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We study the ground states of rotating atomic Bose-Einstein condensates with dipolar interactions. We
present the results of numerical studies on a periodic geometry which show vortex lattice ground states of
various symmetries: triangular and square vortex lattices, “stripe crystal,” and “bubble crystal.” We present the
phase diagram �for systems with a large number of vortices� as a function of the ratio of dipolar to contact
interactions and of the chemical potential. We discuss the experimental requirements for observing transitions
between vortex lattice ground states via dipolar interactions. We finally investigate the stability of mean-field
supersolid phases of a quasi-two-dimensional nonrotating Bose gas with dipolar interactions.
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I. INTRODUCTION

One of the most dramatic manifestations of the collective
quantum behavior of a Bose-Einstein condensate is its un-
usual response to rotation. The formation of quantized vortex
lines, around which the phase of the condensate wave func-
tion changes by 2�, is a direct consequence of the existence
of a collective phase-coherent quantum state. The further or-
dering of quantized vortices at low temperatures into regular
vortex lattices is a signature not just of Bose-Einstein con-
densation but of the presence of nonzero �repulsive� interac-
tions between the constituent particles.

Techniques for rotating condensates in ultracold atomic
gases are now well established, and have led to very beauti-
ful demonstrations of the physics of quantized vortices in
these systems. Experimental studies of rapidly rotating
atomic Bose gases have shown evidence for the formation of
ordered arrays of very large numbers of quantized vortices
�1–3�, and detailed studies of the structure and dynamics of
these vortex lattices have been performed. These studies are
consistent with the expected properties for a Bose gas inter-
acting with short-range contact interactions �representing the
van der Waals forces�, for which the rotating ground state is
a triangular vortex lattice.

The achievement of Bose-Einstein condensation of chro-
mium 52 �4� opens up the possibility of experimental studies
of condensates with long-range interactions. Chromium has a
large permanent magnetic dipole moment, which leads to
significant dipolar interactions in addition to the usual short-
range interactions. It is of interest to ask how these long-
range interactions affect the vortex lattice ground states of
the rotating condensate. It has been shown �5� that the non-
local interactions arising from dipolar interactions can lead
to changes in the structure of the vortex lattices. The trian-
gular vortex lattice can be replaced by vortex lattices of dif-
ferent symmetries: square lattice, “stripe crystal,” and
“bubble crystal” phases. �For a related study of square and
stripe crystals see Ref. �6�.� The vortex lattice structure is
therefore a sensitive indication of the form of the interpar-
ticle interaction. However, the results of Ref. �5� are re-
stricted to the limit of weak interactions, when the mean

interaction energy is smaller than the level spacing of the
harmonic trap and the single-particle states are restricted to
the lowest Landau level �LLL� �7,8�.

In this paper we extend the results of Ref. �5� beyond the
weak interaction regime, and determine the vortex lattice
structures to be found for arbitrarily strong interactions. For
sufficiently weak interactions we recover the results of Ref.
�5�; we find ground states that are the square lattice, stripe
crystal, and bubble crystal phases predicted in Ref. �5� in the
LLL. We determine the effects of Landau-level mixing on
these states. We show that for strong interactions, these new
vortex lattice states are unstable to collapse of the conden-
sate. Our results establish the conditions required in order to
observe transitions in the vortex lattice ground state driven
by dipolar interactions.

We also describe the connections with possible “super-
solid” states of the nonrotating gas, and discuss the stability
of these states.

II. FORMULATION

We consider a BEC of atoms with mass M which are
confined in a harmonic trap with cylindrical symmetry about
the z axis. We denote the trap frequencies by �� and �� in
the axial and transverse directions, and the associated trap
lengths by a����� / �M����. The atoms are taken to interact
through both contact interactions and dipolar interactions,
with a potential

V�r� = g�3�r� + CdVd�r� , �1�

where g parametrizes the contact interactions, and Cd is the
strength of the dipole interaction potential Vd�r�. We consider
the atomic dipole moments to be aligned with the z axis, as
in the recent experiments �4�, which sets the functional form
for Vd�r�. Since the classical dipole-dipole interaction can
include also a delta-function contribution �9�, for clarity we
define the dipolar interaction potential by

Vd�r � 0� �
x2 + y2 − 2z2

�x2 + y2 + z2�5/2 �2�
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in which we exclude the point r=0, such that any contact
contribution of the dipole interaction is contained in the term
proportional to g in Eq. �1�. We consider the ratio g /Cd to be
a parameter that can be varied. For example, in the chro-
mium condensate g can be varied experimentally by using a
Feshbach resonance �4,10�. The system can remain stable
even for a small attractive contact interaction �g�0�. �We
note, however, that the q=0 Fourier transform of the effec-

tive potential, Ṽq=0, should remain positive.� The results of
Ref. �5� suggest that the mean-field approximation is excel-
lent even for very dilute systems which may result from fast
rotating gases. We thus employ here the Gross-Pitaevskii
model. We consider a system, rotating with angular fre-
quency �, and containing a large number of vortices, such
that near the center of the trap the particle density varies
weakly over the scale of the vortex spacing. In the rotating
frame, the Hamiltonian becomes equivalent to the Hamil-
tonian of a particle of charge q in a uniform magnetic field B,
with qB /M =2� �11,12�. We discretize space and write the
kinetic energy for this system in the form �13�

Ekin = − t�
	i,j


�i
*� je

i�ij + c.c., �3�

where 	i , j
 denotes the nearest neighbors of a square lattice
with lattice constant a. In our calculations, the lattice con-
stant a is chosen sufficiently small as to represent the con-
tinuum limit, with the particle mass M = ta2 /�2. The
“Peierls” phases are defined by the integral

�ij =
q

�
�

ri

rj

A · dl �4�

calculated between the positions of the lattice sites i and j.
We choose the Landau gauge for the vector potential A
=Bxŷ, which is convenient in our numerical calculations.

We determine the properties of a large array of vortices by
studying the system in a periodic geometry. Imposing peri-
odic boundary conditions under magnetic translations re-
quires that

LxLy = 2��2Nv, �5�

where Nv is the number of vortices in the simulation cell
with dimensions Lx, Ly. The magnetic length �=�� /qB
=�� /2M� arises as the natural length scale in this system.
Since we consider a system containing a large number of
vortices, we have ���� �14� so ��a� /�2. Vortex lattices
in periodic systems have been studied previously for the case
of contact interactions �15�.

Throughout this paper, we work in a quasi-two-
dimensional �2D� regime, valid when the confinement in the
longitudinal direction is sufficiently strong that the mean in-
teraction energy �which is on the order of the chemical po-
tential 	 �16�� is small compared to the level spacing ���.
We shall, however, allow mixing of Landau levels for the
in-plane motion, so shall work in the regime ��� 
	
��� which implies a�

2 /a�
2 �1, i.e., that the trap is oblate.

In the quasi-2D limit, 	����, the condensate wave function
is a gaussian along the rotation axis, i.e., ��x ,y ,z�
=��x ,y�e−z2/2a�

2
/ ��1/4a�

1/2�. Integrating the dipolar potential

energy along the z axis one obtains the effective dipolar in-
teraction in two dimensions,

Vd
2D�� � � � Vd�,z1 − z2�

e−�z1
2+z2

2�/a�
2

�a�
2 dz1dz2

=
1

2�2�a�
3
e�2/4��2 + �2�K0��2/4� − �2K1��2/4�� ,

�6�

where ��x2+y2, �� /a�, and Kn are modified Bessel
functions. When  is large compared to a�, the expression �6�
tends to 1/3, which is the dipolar energy for a 2D mono-
layer. We calculate 1 /3 by “Ewald summation” for the
present case of a periodic configuration of dipoles �17�, and
the remainder Vd

2D��−1/3 by direct summation within an
area with radius several times the length a� �this combination
is rapidly decaying with  so it converges quickly�.

For the energy minimization we use a variant of a norm-
preserving relaxation algorithm which capitalizes on a virial
relation �18� in order to fix the wavefunction norm. This is
fed with an initial guess and is iterated until an energy mini-
mum is reached. In order to investigate the vortex lattice
ground states, we initially simulate relatively large systems
containing Nv=8 or 16 vortices. �Typical numerical grid
sizes are Nx, Ny 50–60.� From these calculations, we find
the range of values of the parameters over which the system
is stable against collapse. We further identify the symmetries
of the vortex lattice ground states that appear, starting from
different initial conditions to give unbiased searches of vor-
tex lattices of different symmetry types. We subsequently
proceed to a systematic calculation of the energy for each of
the above-mentioned vortex lattice phases by using an appro-
priate simulation cell that is commensurate with the transla-
tional symmetry of that phase. We use a square cell in order
to obtain a square vortex lattice �e.g., Nx=10, Ny =10, Nv
=1�, a cell with Nx /Ny =�3 for a triangular vortex lattice
�e.g., Nx=11, Ny =19, Nv=2�, and accordingly for the other
vortex lattice phases. The typical lattice spacing, implied by
Eq. �5�, is �x=�y=0.25�. We find the energy of each type of
vortex lattice as a function of the parameter g /Cd, for various
interaction strength values measured by the chemical poten-
tial 	 �19�.

III. VORTEX LATTICES

The quantitative results depend on the asymmetry of the
trap, a� /a�=a� / ��2��. The phase diagram for the system
a� /�=0.4 is shown in Fig. 1, as a function of g /Cd and of
	 /��. The limit 	��� corresponds to the LLL. The region
of stability of the system is shown by the solid line. Within
the region of stability, we find a series of vortex lattice
ground states which include the vortex lattices of the sym-
metries found in the LLL calculation �5�: triangular and
square vortex lattices, stripe crystal, and bubble crystal
phases. �We refer the reader to Ref. �5� for illustrations of the
particle distributions in these phases.� The triangular vortex
lattice is the lowest energy state for all values of g /Cd to the
right of the dashed-dotted line. This includes, in particular,
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all positive values of g. On the left of the dashed-dotted line
a square vortex lattice has energy lower than the triangular
one. As g /Cd is further decreased the ground states are stripe
crystal phases �in the region between the dotted and the
dashed line� which can also be viewed as rectangular lattices
of the vortices �5�. We solve for the ground states in this
regime by varying the aspect ratio of the simulation cell and
optimizing the period of the stripes. As g /Cd is decreased the
aspect ratio of the rectangular lattice varies, causing the sepa-
ration between the stripes to become of larger period. For
values of g /Cd to the left of the dashed line we find that a
bubble crystal phase has the lowest energy. This is a triangu-
lar lattice of bubbles �clusters of particles�, with the vortices
arranged between the bubbles. The simplest bubble crystal
phase has four double vortices per bubble which are arranged
on the sites of the honeycomb lattice that is dual to the tri-
angular lattice of bubbles �5�.

Our results, presented in Fig. 1, show that the values of
g /Cd at which there are transitions between the vortex lattice
phases are only weakly dependent on the chemical potential
	. Thus the transitions are closely given by the LLL theory;
consistent with this the particle densities we find �not shown�
closely resemble those in the LLL �5�. We find that the main
effect of going beyond this weak-interaction regime is the
appearance of the instability to collapse for large values of
the chemical potential. The value of 	 /�� at which this
instability sets in is a strong function of g /Cd. We associate
this strong dependence to the varying particle density in
these phases. The bubble crystal phase has a very inhomoge-

neous density, so, for a given average density, the maximum
particle density is much larger in the bubble crystal phase
than in the triangular vortex lattice. Indeed, in the LLL limit,
	���, the particle density at the center of the bubble di-
verges at the point of instability, which is g /Cd→−8.49 for
LLL calculation �5� applied to a� /�=0.4 �20�.

Our results show that for large values of the chemical
potential only the triangular vortex lattice is stable. In this
limit, 	
��, the vortex cores are small compared to the
vortex spacing, and the interactions between the vortices
arise from the kinetic energy of the flow around the vortices.
This leads to a logarithmic repulsion between the vortices
�21�, and thus a triangular lattice ground state.

An estimate for the region of stability of the triangular
vortex lattice in the strongly interacting regime, 	 /��
1,
can be obtained by considering the condition for stability of
the gas in the regions between the vortices. Denoting the
spacing of the triangular vortex lattice by av
= ��4��1/2 /31/4��, we look for an instability to modes with
wave vectors larger than q=��2� /av� of a homogeneous
Bose gas moving with local velocity �� / �Mav� �� and � are
numerical factors of order 1�. An analysis of the Bogoliubov
spectrum �discussed in more detail below� shows that an in-
stability occurs for

	

��
�

A

B�a�/���Cd/�g + 4�Cd�� − 1
, �7�

where A=�3/ �2����2��2�2−2�2� and B= �2��231/4� /�2.
The functional form �7� provides a good description of the
boundary of stability of the triangular lattice in Fig. 1 at large
	 /�� for reasonable choices of � and �. This theory shows
that, for large 	 /��
1, the boundary of stability of the
triangular lattice tends to a fixed value g /Cd=−4�+B

a�

� that
increases with a� /�. �To determine the precise value of this
boundary would require a full solution of the Bogoliubov
modes for the triangular vortex lattice in this regime.�

We have investigated the effect of the trap asymmetry by
repeating our numerical calculations for a� /�=0.8 �a more
symmetrical trap�. The results for the region of stability and
the phase boundary between triangular and square vortex lat-
tices are qualitatively similar to the case of Fig. 1. We find
now that the transitions between the triangular and the square
vortex lattices occur for larger values of g /Cd�−2.6 as com-
pared to the case a� /�=0.4. This is consistent with results in
the LLL, and with the qualitative behavior of Eq. �7�. Fur-
thermore, the new vortex lattices are stable up to larger val-
ues of 	 /�� �up to 	 /���12 for the square lattice� for this
more symmetrical �less oblate� trap.

In order to observe transitions in the vortex lattice ground
states induced by dipolar interactions, it is necessary both to
tune g /Cd to a sufficiently negative value, using, for ex-
ample, a Feshbach resonance, and also to ensure that the
particle density is sufficiently dilute �or interactions suffi-
ciently weak� that 	 /�� is sufficiently small for the new
vortex lattice states to be stable. We see in Fig. 1 that this
requires 	 /���8 and g /Cd�−4.5 for the square lattice to
be observed. �Stability of the stripe crystal and bubble crystal
requires more stringent conditions.� Our numerical calcula-
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FIG. 1. The phase diagram for a trap asymmetry a� /�=0.4. The
horizontal axis gives the ratio of the contact to dipolar interactions
and the vertical axis is the chemical potential �normalized to the
energy corresponding to the rotation frequency � of the conden-
sate�. The condensate is unstable to collapse on the left of the solid
line. Marked on the figure are the regions where vortex lattices of
different symmetries are the ground state of the system. The lines
are fits to numerical results marked by circles.

VORTEX LATTICES IN BOSE-EINSTEIN CONDENSATES… PHYSICAL REVIEW A 75, 023623 �2007�

023623-3



tion gives directly the number of atoms per vortex that cor-
respond to the above conditions. For the parameters relevant
for 52Cr �4�, and choosing �=2��100 Hz, the above con-
ditions require that the number of particles per vortex be �
�n2d /nv�1300. Similarly, for a� /�=0.8, the conditions for
stability of the square vortex lattice �	 /���12, g /Cd�
−2.5� lead to ��3000. While it is challenging to achieve a
vortex lattice in a sufficiently dilute atomic gas, we note that
these conditions are in well excess of what has been achieved
in rapidly rotating rubidium condensates �1,3�.

Previous calculations of the effects of dipolar interactions
on vortex lattices performed in a trap geometry �22� found
direct transitions from triangular vortex lattice to collapse. It
is not straightforward to make direct connections between
the present results for the phase diagram of a homogeneous
vortex lattice, with those studies on inhomogeneous trapped
systems. However, we note that in the studies of Ref. �22�
the number of vortices is relatively small, so the confinement
induces a sizeable variation in the particle density even on
the scale of a vortex spacing. It is possible that, owing to the
higher particle density at the center of the trap, a trapped
system with a small number of vortices is less stable to col-
lapse. Our results, Fig. 1, apply to a system with a large
number of vortices such that density variation over the scale
of the vortex lattice constant is small.

IV. NONROTATING DIPOLAR BOSE GAS

We now turn to investigate the nonrotating gas. It is natu-
ral to ask whether the stripe and bubble states that appear for
a rotating condensate are manifestations of a “supersolid,” in
which density-wave order appears spontaneously, in the non-
rotating ground state. In the latter case one would expect its
response to rotation to involve the vortices being placed in
regions of low particle density. Depending on the symmetry
of the supersolid state this could lead to particle distributions
similar to those of the stripe crystal and bubble crystal states.

A further motivation in this direction is offered by the
development of a roton minimum in the excitation spectrum
of a homogeneous condensate with dipolar interactions
�23,24� which can touch zero energy at a finite wave vector.
This indicates an instability of the homogeneous Bose gas
and is suggestive of a possible phase transition to a density-
wave state �e.g., a condensate of Bogoliubov modes with
nonzero wave vector�.

The Bogoliubov modes of a quasi-2D homogeneous con-
densate with dipolar interactions were discussed in Ref. �25�.
For a gas with density n2d the chemical potential is 	

=n2dṼq=0, and the excitation spectrum is E�q�
=��q��q+n2dṼq�, where �q=�2q2 / �2M�, and

Ṽq =
g + 4�Cd

�2�a�

− 2�Cdqeq2a�
2/2 erfc�qa�/�2� �8�

is the Fourier transform of the effective 2D interaction �26�.
If, as above, one considers g to be tuned to negative val-

ues, the Bogoliubov mode develops a roton minimum that
becomes unstable even for the quasi-2D regime, 	����, for
g /Cd=−4�+�2�3Cdn2d / �a�����. �The case g�0 was not

considered in Ref. �25�, and consequently the instability dis-
cussed there, for g�

4
3�Cd, occurs outside of the regime of

validity of the quasi-2D approximation, in the crossover to
the 3D regime 	����.�

We have looked numerically for supersolid states in the
quasi-2D Bose gas. We set �=0 in the code used for the
numerical calculations described above, chose parameters
close to the instability, and looked for stable �or metastable�
states of the system. For all parameter values that we have
tested �which are in the quasi-2D regime�, we find that the
only stable state is the homogeneous Bose gas. Configura-
tions with “supersolid” density wave order �showing a trian-
gular lattice of peaks in the density� are unstable in all cases
that we have studied. The collapse mechanism involves a
process in which all particles accumulate into one of the
peaks, generating a region of the sample in which the density
diverges. We have tested this conclusion by independent nu-
merical calculations �based on a discretization in momentum
space, and minimization by the conjugate gradient method�
and have found consistent results. Thus we conclude that,
within mean-field theory, there are no stable supersolid
phases for an infinite quasi-2D Bose gas with interaction �1�.

V. CONCLUSIONS

We have determined the phase diagram for a rapidly ro-
tating atomic Bose gas with dipolar interactions, beyond the
weak interaction regime. Our results establish that dipole in-
teractions can drive transitions from the triangular vortex lat-
tice into vortex lattices of various different symmetries.
These provide estimates of the experimental parameters that
are required in order to observe vortex lattice ground states
of types other than triangular.

We also investigated the fate of a nonrotating quasi-2D
dipolar Bose gas at the point at which the homogeneous
Bose gas becomes unstable to Bogoliubov modes with a fi-
nite wavelength. Our calculations indicate that, within the
mean-field approach used, there do not exist stable super-
solid states, but that the homogeneous Bose gas becomes
unstable to collapse.

The stripe and bubble phases discussed above for a rotat-
ing gas are therefore not manifestations of stable supersolid
phases of the nonrotating gas. Rather, one should view the
rotation as acting to stabilize the density-wave order that the
dipolar interactions tend to induce in the dipolar Bose gas.
The rotation introduces a length scale, the magnetic length �,
which, in the weakly interacting regime 	 /���1, sets the
minimum wavelength over which the condensate wave func-
tion can vary. This minimum length scale prevents collapse
of the system provided interactions are sufficiently weak.

In this work we have considered rotating bosonic atomic
species in the regime of high filling factor �11�, where mean-
field theory is accurate and the ground states are vortex lat-
tices �11,5�. It is also of interest to consider the case of ro-
tating fermionic atoms �or molecules� interacting with
dipolar forces �27�. When the filling factor is large �i.e.,
when the Fermi level lies in a high Landau level� one expects
Hartree-Fock mean-field theory to be accurate �28�. The
mean-field states of quasi-2D dipolar atomic Fermi gases
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will be qualitatively similar to those of electrons in semicon-
ductor systems �interacting with Coulomb interactions�
�29,28�. Depending on the filling of the partially occupied
Landau level, the ground state will be a stripe or bubble
phase of similar translational symmetry to the states dis-
cussed above �29,28�.

Note added: Recently, we learned that G. Shlyapnikov
and P. Pedri have reached the same conclusion: that putative

supersolid states in the quasi-2D Bose gas with the interac-
tion �1� are unstable �30�.
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