduced by
more than 50%, compared with a pure FWM process �thin
dashed curve�, because of high phonon population around
this region. For example, Eq. �30� shows that pair correlation
is about 12 at a frequency detuning of 0.5 THz for a typical
value of �P0L=0.15 but it reduces to 3.5 when �P0L in-
creases to 0.4, indicating that the recent experiments in this
regime are operating close to the fundamental limit set by
SpRS �9,10,15�. For frequency detunings �2 THz, the mag-
nitude of copolarized Raman gain grows rapidly and leads to
more SpRS-created idler photons, even though SpRS creates
less signal photons because of a reduction in the phonon
population �see Fig. 2�. As a result, the accidental coinci-
dence counting rate becomes large in the copolarized case
�dashed curves�, and the correlation drops to a rather low
value over a broad spectral range extending from
2 to 15 THz. This degradation is a direct consequence of the
enhanced SpRS in the copolarized configuration of Fig. 1.

As seen in Fig. 3, �c�0� increases to high values when the
signal is detuned far beyond the Raman-gain peak �but with
an �40% reduction in the FWM-generated photons because
of a Raman-induced decrease in the FWM efficiency; see
Fig. 2�. SpRS has only a minor effect in this spectral region.
For example, near 30 THz, �c�0� varies from 39 to 138 for
�P0L in the range of 0.1–0.2; it can be increased to 450
when �P0L is decreased to 0.05. For this reason, several
experiments have been designed to operate in this regime
�11,12,16�. As an example, consider the data of Ref. �16�.
With a pump-signal detuning of 28 THz near 735 nm, Eq.
�30� shows that ��0�=2105, 42, and 17 for �P0L=0.0155,
0.19, and 0.31, respectively �corresponding to average power
levels of 0.05, 0.6, and 1 mW in Ref. �16�, respectively�.
These values are higher than the experimentally measured
correlation of 300, 23, and 10 at these power levels, implying

the possibility of further experimental improvement in this
spectral regime.

A relatively large difference between the theoretical and
experimental values of �c�0� at the lowest power level can be
attributed to dark counting that tends to dominate at low
photon-detection rates �20�. In practice, the photon counting
rate is given by Ru�=Ru+Rdu �u=s , i�, where Rdu is the dark
count rate. The presence of dark counts increases the acci-
dental coincidence counting rate given by Rac��0�
=��0

�0+�cRs�Ri�d�, where �c is the coincidence time window.
However, it does not affect the true coincidence counting rate
provided by Rtc��0�=�s�i�pB��0

�0+�cIsIi�c���d�. The experi-
mental recorded value �c���� is the ratio Rtc /Rac. If the real
photon detection rate dominates �Ru�Rdu�, �c� would be
close to �c given in Eqs. �27� and �30�. However, if Ru
�Rdu at low pump levels, �c� would be significantly lower
than �c.

Figure 3 shows that high-quality photon pairs can be gen-
erated with copolarized FWM only when the signal is far
from the pump �detuning �20 THz�. However, the quality of
photon pairs can be maintained at a high level over a broad
spectral region below 20 THz when they are generated with
polarization orthogonal to the pump �solid curves�. This im-
provement is due to the fact that the Raman gain is almost
negligible in the orthogonal configuration �25�, a feature that
improves �c�0� considerably. The most improvement occurs
in the detuning range of 5 to 15 THz, the same range where
the copolarized configuration is the worst. Near the copolar-
ized Raman-gain peak close to 13 THz, the quantum corre-
lation can be increased from a value of 7 to more than 60 for
�P0L=0.1. The negligible Raman scattering not only reduces
SpRS dramatically in this configuration, but also introduce
much less dispersion on nonlinear refractive index and thus
has much less impact on FWM efficiency, leading to a
FWM-created photon flux nearly independent of frequency
detuning. This can be seen by the pair correlation for the
pure FWM �thin solid curve�, which exhibits much less fre-
quency dependence compared with the copolarized process
�thin dashed curve�.

In practice, phase matching in the orthogonal configura-
tion of FWM �Fig. 1�b�� can be realized using low-
birefringence fibers �40,41�. Equation �18� shows that the
phase mismatch depends on both the birefringence and even-
order dispersion parameters at the pump frequency as

�y = ky��s� + ky��i� − 2kx��p� + 2�P0��y − 1�

=
2�p

c
�n + 2�

m=1

�
�2m	sp

2m

�2m�!
+ 2�P0��y − 1� , �31�

where �n=ny��p�−nx��p� is the birefringence and �2m is the
�2m�th-order dispersion parameter at �p along the y axis. In
the low-power regime, the nonlinear phase shift �last term�
has a negligible effect on the phase-matching condition. Fig-
ure 4 shows examples of phase-matched pump-signal detun-
ing as a function of pump wavelength for fibers with differ-
ent magnitudes of birefringence using �3=0.06541 ps2 /km,
�4=−1.0383�10−4 ps4 /km, �5=3.3756�10−7 ps5 /km, �6
=−1.1407�10−10 ps6 /km, and �=23 W−1/km at the zero-

FIG. 3. Pair correlation �c�0� versus pump-signal detuning, as-
suming perfect phase matching and using the same parameter val-
ues used for Fig. 2. The dashed and solid curves show the cases in
which photons are copolarized and orthogonally polarized to the
pump, respectively. The two thin curves show for comparison the
case when FWM acts alone �no SpRS�. A slight difference between
them is due to different Raman-induced changes to n2.
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dispersion wavelength of 1038 nm �42�. Clearly, the phase-
matching condition can be satisfied for a variety of pump-
signal detunings by tuning the pump wavelength and pump
polarization. Note that conventional fibers with random bire-
fringence cannot be used for realizing the orthogonal con-
figuration because the polarizations of the pump, signal, and
idler change in a random manner when a long fiber is em-
ployed �43,44�. In practice, a fiber with random birefringence
can be used only if its length is shorter than the birefringence
correlation length.

In this case of an orthogonally polarized FWM process
�Fig. 1�b��, SpRS still creates noise photons that are copolar-
ized with the pump, but this noise background can be re-
moved by simply placing polarizers oriented orthogonal to
the pump before the signal and idler photons reach the de-
tectors. It is important to stress that, although the signal and
idler fields are polarized orthogonal to the pump polarization,
their spectra remain symmetric, as dictated by the phase-
matching condition in Eq. �31�. Thus our proposed scheme
does not suffer from the distinguishability induced by spec-
tral asymmetry when type-II phase matching is used for
��2�-based devices �45,46�. One issue that needs to be ad-
dressed is the amount of walk off between the pump and
signal or idler; it can be controlled in practice by using
longer pump pulses.

E. Effect of fiber temperature

Equations �22� and �30� show that the SpRS-created noise
photon and its impact on pair correlation are both related to
the phonon population, which strongly depends on fiber tem-
perature. Hence SpRS can be significantly reduced by cool-
ing the fiber, as recently demonstrated in experiments
�13,14�. Figure 5 shows pair correlation at three tempera-
tures. As phonon population inversely exponentially depends
on pump-signal frequency detuning, it has a large effect at

low frequency detuning, leading to strong temperature de-
pendence below 5 THz. By reducing the fiber temperature to
that of liquid nitrogen at 77 K, pair correlation can be en-
hanced by up to five times around this regime. However, it
has negligible effect when frequency detuning is large.
Moreover, SpRS cannot be completely eliminated by reduc-
ing the temperature. This can be seen by the curves at zero
temperature, where SpRS still remains a significant effect
over a broad spectral region. This is because SpRS for the
idler at the Stokes side is dominantly coupled to the ground
state of the phonon, which always introduces noise photons
irrespective of fiber temperature, although SpRS can be
nearly eliminated for the signal at the anti-Stokes side.

IV. DUAL-PUMP CONFIGURATION

One advantage of FWM in optical fibers compared with a
��2�-based process is that it allows for the use of two pumps
with different frequencies and polarization states, which pro-
vides more quantum functionalities. In fact, a dual-pump
configuration is used routinely for classical, fiber-based,
parametric amplification and wavelength conversion
�47–50�. When the pumps are copolarized, the dual-pump
configurations, shown schematically in Fig. 6, may offer
some advantages. For example, unlike the single-pump con-
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FIG. 4. Phase matching curves as a function of pump wave-
length. The pump launched at the slow axis ��n�0� for solid
curves and along the fast axis ��n�0� for dashed curves. Fiber
dispersion is assumed to be the same for both axes.

FIG. 5. �Color online� Pair correlation �c�0� versus pump-signal
detuning for several fiber temperatures, assuming perfect phase
matching and using fiber parameters used for Fig. 2. The dashed
and solid curves show the copolarized and orthogonally polarized
cases, respectively. The two thin curves show the case of pure
FWM �no SpRS�.
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FIG. 6. Configuration with linear pump polarizations parallel to
each other. The signal and idler photons are �a� distinguishable or
�b� indistinguishable on the basis of their frequencies.
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figuration in which the signal and idler photons are always
created on opposite sides of the pump frequency, and are
thus distinguishable on the basis of their frequencies, two
photons can be created at the same frequency by placing a
filter at the center frequency of the two pumps �15� �see Fig.
6�b��.

When two separate pump beams are used, it becomes pos-
sible to align the polarizations of two pumps orthogonal to
each other, as shown schematically in Fig. 7. This scheme is
often used for polarization-independent operation of a clas-
sical parametric amplifier �47,49�. Because of a spin-
conservation requirement for the four interacting photons,
the signal and idler photons must also be orthogonally polar-
ized, although their individual state of polarizations �SOPs�
can be arbitrary �51�. This feature provides a simple way to
realize polarization entanglement automatically. In this sec-
tion, we investigate the general case in which two pumps are
launched into an optical fiber for creating correlated photon
pairs. We focus on three typical pumping configurations
where the two pump SOPs are either linearly parallel, lin-
early orthogonal, or circularly orthogonal.

A. Signal and idler equations

We consider first that the two pumps are of linear SOPs.
We assume that the two pumps at frequencies �l and �h are
launched either along a principal axis of a birefringent fiber
�say, the x axis� for copolarized pumping or along two prin-
cipal axes for orthogonal pumping. In the latter case, we
assume the low-frequency pump is polarized along the x
axis, as shown in Fig. 7. In both cases, the two pumps main-
tain their SOPs along the fiber. Unlike the case of a single
pump discussed in Sec. III, the two pumps can interact with
each other through the fiber nonlinearity. From Eq. �6�, the
pump fields, Alx�z� and Ahx�z� �or Ahy�z�, depending on
pumping configuration� are found to satisfy

�Auj

�z
= i�kj��u� + �Pu + ��q�	uv�Pv�Auj , �32�

where u�v and 	uv=�u−�v. The subscripts j=q=x for co-
polarized pumps. In the case of orthogonally polarized
pumps, q=y; j=x when u= l but j=y when u=h. Equation
�32� can be easily solved to obtain

Pu�z� =
P0Pu�0�

Pu�0� + Pv�0�exp�g
�	uv�P0z�
, �33�

where P0= Pl�z�+ Ph�z� is the total input pump power that
remains constant along the fiber, and 
 denotes 
 and � for
parallel and orthogonal pumps, respectively.

As seen from Eq. �33�, the two pumps transfer powers
between them through stimulated Raman scattering �SRS�.
However, in a realistic experiment on photon-pair genera-
tion, the pump powers are maintained at a low level to pre-
vent stimulated contribution. Under such conditions,
�g
�	hl�P0L��1, and the extent of SRS-induced pump power
transfer is small. For an example of copolarized pumping,
SRS only transfers 12% of the high-frequency pump power
to the other one even when �P0L has a relatively large value
of 0.5 and the second pump is located at the Raman gain
peak ��	hl� /2�=13.2 THz�. In most cases, �P0L is smaller
and pump frequency spacing is far from being 13.2 THz,
resulting in negligible SRS-induced power transfer between
the two pumps. For the case of orthogonal pumping, such
Raman-induced power transfer is even much smaller �25�.
Under such conditions, �q�	uv���q�0� and Pu�z�� Pu�0�.
The pump fields then evolve along the fiber as

Auj�z� � Au exp�iz�kj��u� + �Pu + ��q�0�Pv�	 , �34�

where Au is the input pump amplitude at �u.
Energy conservation during nondegenerate FWM requires

�s+�i=�l+�h. From Eq. �6�, the two polarization compo-
nents of the signal are found to satisfy the following Heisen-
berg equation:

�Âj�z,�s�
�z

= i�kj��s� + �� j�	sl�Pl + ��q�	sh�Ph�Âj�z,�s�

+ i�
 j��s�AlxAh�Âq
†�z,�i� + iAlxm̂jx�z,	sl�

+ iAh�m̂j��z,	sh� , �35�

where j, q=x or y and � denotes the SOP of the high-
frequency pump. For copolarized pumps, q= j and �=x. In
contrast, q� j and �=y for orthogonally polarized pumps.
As before, the idler equation is obtained from Eq. �35� by
interchanging subscripts s and i. In Eq. �35�, 
 j��s�
�
 j�	sl�+
 j�	sh� for the case of copolarized pumping,
where 
 j�	sl� and 
 j�	sh� are given by either Eq. �12� or Eq.
�13�, depending on the signal SOP. In the case of orthogonal
pumping, 
x and 
y are given by


x��s� = 2�1 − fR�/3 + fRR̃a�	sl� + fRR̃b�	sh�/2, �36�


y��s� = 2�1 − fR�/3 + fRR̃a�	sh� + fRR̃b�	sl�/2. �37�

In the case of orthogonal pumping, the FWM process can be
decomposed into two “eigen” processes shown in Fig. 7.
Equation �35� shows that the x-polarized signal only couples
to the y-polarized idler and vice versa. Thus the two pro-
cesses shown in Fig. 7 are independent of each other.

In both pumping configurations, the linear equation �35�
provides an analytic solution similar to Eq. �14�. It has the
form

Âj�L,�s� = �� j�L,�s�Âj�0,�s� + � j�L,�s�Âq
†�0,�i�

+ N̂lj�L,�s� + N̂hj�L,�s����L� , �38�

where q= j for copolarized pumping but q� j for the or-
thogonal one. Explicit expressions for the coefficients � j, � j,

ωl

ωh

ω

ωi

ωs

ωl
ωi

ωs

ω

ωh

FIG. 7. Configuration with linear pump polarizations orthogonal
to each other, showing the frequency and polarization relationships
among the pumps, signal, and idler.
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�, and noise operators N̂lj and N̂hj are given in Appendix A.
Another feature of the dual-pump configuration is that the

two pumps introduce SpRS independently, as represented by
the two noise operators in Eq. �38�. We use Eq. �38� to in-
vestigate the photon statistics in the two pumping configura-
tions. Detailed expressions of photon flux and pair correla-
tion, including the contributions of both spontaneous and
stimulated scattering, are given in Appendix B. In the follow-
ing subsections, we focus on the case in which pump powers
are low enough that spontaneous scattering dominates. To
simplify the analysis, we also assume that narrow band sig-
nal and idler filters are located within the phase-matched
spectral window such that �̄s+ �̄i=�l+�h.

B. Photon flux and pair correlation: Copolarized pumping

One advantage of copolarized pumping is that the phase-
matching condition can be satisfied over a broad spectral
range when the two pumps are located on opposite sides of
the zero-dispersion wavelength of the fiber and are separated
far apart �48,51�. This configuration can provide a broad fre-
quency range of available signal and idler photons with a
nearly uniform photon-generation efficiency. In the general
case shown in Fig. 6, the signal and idler frequencies are
sandwiched between the two pumps because the phase-
matching condition is easy to satisfy. In this case, the signal
and the idler act simultaneously as the Stokes for the �h
pump and the anti-Stokes for the �l pump. This situation
leads to a significant impact on the photon-pair correlation.

In the case of two copolarized pumps, photon pairs can be
created with polarization either parallel or orthogonal to the
pumps, similar to the single-pump case discussed earlier.
Comparing Eq. �38� with Eq. �14�, we note that the two cases
are quite similar. As a result, the discussion of Sec. III related
to the polarization issues applies also to the copolarized dual-
pump configuration. In the following, we focus on the pho-
ton pairs that are created copolarized with the pumps, and
drop the polarization indices x and y for simplicity of nota-
tion.

Consider first the photon flux. In the low-power regime
where �P0L�1, it is given by

Iu = ��u���
uL�2PlPh + PlL�gR�	̄ul��Nul + PhL�gR�	̄uh��Nuh� ,

�39�

where 
u=
�	̄ul�+
�	̄uh�, Nuv=N�	̄uv�, and 	̄uv= �̄u−�v
with v= l and h for the two pumps.

Different from the single-pump case, the FWM-created
photon flux now depends on the product PlPh of two pump
powers, a quantity that is maximized when the two pumps
have equal powers �for a constant total power�. Moreover,
both pumps introduce SpRS photons independently. In gen-
eral, as the signal and idler have similar frequency relation-
ships with each pump, SpRS generates a comparable number
of noise photons for both waves. When the pump-signal fre-
quency detuning is small �below 2 THz�, the two pumps
would create similar amounts of SpRS photons for the signal
as well as the idler. When the frequency detuning increases,
phonon population decreases and the contribution of the

high-frequency pump dominates for both of them. This
would increase the accidental coincidence counting and thus
degrade the pair correlation.

The degree of quantum correlation between the signal and
idler photons can be obtained in a way similar to the case of
single-pump configuration. Detailed expressions including
both spontaneous and stimulated scattering are given in Ap-
pendix B. When the signal and idler are distinguishable on
the basis of their frequencies ��̄s� �̄i, Fig. 6�a��, the pair
correlation at a low pump level is given by

�c��� = ��c����2PlPh�Y1/Y2� , �40�

where Y1 and Y2 are defined as

Y1 = �� Re�
s��2 + ��gRl��nl +
1

2
� + �gRh��nh +

1

2
��2

,

�41�

Y2 = ���
s�2PlPhL + Pl�gRl�nl + Ph�gRh��nh + 1��

� ���
s�2PlPhL + Pl�gRh�nh + Ph�gRl��nl + 1�� . �42�

Here, gRu=gR�	̄su� and nu=n�	̄su� with u= l ,h. In the ab-
sence of SpRS, Eq. �40� reduces to a simple expression,
�c���= ��c����2 / ���
sL�2PlPh�. When the two pumps have
equal powers, �c has the same value as the single-pump con-
figuration for a given total pump power �as 
s=2 in the
absence of SpRS�.

When the signal and idler photons are indistinguishable
on the basis of their frequencies ��̄s= �̄i, Fig. 6�b��, coinci-
dence counting can be realized through the experimental
setup shown in Fig. 8 by removing the beam splitter BS2 and
using identical filters for the two detectors �15�. As the two
arms are identical, the pair correlation has the same form as
in Eq. �23�. In the case of low pump powers with �P0L�1,
pair correlation is found to be

�c��� = ��s����2 + ��c����2

�
PlPh��� Re�
s��2 + ��gR��2n + 1��2	

���
s�2PlPhL + �gR��nP0 + Ph��2 , �43�

where gR=gR�	̄sl�, n=n�	̄sl�, and we used 	̄sl=	̄hs. Com-
paring Eq. �43� with Eq. �40�, we find that the second term in
Eq. �43� provides the cross correlation between the signal-

s

i i

s

τ0

FIG. 8. Unbalanced Mach-Zehnder interferometer used for co-
incidence counting and for creating energy-time entanglement. BS:
50:50 beam splitter; M: mirror; P: polarizer; Fs and Fi: signal and
idler filters; Det: photon-counting detector.
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idler photon pair. The first term reflects self-correlation of
signal photons as spontaneous scattering enables creation of
multiple pairs �although the probability is very small� that
can pass through either arm and be detected by either of the
two detectors �see Fig. 8�.

The degenerate configuration shown in Fig. 6�b� can be
thought of as the reverse process of that in Fig. 1�a� �15�.
Figure 9 compares pair correlation in these two cases under
the same FWM-generated photon rates by setting PlPh in Eq.
�43� equal to P0

2 /4 and using �P0L=0.1. In general, the two
configurations exhibit a qualitatively similar behavior, espe-
cially at small frequency detunings ��4 THz� for which two
pumps contribute almost equally to SpRS photons, and at
very large frequency detunings ��27 THz� for which SpRS
becomes negligible. However, the situation changes in the
intermediate spectral range in which noise photons are domi-
nantly introduced by the high-frequency pump. When the
two pumps have equal powers �thick solid curves�, �c�0� can
be lower than the single-pump case �thick dotted curve� by
10 to 40% over a frequency range of 5–27 THz. Even
though these two FWM processes act as the reverse of each
other, they do not exhibit the same degree of correlation
because of different SpRS processes involved. This differ-
ence is enhanced at low pump powers but decreases at high
pump power levels for which FWM dominates.

As SpRS is dominated by the high-frequency pump over a
quite broad spectral range, photon-pair correlation would
strongly depend on the power imbalance between the two
pumps. This is shown clearly in Fig. 9 where the FWM-
generated photon rate is maintained constant. If Ph is four
times larger than Pl �thin dashed curve�, corresponding to a
1.25 times increase in total pump power, the correlation mag-
nitude drops significantly �by 25 to 60%� over most of the
detuning range, except in a small region below 1 THz. In
contrast, the correlation can be enhanced by 20 to 100% if
the pump powers are flipped such that Pl=4Ph �thin solid

curve�. If we unbalance the pump powers further such that
Pl=16Ph �thin dotted curves�, the correlation can be im-
proved even more �by up to 140% compared with the equal-
pump-power case� for detunings larger than 10 THz. How-
ever, it is degraded by a similar factor in the low-detuning
region because of SpRS enhancement induced by an increase
in the total pump power. These results show that the power
imbalance between the two pumps may be used to advantage
when a dual-pump configuration is adopted.

C. Photon flux and pair correlation: Orthogonal pumping

In this subsection, we consider the case of two linearly
polarized pumps but orthogonal to each other, which allows,
in principle, automatic generation of a polarization-entangled
state. However, fiber birefringence usually makes the phase-
matching conditions slightly different for the two eigenproc-
esses shown in Fig. 7, leading to partial distinguishability
between them and degrading the degree of polarization en-
tanglement. This situation is quite similar to the birefrin-
gence-induced distinguishability in a type-II ��2�-based pro-
cess �45�. Thus similar techniques can be used to engineer
the indistinguishability �52�. Moreover, unlike nonlinear
crystals, which generally exhibit a high intrinsic birefrin-
gence, silica glass is isotropic, and fiber birefringence mainly
results from geometrical asymmetry or internal stress. Both
of these can be reduced, in principle, to realize a low-
birefringence fiber with a beat length longer than 10 m. As a
result, birefringence effects can be mitigated to a negligible
level if a high-nonlinearity fiber of length �1 m is employed
for photon-pair generation �15,16�. In the following discus-
sion, we assume that the fiber is isotropic �no birefringence�
and focus on the polarization effects of FWM and SpRS.

Although the two eigenprocesses have similar FWM effi-
ciencies, they exhibit quite different polarization-dependent
Raman scattering. In the process of Fig. 7�a�, the signal and
idler are copolarized with the low-frequency and high-
frequency pumps, respectively. As a result, the signal is
mainly coupled with the low-frequency pump, while the idler
is mainly coupled with the high-frequency pump. The situa-
tion is reverse in Fig. 7�b�. Such different Raman couplings
are reflected through the polarization-dependent noise opera-
tors in Eq. �35�; see Appendix A for detailed analytic expres-
sions.

In general, a polarizer is placed in front of the detector to
a select a specific polarization state of the incoming signal
�or idler� photons. Assuming that the polarizer is aligned at
an angle �u �u=s , i� with respect to the x axis of fiber, the
optical field falling on the detector is given by

Âu�t,�u� = „cos �u…Âux�L,t� + „sin �u…Âuy�L,t� , �44�

where Âux�L , t� and Âuy�L , t� are x- and y-polarized signal or
idler fields, respectively. As the two eigenprocesses shown in
Fig. 7 are independent of each other, the photon flux is given
by

Iu��u� = Iux cos2 �u + Iuy sin2 �u, �45�

where Iuj ��Âuj
† �L , t�Âuj�L , t�� is the photon flux for the jth

polarization component �j=x ,y� with u=s and i. The general

FIG. 9. Pair correlation �c�0� in the degenerate case shown in
Fig. 6�b� for several power ratios of the two copolarized pumps.
The dotted curve shows, for comparison, the single-pump case. In
all cases, the FWM-generated flux is kept the same by choosing
P0

2=4PlPh.
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expressions for Iux and Iuy are given in Appendix B. When
the pump powers are low enough that �P0L�1, they reduce
to

Iux = ��u���
uxL�2PlPh + PlL�g
�	̄ul��Nul

+ PhL�g��	̄uh��Nuh� , �46�

Iuy = ��u���
uyL�2PlPh + PlL�g��	̄ul��Nul

+ PhL�g
�	̄uh��Nuh� , �47�

where 
uj =
 j��̄u� �u=s , i and j=x ,y� is given by Eqs. �36�
and �37�. If we compare these equations with Eq. �39�, we
find that, for the same pump power, the number of FWM-
generated photons is about 1 /9 of that in the copolarized-
pump case, since 
ux and 
uy here are roughly 1/3 of 
u in
Eq. �39�. Moreover, these two equations show that, because
of polarization dependence of Raman scattering, the two
pumps provide different SpRS contributions to the two po-
larization components of the signal or idler. In general, SpRS
photons are dominated by the copolarized pump, which is
roughly half of the total pump power. Compared with the
single-pump copolarized configuration �Fig. 1�a��, at the
same pump level, the noise photon flux created by SpRS is
reduced by a factor of 1 /2, but the correlated one created by
FWM is reduced by 1/9. Although this reduction in the latter
can be simply compensated by increasing the total pump
power by three times, it also enhances the former by a net
factor of 1.5 compared with the single-pump case. Clearly, at
a given FWM-generated photon rate, SpRS has a higher im-
pact for this scheme than the single-pump one. As a result,
pair correlation is expected to be degraded for the configu-
ration of orthogonal pumping with linear pump SOPs.

For arbitrary polarization angles of the signal and idler
waves, the pair correlation is found to have the form

�c��,�s,�i� = �Pxy���cos �s sin �i

+ Pyx���sin �s cos �i�2/Is��s�Ii��i� , �48�

where the quantities Pxy�����Âsx�L , t+��Âiy�L , t�� and

Pyx�����Âsy�L , t+��Âix�L , t�� are related to pair correlations
in the two processes shown in Figs. 7�a� and 7�b�, respec-
tively. They are given by �see Appendix B for general ex-
pressions�

Pxy��� = ���s��i�c���AlAhL�i� Re�
sx� − �gal��nl +
1

2
�

− �g�h��nh +
1

2
�� , �49�

Pyx��� = ���s��i�c���AlAhL�i� Re�
sy� − �gah��nh +
1

2
�

− �g�l��nl +
1

2
�� , �50�

where gav=ga�	̄sv� and g�v=g��	̄sv� �v= l ,h�. If we substi-
tute Eqs. �49� and �50� into Eq. �48� and use Eqs. �46� and

�47�, we can obtain pair correlation for arbitrary combina-
tions of signal and idler polarization angles.

In the absence of SpRS, 
sx=
sy =2/3 and the preceding
equations reduce to

Pxy��� = Pyx��� = 2i���s��i�1/2�c����AlAhL/3. �51�

The two processes in Fig. 7 become indistinguishable from
each other. The pair correlation in this specific case is given
by

�c��,�s,�i� =
9��c����2 sin2��s + �i�

4�2L2PlPh
, �52�

indicating a polarization-entangled Bell state of ��Hs ,Vi�
+ �Vs ,Hi�� /2, where H and V denote horizontal and vertical
linear SOPs, respectively �3�. Accordingly, Eq. �52� has the
maximal value of �c�� ,0 ,� /2�=9��c����2 / �4�2L2PlPh� for
any orthogonal �s and �i.

As the biphoton probability of the signal-idler pair is
given by Is��s�Ii��i��1+�c�� ,�s ,�i��, it varies with signal and
idler polarization angles periodically. The resulting “fringe
pattern� has a visibility of

Vf��� =
�c��,0,�/2�

2 + �c��,0,�/2�
. �53�

Note that Vf�0� is close to 1 when �P0L�1, indicating that
FWM with two orthogonally polarized pumps can provide
automatic polarization entanglement.

If the pump frequencies are close to each other, the two
eigenprocesses in Fig. 7 would have almost the same values
of pair correlation even in the presence of SpRS, since the
signal and idler have similar frequency detunings from the
two pumps. The visibility of biphoton probability is still
given by Eq. �53� except that �c�� ,0 ,� /2� is now provided
by the general form in Eq. �48�. Figure 10 compares the pair
correlation for the process of Fig. 7�a� �curve b� with the
single-pump configuration of Fig. 1�a� �curve a�. The two
pumps are assumed to have equal powers and their total
power is three times larger than that of the single-pump case
to maintain the same FWM-created photon flux. The pair
correlation is significantly lower over a wide frequency range
in the case of orthogonal pumping compared with the single-
pump case because of an enhanced role played by SpRS in
that case.

The situation is different when the two pumps are sepa-
rated far apart with the signal and idler sandwiched in be-
tween. The signal �idler� is anti-Stokes �Stokes� of the low-
frequency �high-frequency� pump with a frequency
separation of �	sl� in Fig. 11�a� but it is the Stokes �anti-
Stokes� of the high-frequency �low-frequency� pump with a
different frequency separation of �	sh� in Fig. 11�b�. As a
result, the x-polarized signal or idler has fewer SpRS photons
than the y-polarized one, leading to quite different pair cor-
relations for the two processes of Figs. 11�a� and 11�b�. The
inset in Fig. 10 shows an example when the pump spacing is
1 THz. Not only is the pair correlation strongly polarization
dependent, this polarization dependence increases with in-
creased pump spacing.
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Such polarization dependence vanishes when the signal
and idler frequencies are identical ��̄s= �̄i� and are located at
the pump center �Fig. 11�c��. In this case, photon self-
correlation would generally contribute if the setup of Fig. 8
is employed for coincidence counting, similar to the copolar-
ized dual-pump case discussed earlier. Equation �48� in this
case changes to become

�c���,�s,�i� = �c��,�s,�i� +
��s����2

Is��s�Is��i�

� �Isx cos �s cos �i + Isy sin �s sin �i�2,

�54�

where �c is given by Eq. �48�. In general, the magnitude of
the self-correlation term is less than 1, and the pair correla-
tion is close to the case of Fig. 7. Curve c in Fig. 10 shows
this case, in which the frequency detuning corresponds to
half of the pump frequency spacing. Slightly lower values of
the pair correlation are due to the enhancement of SpRS by

the high-frequency pump. Similar to the case of copolarized
pumping, imbalance of pump powers can be used to improve
the performance of photon pair generation in this case when
the two pumps are separated far apart. However, it cannot be
used for the case of Fig. 7 when the two pumps are located
closely and sandwiched between the signal and idler, as
where the idler at the Stokes is copolarized with either of the
two pumps, depending on its SOP.

D. Orthogonal pumping with circular polarizations

The previous subsection shows that, although orthogonal
pumps with linear SOPs can automatically generate
polarization-entangled photon pairs, such a scheme suffers
from a significant reduction in FWM efficiency, which leads
to a degraded photon pair quality. This problem can be
solved if the two pumps are chosen to have circular SOPs
that are orthogonal to each other, a configuration with the
maximum FWM efficiency among all orthogonal pumping
schemes �51�. In this subsection, we show that this scheme
can also generate photon pairs in a polarization-entangled
state, while maintaining relatively high pair correlation. We
assume the fiber to be isotropic �no birefringence� and focus
on the polarization effects of FWM and SpRS.

It is convenient to discuss this process in a basis in which
↑ and ↓ denote the left and right circular polarization states,
carrying an intrinsic spin of +� �spin up� and −� �spin
down�, respectively �39�. The polarization components in
this basis are related to those in a basis of linear polarization

as Â↑= �Âx+ iÂy� /�2 and Â↓= �Âx− iÂy� /�2. Assuming that
the low- and high-frequency pumps are left- and right-
circularly polarized, respectively �Fig. 12�, we find that the
pump fields satisfy an equation similar to Eq. �32�:

�Auj

�z
= i�k��u� + ��0�0�Pu + ��↓�	uv�Pv�Auj , �55�

where u�v, j=↑ when u= l but j=↓ when u=h. �0�	� and
�↓�	� are given by

�0�	� = 2�1 − fR�/3 + fRR̃a�	� + fRR̃b�	�/2, �56�

�↓�	� = 4�1 − fR�/3 + fRR̃b�	� + fRR̃a�0� + fRR̃b�0�/2.

�57�

It is easy to show from Eq. �55� that SRS-induced pump
power transfer is negligible, similar to the previous orthogo-
nal pumping scheme with linear pump SOPs.

ρ

ρ

γ

FIG. 10. �Color online� Comparison of pair correlation �c�0� in
different pumping configurations. Curves a to d show the cases of
Figs. 1�a�, 7�a�, 11�c�, and 12, respectively. The inset shows the pair
correlation for the two eigenprocesses of Figs. 11�a� and 11�b� with
a fixed pump spacing of 1 THz. The total pump power is increased
by a factor of 3 in the case of Figs. 7�a� and 11�c� and by 1.5 in Fig.
12 to maintain nearly the same FWM-created photon flux.
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FIG. 11. Frequency and polarization relationships among the
four waves in the case of two widely separated orthogonally polar-
ized pumps.
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FIG. 12. Frequency and polarization relationships among the
four waves in the case of two orthogonally circularly polarized
pumps. L and R denote left- and right-circular polarizations,
respectively.
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It turns out that, because of a spin selection rule among
the four interacting photons, FWM process can be decoupled
into two eigenprocesses shown in Fig. 12, where ↑l+↓h
→↑s+↓i in �a�, and ↑l+↓h→↓s+↑i in �b�. If we decompose
optical fields into the basis of circular polarization, from Eq.
�6�, the two polarization components of the signal are found
to satisfy the following Heisenberg equation:

�Âj�z,�s�
�z

= i�k��s� + �� j�	sl�Pl + ��q�	sh�Ph�Âj�z,�s�

+ i�
 j��s�Al↑Ah↓Âq
†�z,�i� + iAl↑m̂j↑�z,	sl�

+ iAh↓m̂j↓�z,	sh� , �58�

where j ,q=↑ or ↓ �q� j�, �↑�	�=�0�0�+�0�	�, and the two
quantities governing the FWM efficiency, 
↑ and 
↓, are
given by


↑��s� = 4�1 − fR�/3 + fRR̃b�	sh� + fRR̃a�	sl� + fRR̃b�	sl�/2,

�59�


↓��s� = 4�1 − fR�/3 + fRR̃b�	sl� + fRR̃a�	sh� + fRR̃b�	sh�/2.

�60�

The noise operators m̂jq �j ,q= ↑ , ↓ � in Eq. �58� are related to
those in the basis of linear polarizations in Eq. �8�. Their
detailed expressions are given in Appendix C. The idler
equation is obtained from Eq. �58� by interchanging sub-
scripts s and i.

As Eq. �58� is quite similar to Eq. �35�, it has a solution
similar to Eq. �38� except that the subscript x and y are
replaced by ↑ and ↓, respectively, and that � and 
 in all
coefficients are changed accordingly �see Appendix C for the
field solution�. Using this solution, we obtain the generated
photon flux of the two waves. For a linearly polarized field
given in Eq. �44�, the photon flux is found to be given by a
simple form independent of its polarization angle:

Iu��u� = �Iu↑ + Iu↓�/2, �61�

where u=s , i and Iuj ��Âuj
† �L , t�Âuj�L , t�� is the photon flux

for the left �j= ↑ � and right �j= ↓ � circularly polarized com-
ponents, respectively. In the low-pump-power limit of
�P0L�1, fluxes are given by

Iu↑ = ��u���
u↑L�2PlPh + PhLNuh�gb�	̄uh��

+ PlLNul��ga�	̄ul�� + �gb�	̄ul��/2�	 , �62�

Iu↓ = ��u���
u↓L�2PlPh + PlLNul�gb�	̄ul��

+ PhLNuh��ga�	̄uh�� + �gb�	̄uh��/2�	 , �63�

where 
uj =
 j��̄u� �u=s , i and j= ↑ ,↓� is given by Eqs. �59�
and �60�. Comparing these two equations with Eqs. �46� and
�47�, we see that, for the same pump power, FWM-generated
photon flux is increased by four times while the number of
SpRS created noise photons remains nearly the same, as 
u↑
and 
u↓ here are roughly twice as large as 
ux and 
uy in Eqs.

�46� and �47�, and as SpRS is still dominated only by the
copolarized pump. As a result, the ratio of true coincidental
counting over the accidental one would be enhanced consid-
erably, leading to a much higher value of pair correlation.
This scheme, compared with the single-pump scheme of Fig.
1�a�, requires a 1.5 time total pump power to obtain a given
FWM-created photon flux, but only half of the power con-
tributes to SpRS, resulting in a net reduction of SpRS by
about 25%. Clearly, this scheme would have a pair correla-
tion higher than the single-pump scheme of Fig. 1�a�.

For linearly polarized signal and idler �Eq. �44��, the pair
correlation is found to have the form

�c��,�s,�i� = �P↑↓���e−i��si + P↓↑���ei��si�2/�4IsIi� , �64�

where ��si=�s−�i, and we have dropped the angle argu-
ments for Is and Ii because of their independence on the

polarization angle �Eq. �61��. P↑↓�����Âs↑�L , t+��Âi↓�L , t��
and P↓↑�����Âs↓�L , t+��Âi↑�L , t�� are related to pair correla-
tions for the two eigenprocesses shown in Figs. 12�a� and
12�b�, respectively. At a low pump level with �P0L�1, they
are found to be

P↑↓��� = ���s��i�c���AlAhL

� �i�
s↑ − Nsl��ga�	̄sl� + gb�	̄sl�/2��	 , �65�

P↓↑��� = ���s��i�c���AlAhL

� �i�
s↓ − Nsh��ga�	̄sh� + gb�	̄sh�/2��	 . �66�

In the absence of SpRS, 
s↑=
s↓=4/3 and Eqs. �65� and
�66� become P↑↓���=P↓↑���, which has the form of Eq. �51�
except that the factor of 2 is replaced by 4. The pair corre-
lation is thus given by a simple form of

�c��,�s,�i� =
9��c����2 cos2��s − �i�

16�2L2PlPh
, �67�

which indicates a polarization-entangled Bell state of
��Hs ,Hi�+ �Vs ,Vi�� /2 �3�. It has a maximum correlation value
whenever the linear SOPs of the signal and idler are parallel
to each other ��s=�i�.

In the presence of SpRS, the general expressions of Eqs.
�62�–�66� should be used to find the photon pair correlation.
Curve d of Fig. 10 shows an example with polarization
angles of �s=�i=0. Comparing it with curve b for the or-
thogonal pumps with linear SOPs, we find that pair correla-
tion is significantly enhanced by more than 100% over most
of the spectrum. This scheme has a pair correlation even
slightly higher than that for the single-pump case of Fig. 1�a�
�curve a�. Clearly, this scheme exhibits a great advantage for
creating polarization-entangled photon pairs with high qual-
ity but without the complicated experimental configuration
required for the time-multiplexing �19� or polarization diver-
sity scheme �18�.

In practice, self- and cross-phase modulations from the
pumps introduce nonlinear polarization rotations which may
perturb the circular SOPs of the pumps �51�. However, such
rotations are negligible here because the pump powers used
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for creating correlated photon pairs are relatively small. On
the other hand, linear fiber birefringence can also cause the
pump SOPs to deviate from the circular polarization. How-
ever, this perturbation can be mitigated to a small level as
long as the fiber length is much less than the beat length. As
discussed in the previous subsection, this is possible since
high-nonlinearity fiber with a length of �1 m is enough for
creating photon pairs with high brightness �12,15,16�, and
current technology enables manufacturing fibers with a beat
length longer than 10 m. Therefore, we expect that this
scheme would become a simple but efficient technique for
generating polarization-entangled photon pairs of high qual-
ity.

V. IMPACT ON QUANTUM ENTANGLEMENT

The degradation of photon correlation induced by SpRS
would directly impact any quantum entanglement con-
structed from the photon pairs created through FWM inside
an optical fiber. Here, we consider two examples and study
how SpRS affects the energy-time and polarization entangle-
ment.

A. Energy-time entanglement

The energy-time entanglement �1� can be realized with an
unbalanced Mach-Zehnder interferometer �53–55� made by
inserting the beam splitter BS2 as shown in Fig. 8 schemati-
cally. The relative time delay in the two arms should be
much larger than the coherence time of signal or idler pho-
tons �to prevent first-order interference� but much shorter
than the pump coherence time �to maintain time indistin-
guishability� �56�. The equal-time biphoton probability be-

tween the two outputs, p12��Â1
†�t�Â2

†�t�Â2�t�Â1�t��, is found
to be

p12 =
IsIi

4

1 +

1

2
�c�0��1 − cos�2�p�0 + 2�0��� , �68�

where �0 and �0 are time and phase delay between the two
arms. The subscripts 1 and 2 denote the two output ports of
the Mach-Zehnder interferometer. The fringe visibility of
two-photon quantum interference is thus given by

Vf =
�c�0�

2 + �c�0�
. �69�

Quantum entanglement requires �c�0��2 so that it can be
clearly distinguished from the classical visibility of 50%
�57,58�. A higher value of pair correlation translates into a
higher degree of entanglement. Any reduction in the correla-
tion induced by SpRS would directly deteriorate the degree
of entanglement. For example, a typical correlation value of
10 obtained experimentally would result in a fringe visibility
of only 83%. In practice, �c�0� values of 20 or more are
desirable to realize a visibility of quantum interference
�90%.

B. Polarization entanglement

A polarization-entangled state can be constructed by de-
generate FWM through time multiplexing �19� or a polariza-

tion diversity scheme �18�. As we mentioned earlier, such a
state can also be created automatically through nondegener-
ate FWM with orthogonal pumping. The degree of quantum
entanglement can be tested by the extent of its violation to
the Clauser, Horne, Shimony, and Holt �CHSH� inequality,
�S�����2, where the CHSH parameter S��� is defined as
�59,60�

S��� = E��,�s,�i� − E��,�s,�i�� + E��,�s�,�i� + E��,�s�,�i�� .

�70�

Here, E�� ,�s ,�i� is a correlation function defined as

E�� ,�s ,�i�=E−��� /E+���, where E±�����T : Îs±�t+��Îi±�t� : �,
:: denotes normal ordering, and T denotes time ordering.

Îu±�t� is the sum and difference photon-flux operator for two
orthogonal polarization angles of �u �u=s , i� and �u�=�u

+� /2. It is defined as

Îu±�t� � Âu
†�t,�u�Âu�t,�u� ± Âu

†�t,�u��Âu�t,�u�� , �71�

where Âu�t ,�u� and Âu�t ,�u�� are given by Eq. �44� with
polarization angle �u and �u�, respectively. It is easy to show

that Îu+�t� is invariant with the polarization angle because it
represents the total photon flux.

In practice, the CHSH parameter requires sixteen mea-
surements of coincidence counting between signal and idler
performed with all possible combinations of angles �s, �s�, �i,
�i�, and four angles orthogonal to them �3�. Although Eq. �70�
looks complicated, it turns out that the CHSH parameter can
be written in a compact form in a circular-polarization basis
as

S��� =
1

E+���
� 1���!1 +  2���!2 + c.c.� , �72�

where c.c. denotes complex conjugate, and  1��� and  2���
are given by

 1��� = �Âi↑
† �t�Âs↑

† �t + ��Âs↓�t + ��Âi↓�t�� , �73�

 2��� = �Âi↓
† �t�Âs↑

† �t + ��Âs↓�t + ��Âi↑�t�� . �74�

Here, Âu↑ and Âu↓ �u=s , i� denote the field operators for left-
�spin-up� and right-circular �spin-down� polarizations, re-
spectively. They are related to the linearly polarized compo-

nents as Âu↑= �Âux+ iÂuy� /�2 and Âu↓= �Âux− iÂuy� /�2. In Eq.
�72�, the factors !1 and !2 are related to various polarization
angles as

!1 = e2i��s+�i� − e2i��s+�i�� + e2i��s�+�i� + e2i��s�+�i��, �75�

!2 = e2i��s−�i� − e2i��s−�i�� + e2i��s�−�i� + e2i��s�−�i��. �76�

In the following subsections, we use Eqs. �72�–�76� to
find S��� for the polarization-entangled states constructed
from different FWM processes, and use it to discuss the im-
pact of SpRS.
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1. Degenerate FWM with a single pump

Although each photon pair created through degenerate
FWM is copolarized �Fig. 1�, a polarization-entangled state
can be constructed by employing a time-multiplexing tech-
nique �19� or a polarization diversity loop �18�. The pump is
split into two parts of equal powers with orthogonal polar-
izations, each part generating independent photon pairs with
half probability. After combining them together and erasing
the time or path information between them, a polarization-
entangled state is constructed.

For such polarization-entangled states, we are able to find
an analytic expression for the maximal value of the CHSH
parameter Sm��� �see Appendix D�. When the pump power is
split equally between two paths, it takes the following simple
form:

Sm��� =
2�2�c���
2 + �c���

. �77�

This equation shows that the CHSH inequality is violated for
�c����2/ ��2−1��4.8. If photon-pair generation is domi-
nated by FWM with �c�0��5, Sm�0�→2�2, indicating a
clear violation of the CHSH inequality. A typical experimen-
tal value of �c�0�=10 corresponds to Sm�0�=2.36. The same
conclusions apply to the case of copolarized dual pumping
�Fig. 6�, as the two cases are quite similar. In the case of Fig.
6�b�, photon self-correlation would contribute to coincidence
counting and �c��� given in Eq. �43� should be used.

Figure 13 show the CHSH parameter in different pumping
configurations. In general, the orthogonal FWM in the
single-pump configuration �Fig. 1�b�� �curve a� has the larg-
est Sm�0� value, indicating the best performance. In particu-

lar, it exhibits Sm�0� values close to the maximum value of
2�2 over a wide range of frequency detuning. In the copo-
larized FWM of single-pump configuration �Fig. 1�a�� �curve
b�, SpRS degrades the value of Sm�0� significantly over a
broad spectral range of 2–15 THz. The situation becomes
worse for the copolarized FWM of dual-pump configuration
�Fig. 6�b�� �curve c� because of the dominant SpRS induced
by the high-frequency pump.

In general, the pump not only creates correlated copolar-
ized signal-idler pairs but also generates an orthogonally po-
larized noise background through anisotropic Raman scatter-
ing. If such orthogonally polarized noise is not filtered out, it
would contribute to photon fluxes of the signal and idler and
would introduce extra accidental coincidence counting. In
this case, Eq. �77� is still valid if �c��� is given as the realistic
ratio between the true coincidence counting and accidental
one. It is interesting to note that the polarization diversity
loop can automatically remove such orthogonally polarized
noise background.

2. Nondegenerate FWM with orthogonally polarized pumps

We consider first the case of orthogonal pumping with
linear SOPs. When the signal and idler are distinguishable
��̄s� �̄i, Fig. 7, or Figs. 11�a� and 11�b��, the maximum
CHSH parameter is found to be �see Appendix D�

Sm��� =
�2��Pxy��� + Pyx����2 − �Is�Ii�

Is+Ii+ + �Pxy����2 + �Pyx����2
, �78�

where �Iu� Iux− Iuy and Iu+� Iux+ Iuy �u=s , i� are difference
and sum photon flux of two polarization components. As the
magnitudes of Pxy��� and Pyx��� are directly related to the
magnitude of pair correlation, a higher correlation value im-
plies a larger value of �Sm����. In the absence of SpRS,
Eq. �78� reduces to Eq. �77� with �c���=�c�� ,0 ,� /2�
=9��c����2 / �4�2L2PlPh�. Clearly, �Sm����→2�2 when
�L�PlPh�1. Thus, FWM-generated photon pairs at low
power levels would exhibit a high degree of polarization
entanglement.

Unfortunately, SpRS considerably increases the accidental
counting rate �first term in the denominator of Eq. �78��, and
thus reduces the magnitude of �Sm����. In particular, when the
two pump frequencies are close to each other, the two pro-
cesses of Fig. 7 experience similar SpRS, and Eq. �78� again
reduces to Eq. �77�, except that �c���=�c�� ,0 ,� /2� is now
provided by the general form of Eq. �48�. Curve d of Fig. 13
shows the CHSH parameter for this case �Fig. 7�. It has a
value significantly lower than that of copolarized configura-
tion, particularly in the low-frequency regime. Even for such
a low pump level of �P0L=0.1, it is difficult to violate the
CHSH inequality for a broad spectral range from
1 to 15 THz.

When the signal and idler are indistinguishable ��̄s= �̄i,
Fig. 11�c��, photon self-correlation starts to contribute be-
cause the polarization-angle settings for coincidence count-
ing are generally not orthogonal to each other. In this case,
the CHSH parameter is found to be �see Appendix D�

FIG. 13. �Color online� Comparison of CHSH parameter for
different FWM configurations at a pump level of �P0L=0.1. Curves
a to f correspond to FWM configurations shown in Figs. 1�b�, 1�a�,
6�b�, 7, 11�c�, and 12. In the cases a–c, orthogonally polarized noise
background is assumed to be removed. The two pumps have equal
powers in the dual-pump cases. In the cases of orthogonal pumping,
the total pump power is adjusted accordingly to maintain a nearly
same FMW-created photon flux, similar to Fig. 10.
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Sm��� =
�2�4IsxIsy�c��� − ��Is�2

„1 + ��s����2…�
Is+

2 + ��s����2�Isx
2 + Isy

2 � + 2IsxIsy�c���
, �79�

where �c���=�c�� ,0 ,� /2� is given by Eq. �48�. For a pure
FWM process without SpRS, indistinguishability between
the two eigenprocesses reduces Eq. �79� to a simple form of

Sm��� =
2�2�c���

2 + ��s����2 + �c���
, �80�

where �c���=9��c����2 / �4�2L2PlPh�. The appearance of
�s��� in Eqs. �79� and �80� is an indication of the involve-
ment of photon self-correlation, which is due to the collinear
nature of FWM in optical fibers. Equations �79� and �80�
show that photon self-correlation increases the requirement
of pair correlation for violation of the CHSH inequality. For
example, Eq. �80� shows that �Sm�0� � �2 requires �c�0�
�7.2. Moreover, Eq. �79� shows that polarization-dependent
SpRS introduces different noise photons to the x- and
y-polarized signals and thus degrades the magnitude of Sm���
even more. This can be seen by curve e of Fig. 13. It is much
lower than any other cases over a broad spectral range. It is
even much lower than 2 in the region 1–17 THz, indicating
the impossibility of violation of the CHSH inequality. How-
ever, if the photon pairs have high quality with large pair
correlation ��c���� ��s����2�1�, photon self-correlation
would have negligible effect on the CHSH inequality, as can
be seen in curve e when frequency detuning is beyond
20 THz.

In the case of orthogonal pumping with circular SOPs
�Fig. 12�, the maximum CHSH parameter is found to have
the form �see Appendix D�

Sm��� =
�2�P↑↓

* ���P↓↑��� + P↑↓���P↓↑
* ����

Is+Ii+ + �P↑↓����2 + �P↓↑����2
, �81�

where Iu+� Iu↑+ Iu↓ �u=s , i�. Similar to the case of orthogo-
nal pumping with linear SOPs, for the process shown in Fig.
12 where the process �a� and �b� have a similar frequency
relationship with the two closely located pumps, Eq. �81�
reduces to the simple form of Eq. �77� with �c���
=�c�� ,0 ,0� given by Eq. �64�. Curve f of Fig. 13 shows
Sm�0� for this case. In general, it has a value well above 2,
showing a clear violation of CHSH inequality over the whole
spectrum at this pump level. It has a value of Sm�0� not only
much higher than any other dual-pump configuration, but
also higher than that constructed from the copolarized FWM
in the single-pump configuration �Fig. 1�a��. Moreover, this
scheme does not need complex experimental configurations
as those required for the time-multiplexing �19� or polariza-
tion diversity scheme �18�. Therefore, it is promising for cre-
ating fiber-based polarization-entangled photon pairs with a
high quality.

VI. SUMMARY

In summary, we have developed a general quantum theory
capable of describing photon statistics under the combined
effects of FWM and Raman scattering inside optical fibers.

Our theory is vectorial in nature and includes all polarization
effects. We have applied our general formalism to investigate
photon-pair generation in various typical pumping configu-
rations. When a single pump wave is launched into a fiber, it
is possible to create the photon pairs with polarization either
parallel or orthogonal to the pump. Our results show that the
orthogonal configuration can improve the magnitude of pair
correlation considerably over a broad spectrum. The reason
for the improvement is related to the fact that Raman gain
almost vanishes for an orthogonally polarized pump.

A dual-pump configuration can provide more quantum
functionalities because of freedom to control pump param-
eters like frequencies, polarizations, powers, etc. When two
pumps are copolarized, it is desirable to create photon pairs
whose frequencies lie in between the two pumps because it is
easy to satisfy the phase-matching condition. It is also pos-
sible to create photon pairs with the same frequency. Our
results show that the quality of created photon pairs can be
improved by optimizing the imbalance between the two
pump powers. When two pumps are orthogonally polarized,
we show that FWM can generate photon pairs automatically
in a polarization-entangled state. Our results show that SpRS
has significant impact when the two pump polarizations are
linear because FWM efficiency is considerably reduced com-
pared with SpRS, and because FWM has different polariza-
tion dependence from SpRS. However, such degradations
can be significantly mitigated if two pumps have orthogonal
circular polarizations. In this case, one can generate a
polarization-entangled state with high quality but without a
complicated experiment configuration required for time-
multiplexing and polarization diversity schemes.
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APPENDIX A: FIELD SOLUTIONS IN DUAL-PUMP
CONFIGURATION

In the case of dual pumping with linear pump SOPs, � j
and � j �j=x ,y� in Eq. �38� are still given by Eqs. �15� and
�16� except that Ap

2 is replaced by AlAh and 
 j changes ac-
cording to the pump SOP. 
 j��s�=
 j�	sl�+
 j�	sh� for co-
polarized pumps, where 
 j�	sl� and 
 j�	sh� are given by
either Eq. �12� or Eq. �13�. But 
 j is given in Eqs. �36� and
�37� for orthogonal pumping. The other parameters are given
by

gj
2 = ��
 j�2PlPh − �� j/2�2, �A1�

� j = kj��s� + kq��i� − kx��l� − k���h�

+ �P0�� j�	sl� + �q�	sh� − �q�0� − 1� . �A2�

Kj =
1

2
�kj��s� − kq��i� + ��Pl − Ph��� j�	sl� − �q�	sh��	 .

�A3�
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��L� = exp
 i

2
L�kx��l� + k���h� + �P0�1 + �q�0��	� .

�A4�

The accumulated noise operators in Eq. �38� are found to be

N̂lj�L,�s� = i�
0

L

�Al� j�L − z,�s�m̂jx�z,	sl�

− Ah
*� j�L − z,�s�m̂q��z,	sl�	ei�zdz , �A5�

N̂hj�L,�s� = i�
0

L

�Ah� j�L − z,�s�m̂j��z,	sh�

− Al
*� j�L − z,�s�m̂qx�z,	sh�	e−i�zdz , �A6�

where � is given by

� =
1

2
�kx��l� − k���h� + ��Pl − Ph��1 − ���0��	 . �A7�

In Eqs. �A1�–�A7�, j ,q=x ,y. q= j and �=x for copolarized
pumping but q� j and �=y for orthogonal pumping.

APPENDIX B: PHOTON FLUX AND PAIR CORRELATION
IN DUAL-PUMP CONFIGURATIONS

Equations �38� and �A1�–�A6� can be used to find the
general expression for the photon flux and pair correlation.
In the case of copolarized pumping, we consider only the
case when the photon pairs are created with polarization par-
allel to the two pumps. In this case, the photon flux, includ-
ing both spontaneous and stimulated contributions, are found
to have the following general form:

Iu =
1

2�
�

−�

�

�Hu�2���u�2

+ N�	ul��gR�	ul��Fl��u� + N�	uh��gR�	uh��Fh��u��d�u,

�B1�

where u=s or i for signal and idler photons. The quantity
F������0

L�f��z ,���2dz ��= l ,h� describes the magnitude of
amplified SpRS and f� is given by

f�j�z,�s� = A�� j�L − z,�s� − Av
*� j�L − z,�s� , �B2�

with the polarization subscript j dropped, and where � ,v
= l ,h but ��v.

The degree of quantum correlation between the signal and
idler photons is obtained from Eqs. �38� and �A1�–�A6� us-
ing the definition given in Eq. �26�. When the signal and
idler are distinguishable with each other ��̄s� �̄i, Fig. 6�a��,
the correlation is given by

�c��� =
1

�2��2IsIi
��

−�

�

H��s�

� ��i�s − N�	sl��gR�	sl��Fl��s� − N�	sh�

��gR�	sh��Fh��s��e−i�s�d�s�2

, �B3�

where Fu��s�=�0
Lfu�z ,�s�fv�z ,�i�dz with u ,v= l or h �u

�v� and �i=�l+�h−�s; its analytical form can be obtained
using Eq. �B2�.

When the signal and idler photons are indistinguishable
on the basis of their frequencies ��̄s= �̄i, Fig. 6�b��, the pair
correlation for the experimental configuration shown in Fig.
8 can be obtained by using the definition in Eq. �23�. Its
general form is given by

�c��� =
Is

−2

�2��2��
−�

�

H��s���i�s − N�	sl��gR�	sl��Fl��s�

− N�	sh��gR�	sh��Fh��s��e−i�s�d�s�2

+
Is

−2

�2��2��
−�

�

�Hs�2���s�2 + N�	sl��gR�	sl��Fl��s�

+ N�	sh��gR�	sh��Fh��s��e−i�s�d�s�2

, �B4�

where the first term in Eq. �B4� provides the cross correlation
between the signal-idler pair. The second term is very similar
to Eq. �24�, and it reflects the self-correlation of signal pho-
tons.

In the case of orthogonal pumping, the photon fluxes for
the x and y polarization components are given by

Iux =
1

2�
�

−�

�

d�u�Hu�2���ux�2 + N�	uh��g��	uh��Fhx��u�

+ N�	ul���ga�	ul��Flx��u� + �gb�	ul��Flx� ��u��	 , �B5�

Iuy =
1

2�
�

−�

�

d�u�Hu�2���uy�2 + N�	ul��g��	ul��Fly��u�

+ N�	uh���ga�	uh��Fhy��u� + �gb�	uh��Fhy� ��u��	 ,

�B6�

where Fuj���=�0
L�fuj�z ,���2dz, fuj is given by Eq. �B2�, and

Fuj� is defined as

Fuj� ��� = �
0

L

�Pu�� j�z,���2 + Pv�� j�z,���2�dz , �B7�

with j=x ,y and u ,v= l ,h but v�u.
Similarly, Pxy and Pyx��� in Eq. �48� are given by

Pxy��� =
1

2�
�

−�

�

H��s���iy�sx − N�	sh��g��	sh��Fhx��s�

− N�	sl���ga�	sl��Flx��s�

+ �gb�	sl��Flx� ��s��	e−i�s�d�s, �B8�

Pyx��� =
1

2�
�

−�

�

H��s���ix�sy − N�	sl��g��	sl��Fly��s�

− N�	sh���ga�	sh��Fhy��s�

+ �gb�	sh��Fhy� ��s��	e−i�s�d�s, �B9�
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where Fuj��s�=�0
Lfuj�z ,�s�fvq�z ,�i�dz with �i=�l+�h−�s,

and Fuj� ��s� is defined as

Fuj� ��s� = − �
0

L

dz�Pu� j�z,�s��q�z,�i� + Pv� j�z,�s��q�z,�i�� ,

�B10�

where u ,v= l ,h with v�u and j ,q=x ,y with q� j.

APPENDIX C: DUAL PUMPING WITH CIRCULAR
POLARIZATIONS

In the case of orthogonal pumping with circular SOPs, the
noise operators in Eq. �58� are related to those in the basis of
linear polarizations as

m̂↑↑ =
1

2
�m̂xx + m̂yy + i�m̂xy − m̂yx�� , �C1�

m̂↓↓ =
1

2
�m̂xx + m̂yy − i�m̂xy − m̂yx�� , �C2�

m̂↑↓ =
1

2
�m̂xx − m̂yy − i�m̂xy + m̂yx�� , �C3�

m̂↓↑ =
1

2
�m̂xx − m̂yy + i�m̂xy + m̂yx�� . �C4�

These four equations together with Eq. �8� can be used to
find the commutation relationship for the noise operators in
the circular polarization basis.

As SRS-induced power transfer is negligible between or-
thogonally polarized pumps, Eq. �55� provides solutions for
the two pumps similar to Eq. �34� as

Auj�z� � Au exp�iz�kj��u� + ��0Pu + ��q�0�Pv�	 , �C5�

where u ,v= l ,h �u�v� and j ,q= ↑ ,↓ �j�q�. Au is the input
pump amplitude at �u. Using this solution in Eq. �58�, we
can find the field solutions for the signal and idler waves.
They have a form similar to Eq. �38� except that the sub-
script x and y are replaced by ↑ and ↓, respectively. In this
case, � j and � j �j= ↑ , ↓ � are still given by Eqs. �15� and �16�
except that Ap

2 is replaced by AlAh and 
 j is given by either
Eq. �59� or Eq. �60�. The parametric gain coefficient is found
to have the same form as Eq. �A1� but the other parameters
are given by

� j = k��s� + k��i� − k��l� − k��h�

+ �P0�� j�	sl� + �q�	sh� − �↓�0� − �0�0�� , �C6�

Kj =
1

2
�k��s� − k��i� + ��Pl − Ph��� j�	sl� − �q�	sh��	 ,

�C7�

��L� = expˆ�i/2�L�k��l� + k��h� + �P0��0�0� + �↓�0��	‰ ,

�C8�

where j ,q= ↑ ,↓ with j�q. The accumulated noise operators
in Eq. �38� are found to have the same forms as Eqs. �A5�

and �A6� except that the subscripts j ,q= ↑ ,↓ �j�q�, x and �
are replaced by ↑ and ↓, respectively, and � is given by

� =
1

2
�k��l� − k��h� + ��Pl − Ph���0�0� − �↓�0��	 . �C9�

APPENDIX D: CHSH PARAMETER

In the single pump configuration of Sec. III, a time-
multiplexing technique �19� or a polarization-diversity loop
�18� is used to construct a polarization-entangled state. In
this approach, the signal photon is coupled to the copolarized
idler but the two processes at different polarizations are in-
dependent of each other.

By using Eqs. �14�–�17�, we find that  1,  2, and E+���
are given by

 1��� =
1

4
��Is�Ii + �Pxx��� − Pyy����2� , �D1�

 2��� =
1

4
��Is�Ii + �Pxx��� + Pyy����2� , �D2�

E+��� = Is+Ii+ + �Pxx����2 + �Pyy����2, �D3�

where Iu+= Iux+ Iuy and �Iu= Iux− Iuy are total and difference
photon fluxes of the two polarization components �u=s , i�,
respectively, and Pqq�����Âsq�t+��Âiq�t�� �q=x ,y� is related
to the signal-idler pair correlation, as discussed in Sec. III.

In general, birefringent components are used to construct
four EPR Bell states �3,19�. Here we consider one of them,
assuming that the two FWM paths have the same phase. As
the two FWM paths are nearly identical,  1����0, it is easy
to show that the magnitude of S��� is maximized by setting,
for example, �s=� /8, �s�=−� /8, �i=0, and �i�=−� /4. These
values result in the following maximal value:

Sm��� =
4�2 2���

E+���
=

�2��Is�Ii + �Pxx��� + Pyy����2�
Is+Ii+ + �Pxx����2 + �Pyy����2

.

�D4�

If the pump power is split equally, Iux= Iuy, Pxx���=Pyy���,
and Eq. �D4� reduces to the simple form given in Eq. �77�.

Equations �D4� and �77� remain valid even when orthogo-
nally polarized noise background is present as long as the
photon fluxes �Iu and Iu+ in Eq. �D4� include this contribu-
tion. Hence �c��� in Eq. �77� should be given as the realistic
ratio between the true coincidence counting and accidental
one.

The situation is quite similar in the case of two copolar-
ized pumps �see Fig. 6�. If the signal and idler are photons
are indistinguisable ��̄s= �̄i, Fig. 6�b��, the photon self-
correlation also contributes to coincidence counting. How-
ever, the maximum CHSH parameter is still given by Sm���
=4�2 2��� /E+���, provided we employ the following expres-
sions:
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 2��� =
1

4
���Is�2 + �Pxx��� + Pyy����2 + �Pxx� ��� + Pyy� ����2� ,

�D5�

E+��� = Is+
2 + �Pxx����2 + �Pyy����2 + �Pxx� ����2 + �Pyy� ����2,

�D6�

where Pqq� �����Âsq
† �L , t+��Âsq�L , t�� �q=x ,y� is related to

the self-correlation of the x-polarized and y-polarized signal
photons, respectively. In the optimal case when the pump
power is equally split in two polarizations, Sm��� is still
given by the simple form of Eq. �77� but where �c��� is now
given by Eq. �43�.

In the case of orthogonally polarized pumps with linear
SOPs �see Figs. 7 and 11�, the x-polarized signal is coupled
to the y-polarized idler, and vice versa. The two eigenproc-
esses are also independent of each other.

When the signal and idler are distinguishable from each
other ��̄s� �̄i�, by using Eqs. �38�, �A5�, and �A6�, we find
that  1���,  2���, and E+��� are given by

 1��� =
1

4
��Is�Ii − �Pxy��� + Pyx����2� , �D7�

 2��� =
1

4
��Is�Ii − �Pxy��� − Pyx����2� , �D8�

E+��� = Is+Ii+ + �Pxy����2 + �Pyx����2. �D9�

Note that Pxy��� and Pyx��� are now given by Eqs. �B8� and
�B9� �or by Eqs. �49� and �50� at low pump power levels�,
respectively. As the two eigenprocesses are nearly identical
to each other,  2����0. The magnitude of the CHSH param-
eter is maximized by setting, for example, �s=� /8, �s�=
−� /8, �i=� /2, and �i�=3� /4, resulting in

Sm��� =
− 4�2 1���

E+���
. �D10�

Using Eqs. �D9� and �D7�, we find that Eq. �D10� reduces to
Eq. �78�.

If the signal and idler are identical ��̄s= �̄i� �Fig. 11�c��,
self-correlation contributes to coincidence counting. Sm��� is

still given by Eq. �D10� under the same angle setting, but
 1��� and E+��� are now modified to become

 1��� =
1

4
���Is�2 − �Pxy��� + Pyx����2 + �Pxx� ��� − Pyy� ����2� ,

�D11�

E+��� = Is+
2 + �Pxy����2 + �Pyx����2 + �Pxx� ����2 + �Pyy� ����2.

�D12�

If narrowband filters are used for the signal, Eqs. �D11� and
�D12� reduce to

 1��� =
1

4
���Is�2�1 + ��s����2� − �Pxy��� + Pyx����2� ,

�D13�

E+��� = Is+
2 + ��s����2�Isx

2 + Isy
2 � + �Pxy����2 + �Pyx����2,

�D14�

where �s��� is given by Eq. �25�. Because of the symmetry
of the two eigenprocesses, their pair correlations are the
same, and Eq. �D10� reduces to Eq. �79�.

In the case of orthogonally polarized pumps with circular
SOPs �see Fig. 12�, the two eigenprocesses are ↑l+↓h→↑s
+↓i and ↑l+↓h→↓s+↑i, which are independent of each other.
As a result,  1���=0. Here we only consider the case when
the signal and idler are distinguishable from each other ��̄s

� �̄i�. In this case,  2��� and E+��� are given by

 2��� = P↑↓
* ���P↓↑��� , �D15�

E+��� = Is+Ii+ + �P↑↓����2 + �P↓↑����2, �D16�

where Iu+= Iu↑+ Iu↓ �u=s , i�. The magnitude of the CHSH
parameter is maximized by setting, for example, �s=� /8,
�s�=−� /8, �i=0, and �i�=−� /4, resulting in

Sm��� =
2�2� 2��� +  2

*����
E+���

. �D17�

Using Eqs. �D15� and �D16�, we find that Eq. �D17� reduces
to Eq. �81�. Following a similar approach, we can find Sm���
for the case of identical signal and idler ��̄s= �̄i�.
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