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The properties of systems with Bose-Einstein condensate in external time-independent random potentials are
investigated in the frame of a self-consistent stochastic mean-field approximation. General considerations are
presented, which are valid for finite temperatures, arbitrary strengths of the interaction potential, and for
arbitrarily strong disorder potentials. The special case of a spatially uncorrelated random field is then treated in
more detail. It is shown that the system consists of three components, condensed particles, uncondensed
particles, and a glassy density fraction, but that the pure Bose glass phase with only a glassy density does not
appear. The theory predicts a first-order phase transition for increasing disorder parameter, where the conden-
sate fraction and the superfluid fraction simultaneously jump to zero. The influence of disorder on the ground-
state energy, the stability conditions, the compressibility, the structure factor, and the sound velocity are
analyzed. The uniform ideal condensed gas is shown to be always stochastically unstable, in the sense that an
infinitesimally weak disorder destroys the Bose-Einstein condensate, returning the system to the normal state;
but the uniform Bose-condensed system with finite repulsive interactions becomes stochastically stable and
exists in a finite interval of the disorder parameter.
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I. INTRODUCTION

The existence of the condensate fraction and its relation to
the superfluid fraction in random Bose media have been an
intriguing research subject for many years. First, the objects
of interest have been 4He-filled porous media, such as Vycor
glasses, aerogel glasses, and grained powders �1,2�. Recently,
the physics of dilute Bose gases has gained much interest
�see the books �3� and review articles �4–7��. Several experi-
ments with Bose-Einstein condensates in random potentials
have been accomplished, and different techniques of creating
random fields have been proposed. For example, random po-
tentials can be formed by laser speckles �8,9� or by randomly
varying magnetic fields in the close proximity of a current-
carrying wire �10�. Quasirandom potentials can also be cre-
ated by using two-color quasiperiodic noncommensurate op-
tical lattices �11�.

In the theory of disordered Bose systems, one considers
two types of models. Of one type are the lattice models char-
acterized by a boson Hubbard Hamiltonian with random site
potentials. Such random potentials suppress or may even
completely destroy the long-range order related to Bose-
Einstein condensates �12�. Fisher et al. �13� have suggested
that sufficiently strong disorder in a lattice leads to the ap-
pearance of a new phase, different from insulating and su-
perfluid phases. This is the Bose glass phase, which is char-
acterized by a finite compressibility, the absence of a gap in
the single particle spectrum, and a nonvanishing density of
states at zero energy. The phases in these lattice models can
be classified �14� on the basis of two order parameters, the
condensate fraction n0 and the superfluid fraction ns. In the
insulating phase, n0=0 and ns=0. For the superfluid phase,
both order parameters are nonzero, n0�0 and ns�0; and for
the Bose glass phase, there is n0�0, but there is no super-
fluidity, ns=0. The occurrence of the lattice Bose glass, aris-
ing between the insulating and superfluid phases, has been

investigated in several theoretical papers �15–21� and con-
firmed in a recent experiment �11�.

In a second class of models the disordered bosons can be
thought of as being immersed in an initially uniform system
in a random external potential, with no regular lattices im-
posed. This type of model was first studied by Huang and
Meng �22�, who considered the case of asymptotically weak
interactions and of asymptotically weak disorder in the
Bogolubov approximation. Their results were recovered by
Giorgini et al. �23� using the hydrodynamic approximation,
which is mathematically equivalent to the Bogolubov ap-
proximation. Lopatin and Vinokur �24� estimated the shift of
the critical temperature due to weak disorder in a weakly
interacting gas, which also was studied by Zobay �25�, using
renormalization group techniques. If the results obtained for
asymptotically weak disorder are formally extended to strong
disorder, then one comes �22,26� to the state, where n0�0
but ns=0, which corresponds to the Bose glass phase. How-
ever, Monte Carlo simulations �27� for a gas with strong
disorder, although it confirmed that the superfluid fraction
can be smaller than the condensate fraction, found no pres-
ence of the Bose glass phase. Also, no Bose glass was found
in the random-phase approximation at zero temperature and
asymptotically weak interactions �28�. Instead, increasing
disorder led to a first-order transition from the superfluid to
the normal phase. Thus the situation with Bose-condensed
systems in random potentials is well-understood for the limit
of weak interactions and weak disorder. However, it remains
controversial when the interactions and/or the disorder be-
come larger.

The aim of the present paper is to develop an approach for
treating Bose-condensed systems in random potentials, when
particle interactions and strength of disorder can be arbitrary.
We analyze the main properties of the system and the influ-
ence of disorder and the interaction strength on these prop-
erties. In particular, the ideal uniform gas with Bose-Einstein
condensate is shown to be stochastically unstable, in the

PHYSICAL REVIEW A 75, 023619 �2007�

1050-2947/2007/75�2�/023619�16� ©2007 The American Physical Society023619-1

http://dx.doi.org/10.1103/PhysRevA.75.023619


sense that an infinitesimally weak random noise destroys the
condensate, turning the system to the normal noncondensed
state. The stochastic instability could be one of the reasons
why the ideal Bose-Einstein condensation is not experimen-
tally possible, and confining potentials and atomic interac-
tions are necessary for the Bose-Einstein condensation to be
realized in the laboratory. Nonvanishing repulsive atomic in-
teractions stabilize the condensate, which can then exist in a
finite domain of temperatures and of the disorder strength. At
a temperature-dependent value of the latter the Bose-
condensed system undergoes a first-order phase transition
and transforms to the normal phase. Throughout the paper a
system of units is used, where �=1 and kB=1.

II. SYSTEM HAMILTONIAN

The Hamiltonian energy operator is taken in the standard
form

Ĥ��� =� �†�r��−
�2

2m
+ ��r����r�dr

+
1

2
�0� �†�r��†�r���r���r�dr , �1�

in which ��r�=��r , t� is the Bose field operator, ��r� is a
random external potential, and the particle interaction
strength

�0 = 4�
as

m
�2�

is expressed through the scattering length as and particle
mass m.

The averaging over the random potentials will be denoted
by the double angle brackets ��¯		. The distribution over the
random fields is assumed to be zero-centered, so that

����r�		 = 0. �3�

The stochastic average

����r���r��		 = R�r − r�� �4�

defines the correlation function R�r�. The random potential
and the correlation function are supposed to be real and the
latter is also symmetric, such that

�*�r� = ��r�, R*�r� = R�− r� = R�r� . �5�

Therefore their Fourier transforms enjoy the properties

�k
* = �−k, Rk

* = R−k = Rk. �6�

The Fourier transform �k possesses also the important
property �k→0, when k→� as explained in Appendix A. In
the Fourier representation, Eq. �4� reduces to

���k
*�p		 = �kpRkV . �7�

For the particular case of white noise, when

R�r� = R0��r� , �8�

one has

���k
*�p		 = �kpR0V . �9�

The main part of the present paper will not depend on the
particular type of the distribution over the random potentials,
and hence on the concrete choice of the correlation functions
�4� and �7�; but at the final stage, in order to illustrate prac-
tical calculations, we shall specialize on the white noise char-
acterized by Eqs. �8� and �9�.

All operators from the algebra of local observables are
functionals of the field operators ��r� and �†�r� and of the
random variable ��r�. This implies that there are two kinds of

averages. One kind is the stochastic average ��Â		 over the
distribution of the random potentials, and another one is the
quantum average with respect to a Hamiltonian H, which is
denoted as

�Â	H 
 Tr �̂Â , �10�

with the statistical operator

�̂ =
exp�− 	H�

Tr exp�− 	H�
. �11�

Here the Hamiltonian H includes, but is, in general, different

from Ĥ and remains to be specified below. 	
1/T is the
inverse temperature and the trace is over the Fock space
F��� generated by the related field operators �29,30�. The
total average will be denoted as

�Â	 
 ��Tr �̂Â		 . �12�

To describe a Bose-condensed system, where the global
gauge symmetry is broken, one employs the Bogolubov shift

��r� → �̂�r� 
 
�r� + �1�r� , �13�

where 
�r� is the condensate wave function. The field vari-
able 
�r� and the operator �1�r� are taken as linearly inde-
pendent and orthogonal to each other,

� 
*�r��1�r�dr = 0. �14�

�1�r� is the operator of uncondensed particles, satisfying the
Bose commutation relations �31–33�. The condensate func-
tion is normalized to a fixed, still undetermined, positive
value N0, the number of condensed particles

N0 =� �
�r��2dr . �15�

The physical value of N0 must then be chosen by minimizing
the thermodynamic potential. The number of uncondensed
particles N1=N−N0 is given by the average

N1 = �N̂1	 �16�

of the number-of-particle operator

N̂1 
� �1
†�r��1�r�dr . �17�

The total number of particles in the system is
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N = �N̂	 = N0 + N1, �18�

with the operator

N̂ 
� �̂†�r��̂�r�dr = N0 + N̂1, �19�

in which �̂�r� is the shifted field operator �13�.
According to these definitions, for the correct description

of a Bose-condensed system, which would be self-consistent
in any approximation, one therefore has to employ a repre-
sentative ensemble �34� taking into account the normaliza-
tion conditions �15� and �16� or �18�. This requires �34–36�
one to use the grand Hamiltonian

H 
 Ĥ − �0N0 − �1N̂1, �20�

where Ĥ= Ĥ��̂�, while �0 and �1 are the Lagrange multipli-
ers guaranteeing the validity of normalizations �15� and �16�.
Here we shall consider an equilibrium system, but a similar
representative ensemble can also be defined for nonequilib-
rium Bose-condensed systems �34,37�.

III. THERMODYNAMIC POTENTIAL

For the frozen disorder, the grand thermodynamic poten-
tial is

� = − T��ln Tr e−	H		 . �21�

To provide thermodynamic stability, potential �21� is to be
minimal with respect to the number of condensed particles,

��

�N0
= 0,

�2�

�N0
2  0. �22�

The system free energy can be defined as

F = � + �0N0 + �1N1. �23�

At the same time, keeping in mind that in standard experi-
ments only the total number of particles N is fixed, but not
N0 and N1 separately, we may write

F = � + �N . �24�

Comparing Eqs. �23� and �24� yields the definition of the
system chemical potential

� 
 �0n0 + �1n1, �25�

in which n0
N0 /N, n1
N1 /N are the corresponding frac-
tions of particles, satisfying the normalization condition n0
+n1=1.

It is worth noting that, instead of working with the grand
ensemble containing two Lagrange multipliers, we could re-
sort to the canonical ensemble with no Lagrange multipliers
but with two constraints that are to be satisfied at each step
of any calculational procedure. One constraint is that the
number of condensed particles N0=N0�T ,N� be fixed by sta-
bility conditions, while the total number of particles N be
kept fixed at each step, but not solely on average. Such a
canonical ensemble could, probably, be realized with the

help of the Girardeau-Arnowitt representation �38�. How-
ever, a weak point of the latter is not only that it leads to
rather cumbersome calculations but, most importantly, that it
does not allow simple self-consistent approximations. For
instance, it is well-known that the Hartree-Fock-Bogolubov
�HFB� approximation is not self-consistent in the frame of
the Girardeau-Arnowitt representation, yielding an unphysi-
cal gap in the spectrum �38� for a uniform Bose system.
Girardeau �39� stressed the necessity to deal with the com-
plete Hamiltonian in order to make the canonical-ensemble
approach self-consistent and to remove the unphysical gap.
Indeed, Takano showed �40� that this could really be done at
least in principle, if one would use all terms of the Hamil-
tonian. However, this necessity makes the problem practi-
cally unsolvable: in general, an exact solution for the prob-
lem is not known, and as soon as an approximation is
involved, one confronts the danger of getting not self-
consistent results �41�. Contrary to this, relaxing the imposed
constraints, by introducing the corresponding Lagrange mul-
tipliers, being mathematically equivalent, makes all calcula-
tions much simpler, at the same time preserving the theory
self-consistency for any given approximation �34–37�.

In order to calculate the thermodynamic potential �21� for
the frozen disorder, one often takes recourse to the so-called
replica trick, as is used in the theory of spin glasses �42�.
Here we shall employ another approach, based on the
method of separation of variables. The idea of this method is
as follows. The main aim is to transform the given Hamil-
tonian H to a separable form

Hsep = Hq + H�, �26�

in which Hq depends only on quantum variables, while H�

depends only on classical stochastic variables. Such a trans-
formation can be achieved by means of canonical transfor-
mations and some simplifications. Then the corresponding
thermodynamic potential

�sep 
 − T��ln Tr e−	Hsep		 �27�

reduces to the sum

�sep = − T ln Tr e−	Hq + ��H�		 , �28�

in which the manipulations with quantum and stochastic
variables are separated. If the separable Hamiltonian �26�
does not exactly represent the initial H, so that

H = Hsep + ĥ �ĥ 
 H − Hsep� , �29�

then corrections to the thermodynamic potential can be ob-

tained by perturbation theory with respect to ĥ, giving in the
second order

� = �sep + �ĥ	 − 	�2�ĥ� , �30�

where �2�ĥ� is the dispersion �2�ĥ�
�ĥ2	− �ĥ	2. In agree-

ment with Eq. �30�, one has ���sep+ �ĥ	, which is the
Gibbs-Bogolubov inequality.

The method of separation of variables has no need for the
replica trick. The derivation of the separable Hamiltonian
�26� can be accomplished by means of decouplings and ca-
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nonical transformations and does not require the existence of
small parameters. All essential nonlinearities with respect to
particle interactions and disorder strength can be preserved in
the Hamiltonian �26�. The use of the Gibbs-Bogolubov in-
equality, mentioned above, can be done in the standard varia-
tional way, by minimizing the right-hand side of this inequal-
ity, which again does not require the existence of small
parameters. Therefore this method makes it possible to con-
sider strong interactions and strong disorder.

IV. STOCHASTIC QUANTIZATION

According to Eq. �3�, the external random potential is
zero on average. This allows us to treat the condensate wave
function, which is the system order parameter, as uniform, so
that �22�


�r� = ��̂�r�	 = ��0, �31�

where �̂�r� is the shifted field operator, �0
N0 /V is the
condensate density, and the total average �12� is assumed. In
agreement with Eq. �13�, one has

��1�r�	 = 0. �32�

Expanding the field operators of uncondensed particles in
plane waves, we represent the grand Hamiltonian �20� as the
sum

H = 
n=0

4

H�n� + Hext. �33�

Here the zero-order term

H�0� = �1

2
�0�0 − �0�N0 �34�

does not contain the operators of uncondensed particles. For
the first-order term, because of the property �14�, we get

H�1� = 0. �35�

The term of second order, with respect to the operators ak,
becomes

H�2� = 
k�0

� k2

2m
+ 2�0�0 − �1�ak

†ak

+
1

2 
k�0

�0�0�ak
†a−k

† + a−kak� . �36�

For the third-order term, we have

H�3� =��0

V

k,p

��0�ak
†ak+pa−p + a−p

† ak+p
† ak� , �37�

where the prime on the summation symbol implies that k
�0, p�0, and k+p�0. The fourth-order term is

H�4� =
1

2V


q

k,p

��0ak
†ap

†ak−qap+q, �38�

where the prime on the summation sign means that k�0,
p�0, k−q�0, and p+q�0. The last term in Eq. �33� cor-

responds to the action of the external random field, given by
the expression

Hext = �0�0 +��0

V

k�0

�ak
†�k + �k

*ak� +
1

V


k,p��0�
ak

†ap�k−p.

�39�

When one assumes asymptotically weak interactions, one
omits the terms H�3� and H�4�, thus, coming to the Bogolubov
approximation �31–33�. Since we aim at considering arbi-
trarily strong interactions, we have to keep all terms of
Hamiltonian �33�; but we may simplify the terms H�3� and
H�4� by means of the Hartree-Fock-Bogolubov �HFB� ap-
proximation �35,36�. Then, we get

H�3� = 0. �40�

To express the result for the term H�4� in a compact form, we
introduce the normal average

nk 
 �ak
†ak	 , �41�

which is the momentum distribution of atoms, and the
anomalous average

�k 
 �aka−k	 . �42�

The quantity ��k� can be interpreted as the momentum distri-
bution of paired particles �35�. Then the density of uncon-
densed particles is

�1 =
1

V

k�0

nk, �43�

while the sum

�1 =
1

V

k�0

�k �44�

gives the density ��1� of paired particles. Applying the mean-
field approximation we find from Eq. �38�

H�4� = 
k�0

�1�0�ak
†ak −

1

2
nk� +

1

V


k,p��0�
�0�nk+pap

†ap

+
1

2
��k+pap

†a−p
† + �k+p

* a−pap� −
1

2
�nk+pnp + �k+p�p

*�� .

�45�

Special care has to be taken in reorganizing expression
�39� describing the interaction of atoms with external ran-
dom fields. The second term in Eq. �39� corresponds to lin-
ear interactions between random fields and atoms, while the
third term describes nonlinear interactions. If one omits the
third term, as has been done by Huang and Meng �22�, thus
keeping solely the linear interactions, then one limits oneself
by weak disorder. Since our aim is to consider arbitrarily
strong disorder, we need to keep this term. The difficulty
with treating the nonlinear term in Eq. �39� is that, in the
mean-field approximation, it is zero on the average, as far as
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�ak
†ap�k−p	 � �ak

†ap	��k−p	 = 0. �46�

If we would treat this term in the simple mean-field manner
replacing ak

†ap�k−p by

�ak
†ap	�k−p + ak

†ap��k−p	 − �ak
†ap	��k−p	 = �kpnk�0,

we would kill all quantum effects, reducing the term to the
trivial form. The way out of this problem is to employ a
more refined approximation.

We shall use the ideas of the stochastic mean-field ap-
proximation, which has been applied to accurately treat
quantum and stochastic effects in systems interacting with
electromagnetic fields �43� and in spin systems �44,45�. In
considering these systems, one encounters the same type of
difficulty. If one uses the simple mean-field approximation,
often called semiclassical, then quantum and random effects
are washed out, which may lead to principally wrong results.
To accurately take account of the latter effects, the mean-
field approximation is to be modified �43–45�.

Let us remember that we have two types of averages for

any operator Â. The stochastic average ��Â		 and the quan-

tum average �Â	H defined in Eq. �10�. The operators of un-
condensed particles ak and ak

† are, strictly speaking, functions
of the random fields �k. We may separate the quantum and
stochastic averages and consider the quantum average

�k 
 �ak	H, �47�

which is a function of the random fields. This quantity �k is
not zero, even though its total average

�ak	 = ���k		 = 0 �48�

is of course zero, according to Eq. �32�. In the nonlinear term
of Eq. �39�, in the spirit of the stochastic mean-field approxi-
mation �43–45�, we now make a mean-field type decoupling
with respect to the quantum averaging only, not with respect
to the stochastic average, that is, we write

ak
†ap�k−p = �ak

†�ap	H + �ak
†	Hap − �ak

†	H�ap	H��k−p. �49�

One may notice that if we would employ in decoupling �49�
the total averages of type �12�, instead of the quantum aver-
ages of type �10�, then the left-hand side of Eq. �49�, accord-
ing to Eq. �48�, would be reduced to zero, similar to Eq. �46�.
In order to retain the influence of the left-hand side term of
Eq. �49�, we invoke here not the total but only the quantum
averages. Using the latter, instead of the total averages �12�,
makes decoupling �49� more general, thus allowing us to
retain the influence of nonlinear stochastic terms �43–45�.
Let us also define the stochastic field

�k 

�N0

V
�k +

1

V

p�0

�p�k−p. �50�

Then the random-field Hamiltonian �39� transforms to

Hext = �0�0 + 
k�0

�ak
†�k + �k

*ak� −
1

V


k,p��0�
�k

*�p�k−p,

�51�

where �0=���r�dr.

Finally, introducing the notation

�k 

k2

2m
+ 2��0 − �1, �52�

where �
�0+�1 is the total particle density, and defining

� 
 ��0 + �1��0, �53�

we obtain for Hamiltonian �33� the form

H = EHFB + 
k�0

�kak
†ak +

1

2 
k�0

��ak
†a−k

† + a−kak� + Hext,

�54�

in which

EHFB 
 H�0� −
1

2�
�2�1

2 + �1
2��0N �55�

and Hext is given by Eq. �51�. It is worth emphasizing that
Hamiltonian �54� has the mean-field form with respect to the
field operators ak, but it contains, via Hext, the nonlinear
terms with respect to the random variables �k, �k, and �k.
The latter allows us to consider disorder of arbitrary strength.

V. SEPARATION OF VARIABLES

Quantum and stochastic variables in the Hamiltonian �54�
are yet intermixed. To separate them, we shall use the
method of canonical transformations. First, we employ the
usual Bogolubov canonical transformation

ak = ukbk + v−k
* b−k

† , ak
† = uk

*bk
† + v−kb−k. �56�

Using these in Eq. �54�, we get

H = EB + 
k�0

�kbk
†bk + Hext, �57�

where

EB 
 EHFB +
1

2 
k�0

��k − �k� �58�

and �k is the Bogolubov spectrum

�k = ��k
2 − �2. �59�

Equation �51�, containing random fields, now becomes

Hext = �0�0 + 
k�0

�bk
†Dk + Dk

*bk� −
1

V


k,p��0�
�k

*�p�k−p,

�60�

where

Dk 
 �uk
* + vk

*��k. �61�

The coefficient functions in transformation �56� are defined
by the equations

uk
2 =

��k
2 + �2 + �k

2�k
=

�k + �k

2�k
, vk

2 =
��k

2 + �2 − �k

2�k
=

�k − �k

2�k
.

�62�
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Then we apply another canonical transformation

bk = b̂k −
Dk

�k
, bk

† = b̂k
† −

Dk
*

�k
, �63�

which transforms Hamiltonian �60� into

H = EB + 
k�0

�kb̂k
†b̂k + H�, �64�

where EB is the nonoperator part �58�, the second term does
not depend on stochastic variables, while the last term

H� = �0�0 − 
k�0

�k
*�k

�k + �
−

1

V


k,p��0�
�k

*�p�k−p �65�

contains only stochastic fields, but no quantum variables.

In that way, the quantum operator variables b̂k and b̂k
† and

the stochastic fields �k, �k, and �k are separated in Hamil-
tonian �64�. This will allow us to calculate different averages
and to analyze the influence of random fields on the system.

VI. RANDOM FIELDS

Let us, first, consider the Bogolubov spectrum �59�. As is
seen, it does not explicitly depend on the random fields, thus
representing the spectrum of collective excitations for a sys-
tem that is uniform on the average. For a uniform system,
there exists the Hugenholtz-Pines theorem �46,47� requiring
that the spectrum be gapless, so that

lim
k→0

�k = 0, �k � 0. �66�

Then, from Eqs. �52�, �53�, and �59�, it follows that

�1 = �� + �1 − �1��0. �67�

As a result, Eq. �52� reduces to

�k =
k2

2m
+ � . �68�

The Bogolubov spectrum �59� acquires the form

�k =��ck�2 + � k2

2m
�2

, �69�

in which the sound velocity

c 
��

m
�70�

is expressed through the quantity

� 
 mc2 = ��0 + �1��0, �71�

following from Eq. �53�.
Another way of deriving Eq. �67� and, respectively, the

Bogolubov spectrum �69� is as follows. We may consider the
equations of motion for the matrix Green function G�k ,��
= �G�	�k ,��� as has been done by Bogolubov �48�. The pres-
ence of the random-field Hamiltonian �39� contributes to
these equations with the terms all of which, in the mean-field

approximation, can be set zero, in agreement with Eq. �46�.
For the Green functions, one has the Bogolubov theorem
�48�

�G11�k,0� − G12�k,0�� �
mn0

k2 ,

from which the Hugenholtz-Pines relation �1=�11�0,0�
−�12�0,0� follows, where ��k ,��= ���	�k ,��� is the matrix
self-energy. In the HFB approximation, we have �11�0,0�
=2��0 and �12�0,0�= ��0+�1��0. This gives us exactly the
same equation �67�.

Combining the canonical transformations �56� and �63�,
we get

ak = ukb̂k + v−k
* b̂−k

† −
�uk + vk�2

�k
�k,

ak
† = uk

*b̂k
† + v−kb̂−k −

�uk + vk�2

�k
�k

*. �72�

Because of the form of the Hamiltonian �64�, one has �b̂k	
= �b̂kb̂p	=0. Then, from Eqs. �47� and �72�, we find

�k = −
�k

�k + �
. �73�

Hence

����k�2		 =
����k�2		

��k + ��2 . �74�

By Eq. �48�, we also have ��k	= ���k		=0. Substituting rela-
tion �73� into Eq. �50�, we come to the equation

�k =
�N0

V
�k −

1

V

p�0

�k−p�p

�p + �
�75�

defining the random field �k. This is a Fredholm equation of
the second kind.

Using Hamiltonian �64�, it is straightforward to get the
momentum distribution of quasiparticles

�k 
 �b̂k
†b̂k	 = �e	�k − 1�−1 =

1

2
coth� �k

2T
� −

1

2
. �76�

For the momentum distribution of atoms �41�, we find

nk = �uk
2 + vk

2��k + vk
2 + ����k�2		 �77�

and for the anomalous average �42�, we have

�k = �1 + 2�k�ukvk + ����k�2		 . �78�

With Eqs. �62� and �76�, we finally obtain the normal aver-
age

nk =
�k

2�k
coth� �k

2T
� −

1

2
+ ����k�2		 �79�

and the anomalous average
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�k = −
�

2�k
coth� �k

2T
� + ����k�2		 . �80�

The contribution of the random potential comes through the
last terms in Eqs. �79� and �80�. These terms are related to
the random field �k by means of Eqs. �73� and �74�. and the
random field �k is defined as the solution of the Fredholm
equation �75�.

VII. GLASSY FRACTION

In order to elucidate the physical meaning of the terms,
induced by the random potential, let us draw some analogies
with the theory of spin glasses �42�. For the Bose system, we
may define an order parameter, which is the analog of the
Edwards-Anderson order parameter in spin glasses �42�. To
this end, we recall that the total average ��1	=0, according to
Eq. �32�; but, separating the quantum and stochastic aver-
ages, we can introduce the density of the glassy fraction

�G 

1

V
� �����1�r�	H�2		dr . �81�

Passing to the Fourier transform of �1�r� and using Eqs.
�72�, we reduce Eq. �81� to

�G =
1

V

k�0

����k�2		 . �82�

Consequently, the meaning of the quantity

nG�k� 
 ����k�2		 =
����k�2		

��k + mc2�2 �83�

is the momentum distribution of the glassy fraction. We may
assume that the numerator of Eq. �83� is not increasing with
k. However, its denominator, according to Eq. �68�, increases
with k as k4. Hence distribution �83� is a rapidly decreasing
function of k, with its maximum at k=0, where

nG�0� =
����0�2		
4�mc2�2 . �84�

The glassy density �82�, using relation �74�, can be repre-
sented as

�G =� ����k�2		
��k + ��2

dk

�2��3 . �85�

Since the integrand in Eq. �85� falls off rapidly and ����k�2		
is slowly varying with k, we may substitute ����0�2		 instead
of ����k�2		, which gives

�G =
�mc�3

�
nG�0� . �86�

For the dimensionless glassy fraction, we then have

nG 

�G

�
=

�mc�3

��
nG�0� . �87�

Let us consider the glassy density matrix

�G�r1,r2� 
 � nG�k�eik·r12
dk

�2��3 , �88�

in which r12
r1−r2. This, with the glassy distribution �83�,
gives

�G�r,0� =� ����k�2		
��k + ��2eik·r dk

�2��3 . �89�

Taking into account that the main contribution to integral
�89� comes from small k, and using the equality

�
0

� x sin�ax�
�b2 + x2�2dx =

�a

4b
e−ab,

we obtain the glassy density matrix

�G�r,0� = �Ge−k0r �k0 
 2mc� . �90�

This demonstrates that the localized short-range order of the
glassy fraction has the decay length 1/k0, which coincides
with the healing length.

It is important to stress that the presence of the glassy
fraction in the type of systems under consideration here does
not turn the whole system into a Bose glass. This is because
by the commonly accepted classification, the Bose glass
phase requires that the superfluid fraction ns be zero, which
is not the case here. Also, the density of states

���� 

4�k2���

�2��3

dk���
d�

,

in which k��� is defined by the equation �k=�, with �k from
Eq. �59� or equivalently Eq. �69�, yields

���� =
m3/2���2 + �2 − ��1/2�

�2�2��2 + �2
.

This tends to zero at small � as

���� �
�2

2�2c3 �� → 0� .

Thus the system does not represent a Bose glass, for which
��0� must be finite.

To conclude, the action of external random fields on the
Bose system induces the appearance in the latter of the
glassy fraction but need not transform the system as a whole
into the Bose glass phase.

VIII. THERMODYNAMIC STABILITY

It is interesting to study the influence of random potentials
on the thermodynamic stability condition �22�. For the
Lagrange parameter �0 of the condensate fraction, intro-
duced in Eq. �20�, we have from the first of Eqs. �22�

�0 = �� + �1 + �1��0 + �G. �91�

The last term
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�G 

1

2�N0V

k�0

�ak
†�k + �k

*ak	 �92�

is caused by the direct action of the random potential. From
the second of Eqs. �22�, we find

�0 
�G

2�0
. �93�

Thus the stability condition �93� for the particle interaction
strength �0 of Eq. �2� depends on the value �G.

Equations �72� and �73� show that

�ak
†�k	 = ���k

*�k		 = −
���k

*�k		
�k + �

.

Thus, the glassy term �92� takes the form

�G = −
1

2�N0V

k�0

���k
*�k + �k

*�k		
�k + �

. �94�

One has to exercise considerable caution when analyzing Eq.
�94�. To stress this, let us start with the attempt of calculating
�G by means of perturbation theory with respect to weak
disorder. Under asymptotically weak disorder, the limiting
approximate solution of Eq. �75� is

�k �
�N0

V
�k.

Substituting this into Eq. �94� yields the perturbative expres-
sion

�G� = −
1

V2 
k�0

����k�2		
�k + �

.

With the definition of Rk in Eq. �7�, we get

�G� = −� Rk

�k + �

dk

�2��3 ,

which is exactly the form obtained in Ref. �24�. Since the
correlation function Rk is assumed to be positive, one has
�G� �0. Then condition �93� tells us that the action of the
random potential stabilizes the system, which does not ap-
pear plausible, physically, however.

On the other hand, if one interprets the random potential
as being caused by the presence of randomly distributed im-
purities, which then justifies the use of analytic regulariza-
tion procedures for physical integrals, and if one takes the
limit of the uncorrelated spatial white noise potential, defined
in Eq. �9�, then one gets from Eq. �94� the different pertur-
bative value

�G� =
2

�
m2cR0.

The latter is positive, contrary to �G� �0. In this way, the sign
of the glassy term �94�, in a perturbative evaluation, is not
independent of the method of calculation. In other words, it
remains unclear whether the random potential stabilizes or
rather destabilizes the system. This gives a strong hint that
the application of perturbation theory with respect to weak

disorder may not be justified for the considered case. This
would show up via inconsistencies, such as divergencies,
when going to higher order in the perturbative calculations
we sketched here.

Fortunately, we are able to calculate Eq. �94� without re-
sorting to the weak-disorder approximation, but by consider-
ing instead the whole Eq. �75� exactly. We immediately ob-
tain then

�G =
���0

* + �0		

2�N0

−
���0

* + �0		
2V

= 0. �95�

Thus we find �G
0 for any type of the random potential
and any strength of disorder. So, the stability condition �93�
acquires the simple form �00.

This result teaches us that the action of random potentials
on Bose systems may lead to nonperturbative effects, when
calculations for asymptotically weak disorder can yield in-
correct conclusions.

IX. ENERGY CONTRIBUTION

The direct contribution of the random fields to the internal
energy of the system is given by the average of term �65�
entering the Hamiltonian �64�, that is, by

E� 
 �H�	 = ��H�		 . �96�

With relation �73�, the latter gives

E� = − 
k�0

����k�2		
�k + �

−
1

V


k,p��0�

���k
*�p�k−p		

��k + ����p + ��
. �97�

Exercising now the required caution when dealing with ran-
dom fields, we shall not use perturbation theory for weak
disorder, but shall instead take into account the exact Eq.
�75� and use the properties �k

*=�−k, �0
*=�0 in line with Eqs.

�6�. Employing once Eq. �75�, we have

1

V

p�0

���k
*�p�k−p		 =

�N0

V

���k
*�k		

�k + �
−

����k�2		
�k + �

.

This allows us to transform Eq. �97� into

E� = −
�N0

V

k�0

���k
*�k		

�k + �
. �98�

Invoking once more Eq. �75� in the form

1

V

p�0

�p
*�p

�k + �
=

�N0

V
�0 − �0,

we reduce Eq. �98� to

E� = �N0���0		 − �0���0		 , �99�

which results in

E� = 0 �100�

for any kind of the random potentials and any strength of
disorder.

It is instructive to stress again that the usage of perturba-
tion theory with respect to weak disorder is not appropriate

V. I. YUKALOV AND R. GRAHAM PHYSICAL REVIEW A 75, 023619 �2007�

023619-8



here. Really, if we substitute the approximate solution �k

���0 /V�k, corresponding to weak disorder, into Eq. �98�,
we get the perturbative energy

E�� = − N� n0Rk

�k + �

dk

�2��3

in the same form as has been obtained by all other authors
using the weak-disorder limit. This result would seem to tell
us that the presence of random potentials diminishes the in-
ternal energy.

However, if we interpret the presence of the random po-
tential as the existence of randomly distributed scatterers, use
the analytic regularization of integrals, and treat the case of
white noise, then we find

E�� =
2

�
Nm2cn0R0.

Hence the internal energy would now seem to increase with
R0. However, both mutually conflicting perturbative results
are at variance with the exact value �100�, which is always
zero.

Again, as in the previous Sec. VIII, we come to the con-
clusion that perturbation theory with respect to weak disor-
der can lead to incorrect results.

X. UNCONDENSED PARTICLES

The properties of uncondensed particles are characterized,
first of all, by their density �1 of Eq. �43� and the anomalous
average �1 of Eq. �44�. Using Eq. �79�, the density �1 can be
presented as the sum

�1 =� nk
dk

�2��3 = �N + �G �101�

of the normal density

�N =
1

2
� ��k

�k
coth� �k

2T
� − 1� dk

�2��3 �102�

and of the glassy density

�G 
� nG�k�
dk

�2��3 , �103�

which can be written as in Eq. �85�. The normal density
�102� can be represented as

�N =
�mc�3

3�2 �1 +
3

2�2
�

0

�

��1 + x2 − 1�1/2

��coth�mc2

2T
x� − 1�dx� . �104�

With the help of Eq. �80�, the anomalous average �1,
whose absolute value is the density of paired particles, can
similarly be written as the sum

�1 =� �k
dk

�2��3 = �N + �G �105�

of two terms. The first term is

�N = −
1

2
� �

�k
coth� �k

2T
� dk

�2��3 , �106�

while the second term is the same glassy density �103�.
Equation �106� can be rewritten as

�N = �0 −
1

2
� �

�k
�coth� �k

2T
� − 1� dk

�2��3 , �107�

where

�0 
 −
�

2
� 1

�k

dk

�2��3 . �108�

The integral in Eq. �108� is ultraviolet divergent. This diver-
gence is well-known to be unphysical, since it is caused by
the usage of the contact interaction potential. A general way
of treating such integrals is as follows. First, one restricts to
asymptotically weak coupling and applies the technique of
dimensional regularization, which is an accurately defined
mathematical procedure in that limit �5�. Then one analyti-
cally continues the result to finite coupling. The dimensional
regularization gives

� 1

�k

dk

�2��3 = −
2m

�2
�m�0�0.

In this way, we find for Eq. �108�

�0 =
�mc�2

�2
�m�0�0. �109�

Changing the variables of integration, Eq. �107� can be rep-
resented in the form

�N = �0 −
�mc�3

2�2�2�
0

� ��1 + x2 − 1�1/2

�1 + x2 �coth�mc2

2T
x� − 1�dx .

�110�

At low temperatures, when T /mc2�1, Eq. �104� gives

�N �
�mc�3

3�2 +
�mc�3

12
� T

mc2�2

�111�

and Eq. �110� yields

�N � �0 −
�mc�3

12
� T

mc2�2

. �112�

In the case of weak interactions, such that mc2 /Tc�1,
where Tc is the critical temperature

Tc 

2�

m
� �

��3/2��2/3

, �113�

Eqs. �104� and �110� lead to

�N � �� T

Tc
�3/2

+
�mc�3

3�2 �114�

and, respectively, to
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�N � �0 −
m2cT

2�
. �115�

The analysis of the behavior of �N and �N shows that these
quantities are characteristic of the Bose system without dis-
order, while the explicit influence of the random potential is
contained in the glassy density �103�.

XI. SUPERFLUID FRACTION

By a general definition, the superfluid density is the par-
tial density appearing as a response to a velocity boost,

�s 

1

3mV
lim
v→0

�

�v
�P̂v	v, �116�

where the average of the system momentum P̂v= P̂+Nmv is
calculated with the Hamiltonian

Hv = H +� �̂†�r��− iv · � +
mv2

2
��̂�r�dr

of the liquid moving with velocity v.
The dimensionless superfluid fraction can be represented

as

ns 

�s

�
= 1 −

2Q

3T
, �117�

where Q is the dissipated heat, having for an equilibrium
system the form

Q 

�P̂2	
2mN

. �118�

A detailed derivation of Eqs. �117� and �118� can be found,
e.g., in Ref. �4�.

Passing to the Fourier transforms, we have �P̂2	
=k,p�k ·p��n̂kn̂p	, where n̂k
ak

†ak. In the HFB approxima-
tion,

�n̂kn̂p	 = nknp + �kpnk�1 + nk� + �−kp�k
2.

Then Eq. �118� assumes the form

Q =
1

�
� k2

2m
�nk + nk

2 − �k
2�

dk

�2��3 . �119�

Taking into account Eqs. �79� and �80�, we may represent the
dissipated heat �119� as the sum

Q = QN + QG �120�

of two terms. Here the first term

QN =
1

8m�
� k2

sinh2��k/2T�
dk

�2��3 �121�

is the heat dissipated by normal uncondensed particles; and
the second term

QG =
1

2m�
� k2����k�2		

�k��k + ��
coth� �k

2T
� dk

�2��3 �122�

is the heat dissipated by the glassy fraction.

Equation �121� can be rewritten as

QN =
�mc�5

4�2�2m�
�

0

� ��1 + x2 − 1�3/2xdx
�1 + x2 sinh2�mc2x/2T�

. �123�

At low temperatures, such that T /mc2�1, we get

QN �
�2�mc�5

15m�
� T

mc2�5

, �124�

and in the limit of weak interactions, when mc2 /Tc�1, we
find

QN �
3

2
T�� T

Tc
�3/2

−
��1/2�
��3/2�

� T

Tc
�1/2mc2

Tc
� , �125�

where ��·� is a Riemann zeta function.

XII. SOUND VELOCITY

The sound velocity c enters in the majority of the above
expressions. The velocity itself is defined through Eq. �71�,
which can be written as

mc2 = �� − �1 + �1��0, �126�

taking into account that �0=�−�1. According to Eqs. �101�
and �105�, we have

�1 = �N + �G, �1 = �N + �G. �127�

Therefore Eq. �126� becomes

mc2 = �� − �N + �N��0. �128�

It is convenient to work with the dimensionless fractions

nN 

�N

�
, � 


�N

�
. �129�

Since n0+n1=1 and n1=nN+nG, the normalization

n0 + nN + nG = 1 �130�

holds true.
Let us define the gas parameter

� 
 �1/3as �131�

and the dimensionless sound velocity

s 

mc

�1/3 . �132�

Then, taking into consideration the interaction strength �2�,
Eq. �128� for the sound velocity can be reduced to the di-
mensionless form

s2 = 4���1 − nN + �� . �133�

At first glance it might seem that the sound velocity, being
the solution of Eq. �133�, does not depend on the glassy
fraction nG induced by the random fields. That fraction is
defined by Eqs. �85� and �87� which give combined
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nG =
1

�
� ����k�2		

��k + ��2

dk

�2��3 . �134�

However, through normalization �130�, nG influences the
condensate fraction n0, and the latter enters the anomalous
fraction �, thus influencing the sound velocity through Eq.
�133�. For example, at zero temperature, according to Eqs.
�104�–�112�, we have

nN =
s3

3�2 , � =
�0

�
=

2s2

�3/2
��n0,

n0 = 1 −
s3

3�2 − nG �T = 0� . �135�

Increasing disorder increases the glassy fraction nG, de-
creases the condensate fraction n0, which decreases �. At the
same time, the normal fraction nN also decreases. Since nN
and � enter Eq. �133� with opposite signs, their changes
almost compensate each other. Numerical calculations show
that the sound velocity s as a function of the disorder
strength slightly decreases with the latter.

XIII. STRUCTURE FACTOR

The structure factor of a random system is defined as the
stochastic average

S�k� 
 ��SH�k�		 �136�

of the frozen factor

SH�k� =
1

N
� ��n̂�r�n̂�r��	H − �n̂�r�	H�n̂�r��	H�e−ik·�r−r��drdr�,

�137�

expressed through the quantum averages, in which n̂�r�

 �̂†�r��̂�r�. Note that Eq. �136�, in the theory of random
systems, is called the connected structure factor. With the
Fourier transform

�̂k =� n̂�r�e−ik·rdr , �138�

Eq. �137� becomes

SH�k� =
1

N
���̂k

+�̂k	H − ��̂k
+	H��̂k	H� . �139�

Invoking the Bogolubov shift �13�, for Eq. �138�, we have

�̂k = �k0N0 + 
p�0

ak+p
† ap + �N0�a−k

† + ak� . �140�

The quantum averaging of Eq. �140� gives

��̂k	H = �k0
N0 + 

p�0
�ak+p

† ap	H + �N0��−k
* + �k� , �141�

where �k is defined in Eq. �47�. Calculating the first term in
Eq. �139�, we arrange the operator product in the normal
form and use the second-order procedure, following the stan-
dard calculations, the same as for Bose systems without dis-

order �7,35�. Then for the structure factor �136�, we find

S�k� = 1 + 2�nk + �k� − 4����k�2		 . �142�

Substituting here Eqs. �79� and �80�, we obtain

S�k� =
k2

2m�k
coth� �k

2T
� . �143�

The central value of the structure factor is known to be re-
lated to the isothermal compressibility

�T 
 −
1

V
� �V

�P
�

T
=

1

�
� ��

�P
�

T
=

S�0�
�T

, �144�

where P is pressure. To emphasize the role of the glassy
fraction, the central structural factor can be written as

S�0� =
T

mc0
2 + AnG, �145�

where A
−2Tc0� /mc0
3; c0 is the sound velocity in a system

without disorder, and c0�
�c /�nG at the value nG=0. From
numerical calculations it follows that the coefficient of A is
positive. Thus the above expressions show that the random
field, via inducing the glassy fraction nG, leads to an increase
of the density fluctuations, the isothermal compressibility,
and the structure factor. The physics of these results seems to
be clear. An additional external random potential should lead
to the increased scattering of either light or neutrons, which
is characterized by an increase of the structure factor.

XIV. WHITE NOISE

The influence of the random potential on physical charac-
teristics comes through the correlator ����k�2		. To calculate
the latter explicitly, we need, first, to solve the random-field
equation �75� and, second, to specify the type of the random
potential, which until now has been arbitrary.

Let us consider Eq. �75� assuming that in the sum of its
second term the main contribution comes from the region of
small momenta �see Appendix A�, so that this equation can
be represented as

�k =
�N0

V
�k −

1

V

p�0

�k�p

�p + �
. �146�

This is the Fredholm equation of the second kind with a
separable kernel. Such an equation can be solved exactly.
The corresponding exact solution is

�k =
�N0

V

�k

1 +
1

V

p�0

�p

�p + �

. �147�

Calculating ����k�2		 with Eq. �147�, we can use the expan-
sion

1

�1 − x�2 = 
n=0

�

�n + 1�xn,

which requires the knowledge of the stochastic correlators
such as ���k1

�k2
¯�kn

		.
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To define these correlators explicitly, we consider the case
of the Gaussian white noise �49�. Then we obtain

����k�2		 = �0R0
n=0

�

�2n + 1�!!�mR0

4�c
�n

, �148�

where the integral

� 1

��k + ��2

dk

�2��3 =
m

4�c

has been used. Note that the right-hand side of Eq. �148�
does not depend on k. This allows us to find the explicit
expression for the glassy density �85�, which becomes

�G =
m

4�c
����k�2		 , �149�

where the right-hand side is given by the series �148�.
As is clear from its form, series �148� is asymptotic with

respect to the parameter mR0 /4�c. In order to define the
quantity ����k�2		 for finite values of the latter parameter, it is
necessary to employ a resummation procedure for series
�148�. For example, we could resort to the Padé summation
�50�. Here we shall use another, more general and accurate
method, based on the self-similar approximation theory
�51–53�. We shall make use of the method of self-similar
factor approximants �54–56�. This method was shown to be
more general than that of Padé approximants and, contrary to
the latter, being uniquely defined. The method we use is
sketched in Appendix B.

For convenience, we introduce the dimensionless noise
parameter

� 

7m2R0

4��1/3 . �150�

Then, representing the sum of series �148� by the self-similar
factor approximant of second order, we obtain for the glassy
density �149� the expression

�G =
�0�

7s4/7�s − ��3/7 , �151�

in which s is the dimensionless sound velocity �132�.
Taking into account normalization �130�, we find the con-

densate fraction

n0 =
7s4/7�s − ��3/7

� + 7s4/7�s − ��3/7 �1 − nN� �152�

and the glassy fraction

nG =
��1 − nN�

� + 7s4/7�s − ��3/7 , �153�

which are expressed through the normal fraction nN
�N /�,
with �N given by Eq. �104�.

The case of weak disorder corresponds to a small noise
parameter �150�. Then the condensate fraction �152� is

n0 � �1 −
�

7s
−

2�2

49s2��1 − nN� �154�

and the glassy fraction �153� becomes

nG �
�

7s
�1 +

2�

7s
��1 − nN� , �155�

when ��1.
If, in addition, atomic interactions are asymptotically

weak, such that as→0, then the glassy fraction �155� tends to

nG �
�

7s
n0 =

mn0R0

4�c
. �156�

In this limit, the sound velocity acquires the Bogolubov form

c ���0�0

m
=

2

m
���as. �157�

As a result, the glassy fraction �156� transforms to

nG �
m2R0

8�3/2� n0

�as
, �158�

which exactly coincides with the expression found by Huang
and Meng �22� in the limit of asymptotically weak interac-
tions and weak disorder.

We may notice that the noise parameter � enters Eqs.
�151�–�155� in the combination

�

s
=

7mR0

4�c
.

It would, therefore, be tempting to consider the ratio � /s as a
new parameter. However, this ratio becomes really a param-
eter solely for asymptotically weak interactions, when

�

s
�

7m2R0

8�3/2��as

�as → 0�;

but at finite interactions, the sound velocity c=c�T ,� ,as� is a
complicated function of temperature, density, and scattering
length. Respectively, the dimensionless sound velocity s
=s�T ,� ,�� is a function of temperature, density, and the gas
parameter, defined by Eq. �133�. Hence at finite interactions,
temperatures, and disorder strength, the situation is more in-
volved and one cannot reduce the consideration to dealing
with the ratio � /s, which is not a parameter anymore.

Equations �152� and �153� show that when atomic inter-
actions are switched off, so that s→0, then there are no
positive solutions for the fractions n0 and nG for any finite
noise parameter �. This means that the ideal Bose-condensed
gas is stochastically unstable, in the sense that any infinitesi-
mally weak disorder completely destroys the Bose-Einstein
condensate, rendering the system to the normal state.

In the case of an interacting Bose-condensed system with
a finite gas parameter �, the system is stable below a critical
noise parameter �c=�c�T ,� ,��. Increasing � diminishes the
condensate fraction but increases the glassy fraction. Reach-
ing the critical value �c, the system undergoes a first-order
phase transition, when n0 and nG jump to zero, after which

V. I. YUKALOV AND R. GRAHAM PHYSICAL REVIEW A 75, 023619 �2007�

023619-12



the normal phase prevails with nN=1. This is in agreement
with a first-order phase transition found in the particular case
of zero temperature and asymptotically weak interactions
�28�. According to our numerical estimates, the jumps of n0
and ns are close to those found in Ref. �28� at the transition
point �c.

When disorder is absent, the system displays the second-
order phase transition at the critical temperature �Eq. �113��
coinciding with that of the ideal Bose gas, which follows
from expansions �114� and �125�. As soon as there appears
disorder, with any finite noise parameter �, the phase transi-
tion becomes of first order. At asymptotically small �→0,
numerical estimates give the shift of the critical temperature
�Tc�−2� /9�, which is close to the shift found in Refs.
�24,25�.

To analyze the behavior of the superfluid fraction �117�,
we need to know the dissipated heat �Eq. �120��. The part of
this quantity, due to normal particles, is given by Eq. �123�.
Another part, caused by the heat dispersed by the glassy
fraction, is defined by Eq. �122�. With the white-noise rela-
tion �149�, expression �122� can be represented as

QG =
8

�
mc2nGI�mc2

T
� , �159�

where the notation

I��� 
 �
0

�

coth��x�1 + x2�
x3dx

�1 + x2�3/2 �160�

is introduced.
Integral �160� diverges for any finite �, so that one has to

invoke some regularization of this integral. There are several
ways to regularize the integral, all of which yield the same
result.

First of all, we understand that the divergence of the
above integral is caused by the white noise. For a colored
noise, we should go back to Eq. �122�, in which ����k�2		
would be a diminishing function of k, but not a constant in k,
as for the white noise in Eq. �148�. Then integral �122�
would be convergent. For such a colored noise, we could
approximate Eq. �122� as

1

2m�
� k2����k�2		

�k��k + ��
coth� �k

2T
� dk

�2��3

�
T

m�
� k2����k�2		

�k
2��k + ��

dk

�2��3 .

Passing after this to the white-noise relation �149�, we obtain

QG = 2nGT . �161�

Another way of regularizing Eq. �160� is a kind of ana-
lytic regularization, where one, first, takes the integral for
that region of the parameter �, where the integral converges,
and then analytically continues the result to arbitrary values
of this parameter. The sole domain of �, where integral �160�
converges, is the region of asymptotically small �→0. Then

I��� �
1

�
�

0

� x2dx

�1 + x2�2 =
�

4�
. �162�

Substituting this into Eq. �159� gives again Eq. �161�.
We can also apply for integral �160� a resummation regu-

larization, when the integral, first, is represented as a series,
after which the series is reorganized with the help of a re-
summation procedure. Two variants of the self-similar regu-
larization are described in Appendix C, both of which lead to
the same answer �Eq. �161�� as two previous regularizations
considered above. It is important to stress that we have ac-
complished several ways of regularizing integral �160� in
order to prove that the result does not depend on the regu-
larization procedure involved.

Thus combining Eqs. �117�, �120�, and �161�, we find the
expression for the superfluid fraction

ns = 1 −
4

3
nG −

2QN

3T
, �163�

in which nG is defined in Eq. �153� and QN in Eq. �123�. It is
worth stressing that, though the superfluid fraction �163� is
linear with respect to the glassy fraction nG, it is far from
being linear with respect to the strength of disorder �, as
follows from expression �153� for the glassy fraction.

At low temperatures, when T�mc2, the superfluid frac-
tion �163� is

ns � 1 −
4�/3

� + 7s4/7�s − ��3/7�1 −
s3

3�2 −
s3

12
� T

mc2�2�
−

2�2s3

45
� T

mc2�4

; �164�

and in the case of weak interactions, when mc2�Tc, the
fraction �163� has the form

ns � 1 − � T

Tc
�3/2

−
��1/2�
��3/2�

� T

Tc
�1/2mc2

Tc

−
4�/3

� + 7s4/7�s − ��3/7�1 −
s3

3�2 − � T

Tc
�3/2� . �165�

The superfluid fraction ns can be either larger or smaller than
the condensate fraction n0, depending on temperature, the
strength of interactions, that is, on the gas parameter �, and
on the strength of disorder �. Increasing � leads to the simul-
taneous disappearance of the superfluid and condensate frac-
tions at the same critical �c through a first-order phase tran-
sition. This transition takes place between the superfluid
phase, with n0�0, ns�0, nG�0, and nN�1, and the normal
phase with n0=0, ns=0, nG=0, and nN=1.

XV. CONCLUSION

A self-consistent mean-field theory has been developed
for Bose systems in random external potentials. The sug-
gested approach makes it possible to consider arbitrarily
strong interactions and an arbitrary strength of disorder. In
general, the Bose system consists of the following compo-
nents: the condensate fraction n0, the normal fraction nN, the
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glassy fraction nG, and the superfluid fraction ns. In the limit
of asymptotically weak interactions and disorder, the known
results are reproduced. When increasing the strength of dis-
order, a first-order phase transition occurs from the superfluid
phase to the normal phase. For the class of models we con-
sidered we have found no pure Bose glass phase. The tem-
perature for the occurrence of the first-order phase transition
turns out to be lower than the critical temperature Tc of the
second-order phase transition for a Bose system without dis-
order. The presence of disorder slightly lowers the sound
velocity, but increases the density fluctuations, the isothermal
compressibility, and the structure factor.

It is interesting that switching on disorder may lead to
nonperturbative effects. For instance, the uniform ideal Bose
gas is stochastically unstable with respect to infinitesimally
small noise. Perturbation theory cannot be used to calculate
the internal energy contributed by random fields; nor is per-
turbation theory sufficient when analyzing the stability con-
dition related to the minimization of the thermodynamic po-
tential.

The aim of the present paper has been to develop an ap-
proach for considering Bose systems with any interaction
strength and arbitrary strength of disorder and to describe the
general properties of such systems. We have restricted our-
selves to investigating those results that could be derived by
analytic means. The overall quantitative study of the system
properties requires one to solve the intricate system of equa-
tions for functions of temperature T, density �, gas parameter
�, and noise parameter �. Such an investigation can be ac-
complished only numerically. In view of the length of the
present paper, we prefer not to overload it further by these
numerical calculations. They will be presented in separate
publications.
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APPENDIX A

Throughout the paper, we have assumed that the external
potential ��r� possesses the Fourier transform �k for all k.
The zero-momentum transform

�0 =� ��r�dr

exists in the sense that it is finite. This implies that the func-
tion ��r� is integrable, such that

�� ��r�dr� � � .

For a function ��r� integrable in that sense, the Riemann-
Lebesgue theorem �for details see, e.g., Refs. �57,58�� states
that the related Fourier transform �k is finite for all k and

tends to zero as k
�k� tends to infinity, ��k � ��,

�k → 0 �k → �� .

How �k tends to zero depends on further properties of ��r�.
For instance, if we can use that the function ��r� is finite at
r=0, that is,

���0�� � � ,

then we have

� 1

V


k

�k� � � .

Replacing summation by integration in the standard manner,
we get

�� �kdk� � � .

It follows from here that, when k→�, then �k tends to zero
at least as

��k� �
1

k� ��  3� ,

in three or more dimensions. The field �k is related to �k by
Eq. �75�. Assuming that �k has the same asymptotic behavior
as �k, so that �k tends to zero at large k→� not slower than

��k� �
1

k� ��  3� ,

we find solution �147�, which confirms this assumption. With
the field �k possessing this asymptotic behavior and the form
of �k defined in Eq. �68�, the ratio �k / ��k+�� tends to zero
at large k not slower than

� �k

�k + �
� �

1

kn �n  5� .

This justifies the transformation of Eq. �75� into Eq. �146�.

APPENDIX B

For the summation of series �148�, we used the method of
self-similar factor approximants �54–56�, which was shown
to be more general and more accurate than the method of
Padé approximants. In addition, the latter method is known
to be not uniquely defined, in the sense that for each finite
series of order k, there exists a table of Padé approximants
P�M/N�, with M +N=k. Contrary to this, for each finite series
of order k, there is just one factor approximant. This is why
we prefer here to use the method of self-similar factor ap-
proximants. The construction of the factor approximants is
done in the following way.
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Assume that for a function f�x�, there is an asymptotic
expansion at x→0, so that f�x� can be represented by

fk�x� = f0�x�
n=0

k

anxn.

Since a0 can always be included in f0�x�, we may set, with-
out the loss of generality, that a0=1. The self-similar factor
approximant, extrapolating the finite series fk�x� to the region
of arbitrary x, is defined as

fk
*�x� = f0�x��

i=1

Nk

�1 + Aix�ni,

where

Nk = �k/2, k = 2,4, . . .

�k + 1�/2, k = 3,5, . . . .
�

The coefficients Ai and exponents ni are given by the equa-
tions


i=1

Nk

niAi
n = Bn �n = 1,2, . . . ,k� ,

in which

Bn 

�− 1�n−1

�n − 1�!
lim
x→0

dn

dxn ln
fk�x�
f0�x�

and A1 is set to one for odd k. As is evident, the parameters
Ai, ni, and Bn, being calculated for each given kth order ap-
proximation, depend on the approximation order k, so that
Ai=Aik, ni=nik, and Bn=Bnk. However, for the simplicity of
notations, this order dependence is not shown explicitly. A
detailed description of the method of self-similar factor ap-
proximants is given in Refs. �54–56�.

APPENDIX C

Integral �160� can be regularized by means of the resum-
mation regularization based on the self-similar approxima-
tion theory �51–53�. The procedure is as follows. One, first,
introduces a cutoff L making the integral always converging,

IL��� 
 �
0

L

coth��x�1 + x2�
x3dx

�1 + x2�3/2 .

Removing this cutoff would return us back to the integral

I��� = lim
L→�

IL��� .

Instead, we may represent the integral IL��� as a series with
the help of the expansion

coth z = 
n=0

�
22nB2n

�2n�!
z2n−1,

yielding the series

IL��� =
1

�

n=0

�

a2n�2n,

with the coefficients

a2n 

22nB2n

�2n�! �0

L x2+2ndx

�1 + x2�2−n ,

where Bn are Bernoulli numbers. When L→�, then

lim
L→�

a0 =
�

4

and other coefficients behave as

a2n �
22nB2n

�2n�!�4n − 1�
L4n−1,

with n=1,2 , . . ..
The series for IL��� can be represented with the help of

the self-similar factor approximants �54–56� as

IL
*��� =

a0

�
�
n=1

�

�1 + An�2��n,

where the parameters An and powers �n are uniquely defined
from the reexpansion procedure, when IL

*��� is expanded in
powers of �2 and compared with the initial series for IL���.
Then all An and �n are uniquely expressed through the coef-
ficients a2n. For example, in lower orders, we have

A1 =
b2

2 − 2b4

b2
, �1 =

b2
2

b2
2 − 2b4

,

where

bn 

an

a0
�

22n+nB2n

�2n�!�4n − 1��
L4n−1.

Then

b2 �
8

9�
L3, b4 � −

4

315�
L7,

etc. Because of this,

A1 �
1

35
L4, �1 �

280

9�

1

L
,

and so on.
Removing the cutoff in the self-similar approximant IL

*���
by setting L→�, we use the limit

lim
L→�

�1 + Lm�1/Ln
= 1,

valid for any m0 and n0. As a result, we have

lim
L→�

IL
*��� =

�

4�
.

Substituting this into Eq. �159�, we come to the same form of
the dispersed heat �Eq. �161�� as obtained earlier.

Another variant of the resummation regularization would
be by summing the series for IL��� in the form of the self-
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similar exponential approximants �59,60�. This procedure
gives

IL
*��� =

a0

�
exp�b2�2 exp�b4�2

¯ �� ,

where again bn
an /a0. When setting L→�, we use the fact
that the Bernoulli numbers are alternating in sign, so that b2,
b6, b10, and so on tend, polynomially in L, to plus infinity,

while b4, b8, b12, and so on tend polynomially to minus in-
finity. Then we obtain

I�
* ��� =

a0

�
=

�

4�
,

which again leads to the same form �161�. In this way, all
considered variants of regularizing integral �160� give us the
same expression �161�, which confirms its general validity.
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