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Atomtronics: Ultracold-atom analogs of electronic devices
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Atomtronics focuses on atom analogs of electronic materials, devices, and circuits. A strongly interacting
ultracold Bose gas in a lattice potential is analogous to electrons in solid-state crystalline media. As a conse-
quence of the gapped many-body energy spectrum, cold atoms in a lattice exhibit insulatorlike or conductorlike
properties. P-type and N-type material analogs are created by introducing impurity sites into the lattice.
Current through an atomtronic wire is generated by connecting the wire to an atomtronic battery which

maintains the two contacts at different chemical potentials. The design of an atomtronic diode with a strongly
asymmetric current-voltage curve exploits the existence of superfluid and insulating regimes in the phase
diagram. The atom analog of a bipolar junction transistor exhibits large negative gain. Our results provide the
building blocks for more advanced atomtronic devices and circuits such as amplifiers, oscillators, and funda-

mental logic gates.
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I. INTRODUCTION

A collection of ultracold atoms subject to a spatially pe-
riodic potential can exhibit behavior analogous to electrons
in a crystal lattice. This fact has been established in an im-
pressive series of experiments with Bose-Einstein conden-
sates and Fermi gases in optical lattices produced by inter-
fering laser beams [1-10]. The analogy between ultracold
atoms in lattice potentials and electrons in crystals is mani-
festly a rich one. It extends to strongly interacting ultracold
Bose gases which exhibit both superfluid and insulating be-
havior, and feature a gapped many-body energy spectrum.
The tunability of interactions in optical lattices has led to the
spectacular demonstration of these properties [11-13]. In this
work we introduce analogs of electronic materials, including
metals, insulators, and semiconductors, in the context of ul-
tracold strongly interacting bosons. We use lattice defects to
achieve behavior similar to doped P-type and N-type semi-
conductors. The interest is to adjoin P-type and N-type lat-
tices to create diodes and then NPN or PNP structures to
achieve behavior similar to that of bipolar junction transis-
tors. We show that such heterogeneous structures can indeed
be made to mimic their electronic counterparts. Ruschhaupt
and Muga [ 14] have described an atom device with diodelike
behavior, and Micheli et al. [15] have proposed a single-
atom transistor that serves as a switch (see also Refs.
[16-20]). Both of these devices depend on control and co-
herence at the single atom level. Moreover, Stickney et al.
[21] have recently demonstrated that a Bose-Einstein con-
densate in a triple well potential can exhibit behavior similar
to that of a field effect transistor. Our intent is to establish
ultracold atom analogs of electronic materials and semicon-
ductor devices that can be used to leverage the vast body of
electronic knowledge and heuristic methods. From semicon-
ductor materials and fundamental devices, the analogy ex-
pands into what can be referred to as atomtronics. With di-
odes and transistors in hand, it is straightforward to conceive
of atom amplifiers, oscillators, flip-flops, logic gates, and a
host of other atomtronic circuit analogs to electronic circuits.
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Such a set of devices can serve as a toolbox for implement-
ing and managing integrated circuits containing atom optical
elements [22-24] or quantum computation components
[25-27] and might be of particular interest in the context of
rapidly advancing atom chip technologies [28,29].

Atoms in periodic structures and electrons in solid state
crystals have much in common. In both systems, particle
motion occurs by tunneling through the potential barrier
separating two lattice sites. A particle, an electron or an
atom, can delocalize over the entire lattice and sustain cur-
rents. In both systems, currents are created when there is a
potential gradient which causes the particles to move from a
region of higher potential to a region of lower potential. In
electronics, potentials arise from electric fields. In atomtron-
ics, potential gradients can be understood in terms of chemi-
cal potential gradients. The characteristics of both electronic
and atomtronic devices are examined by using a battery to
apply a potential difference across the system and observing
the response in the current.

Different types of electronic conductors exist because
electrons in a crystal structure occupy states of an energy
spectrum that features a band structure. The materials can
carry a current, i.e., are conducting, only if the highest occu-
pied energy band is only partially filled with electrons. On
the other hand, the system is an insulator if all occupied
bands are full. These properties of electronic materials can be
directly reproduced with weakly interacting fermionic atoms
in periodic potentials.

Using fermionic atoms is not the only way in which ana-
logs of electronic materials can be created. In this paper, we
focus on ultracold strongly interacting bosonic atoms in pe-
riodic structures. These systems can also be made to behave
similarly to their electronic counterparts. Strong repulsive
interactions prevent atoms from occupying the same lattice
site, mimicking the fermionic behavior of electrons. Hence, a
current can flow easily as long as there are empty sites avail-
able. However, once the filling reaches one atom per site, the
system becomes an insulator. A large energy gap given by the
repulsive onsite interaction must be overcome in order to add
another particle to this configuration. Particles added in ex-
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FIG. 1. (Color online) Schematic of the atomtronic many-body
energy band structure of strongly interacting bosons in a lattice. The
first band is made up of all states with a filling of less than one atom
per site while the second band contains all states with filling be-
tween one and two atoms per site. The two bands are separated by
the onsite repulsive interaction U.

cess of a filling of one atom per site can again carry a current
since they can move around freely above the filled layer of
one atom per site. The system remains a conductor until it
arrives at a filling of two atoms per site and becomes an
insulator again.

These properties show that a strongly interacting Bose gas
features a close analog of the band structure of electronic
materials. The filling of the bands determines whether a ma-
terial is a conductor or an insulator. There is, however, an
important difference between atomtronic and electronic sys-
tems with respect to the band structure. The band structure of
strongly interacting bosons does not describe states that can
be occupied by a single particle independently of the con-
figuration of others, but represents the energies of many-
body states. While the energy gap is due to the Pauli exclu-
sion principle combined with the single-particle band
structure in the case of electrons, the gap arises from the
onsite repulsive interaction between atoms in the bosonic
case. In this paper, we will speak of many-body energy bands
in the case of bosonic systems to take account of this impor-
tant difference. The many-body band structure of strongly
interacting bosons in a lattice is depicted schematically in
Fig. 1. The lowest band is made up of states with between
zero and one atom per site. The next band contains all states
with one to two atoms per site. Higher bands are formed
analogously. The highest occupied band of a conductor is
only partially filled while insulators are characterized by full
bands.

Apart from the many-body character of the band struc-
ture, a second important feature of the atomtronic system is
that the atomtronic conductor exhibits superfluid rather than
normal flow and in that aspect resembles an electronic super-
conductor.

In this paper, the behavior of atomtronic materials in
simple circuits is presented and we show how to use these
materials to build more complex circuit devices, specifically
diodes and bipolar junction transistors. The paper is struc-
tured as follows. Section II introduces the Bose-Hubbard for-
malism that will be used to describe the atomtronic systems.
In particular, it discusses the zero temperature phase diagram
and the properties of an atomtronic battery. Doped atom-
tronic materials and the current-voltage behavior of atom-
tronic wires will be discussed in Sec. III. A diode obtained by
combining a P-type and an N-type atomtronic material with
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a voltage bias applied by a battery is examined in Sec. IV.
Section V presents the atomic analog of a semiconductor
bipolar junction transistor. Finally, Sec. VI contains remarks
on possible applications, on the differences between atom-
tronic devices and their electronic counterparts and on future
perspectives. The appendix contains details of the calculation
methods that were used throughout the paper.

II. BOSE-HUBBARD FORMALISM

The zero temperature quantum phases of bosons in a lat-
tice are key to understanding the different kinds of atom-
tronic materials. A system of repulsive bosons in a one-
dimensional chain of lattice sites can be modeled with the
Bose-Hubbard Hamiltonian

=2 ili-)-s3 dla+ S (6w (1)

2% @ i
where @; is the annihilation operator for a particle at site i,
ﬁ,E&jd,» is the number operator at site i, U is the onsite
repulsive interaction strength, J is the hopping matrix ele-
ment between nearest neighbors, (ij) labels nearest neigh-
bors, €; is the external potential at site i and u is the chemical
potential of the system. The Bose-Hubbard Hamiltonian is
obtained by retaining only the contributions of the lowest
single particle Bloch band to the Hilbert space and by mak-
ing a tight binding approximation (for a review see Ref. [30])
and yields an accurate description of an ultracold dilute Bose
gas in a periodic potential at low energies. The zero tempera-
ture phase diagram of this Hamiltonian was first studied by
Fisher et al. [31].

For very large onsite repulsion, U>J, the system enters
the regime of fermionization where bosons are impenetrable
and only two Fock states, |n;) and |n;+1), are needed at each
site to accurately describe the system (two-state approxima-
tion). Note that this is equivalent to mapping bosonic opera-
tors onto fermionic ones via the Jordan-Wigner transforma-
tion [32,33]. The data presented in this paper is obtained by
considering the system described by the Hamiltonian, Eq.
(1), in the fermionized regime. We have verified that the
error resulting from the two-state approximation becomes
negligible for U=100J (see also Ref. [34]).

A. Phase diagram

The phase diagram of the Bose-Hubbard Hamiltonian
contains information about the many-body band structure of
the system. At zero temperature, the Bose-Hubbard model
has two distinct phases, a Mott-insulating phase and a super-
fluid phase. Figure 2 presents the boundary between the con-
ducting and insulating phases as a function of the hopping
parameter J/U and the chemical potential w/U. The Mott-
insulating phase is entered below a critical value of J/U for
an integer number of particles per site. In this phase, strong
interactions completely block particle motion rendering the
gas incompressible, that is dn/du=0, where n is the average
filling of a site. The two lobes shown limit the Mott-insulator
zones with one atom per site (lower lobe, MI1) and two
atoms per site (upper lobe, MI2). The remainder of the de-
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FIG. 2. (Color online) Zero temperature phase diagram of a
Bose gas obtained from Eq. (2) for an infinite one-dimensional
lattice using the two-state approximation (fermionized regime, U
>J). At large values of J/U the gas is superfluid (SF). Below a
critical value of J/U the system enters a Mott-insulator phase (MI)
for integer filling, while it remains superfluid for noninteger filling.
The MI1 Mott-insulator region has one atom per site and the MI2
region has two atoms per site. The width of a Mott lobe at a given
J1U gives the size of the band gap in the many-body band structure
while the width of a band is given by the width of the superfluid
region. The Mott lobe boundaries are linear due to the use of the
two-state approximation [35].

picted part of the phase diagram is in the conducting super-
fluid phase, labeled SF. The superfluid phase is obtained for
noninteger filling. No insulating phase exists for values of
J/U larger than ~1. Note that the triangular, nonrounded,
shape of the Mott lobes in Fig. 2 is due to the two-state
approximation becoming increasingly inaccurate as J/U is
increased [35].

Each value of w/U and J/U maps onto a particular lattice
filling, n. Figure 2 is obtained from the relation between
these parameters in the superfluid phase for an infinite num-
ber of lattices sites and strong interactions (J < U) [36]

u=U(m=1)+ (- 1)"2mJ cos(mn), (2)

where m=1,2,... is the band index and the filling n satisfies
(m—1)<n<m. The superfluid-insulator phase boundaries
presented in Fig. 2 are obtained by setting » to an integer and
m=n for the lower boundary and m=n+1 for the upper
boundary. The expression Eq. (2) is derived using a Jordan-
Wigner transformation approach within the two-state ap-
proximation.

Plotting the phase diagram as a function of w/U rather
than the number of particles is useful because in this way the
gaps between many-body bands become visible. The size of
the gaps are given by the widths of the insulating zones,
whereas the sizes of the bands are given by the widths of the
superfluid zones. Note that the size of the gaps depend on the
value of J/U. In order to have access to both insulating and
conducting phases, the ratio J/U must be small. If this ratio
is too large there is no well defined gap and therefore no
transition to an insulating phase for integer filling. The basic
ideas presented in this paper rely on this condition being
satisfied. They do not require the stronger condition U>J
for fermionization. The condition of fermionization is as-
sumed merely to facilitate calculations.
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B. Atomtronic battery

Just as for electronic circuits, the atomtronic version of a
battery is crucial but it is also subtle. In this section, we
identify the basic properties and actions of the atom analog
of a battery.

Energy for electronic circuits is supplied by sources of
electric potential. Furthermore, electric potentials are used to
set the bias points of circuit elements to achieve their desired
behavior. For simplicity, we will use the term battery to refer
to a device that provides a fixed potential difference and can
supply an electric current or atomic flux.

In the electronic case, one is interested in the electric
potential difference, or the voltage, between two points. A
specific potential difference between two points within a de-
vice or circuit is achieved by connecting those two points to
the terminals of a battery. In an atomtronic circuit, the func-
tion of the battery is to hold the two contacts at different
values of the chemical potential, say u; on the left and uy on
the right. The applied voltage is then defined by

V= — pg- 3)

The current flows from higher to lower chemical potential.
Chemical potential difference in atomtronic systems is analo-
gous to electric potential difference in electronic systems.
Note that the equilibrium value of the chemical potential is
important since it sets the average filling of the lattice.

To understand the physics underlying this concept, note
that bringing the system with chemical potential x in contact
with a battery pole of chemical potential w; > u leads to the
injection of An particles. The magnitude of An is given by
the difference in filling of states with chemical potentials u
and u; and can be determined from the phase diagram. The
particle transfer increases with increasing u; within a super-
fluid region and becomes constant as w; is moved into a
Mott insulating zone where the system is incompressible. In
the fermionization regime, the magnitude of An is fixed by
Eq. (2). The analogous reasoning applies to the removal of
particles at the battery pole with up < pu.

Feeding atoms into a circuit element through a contact at
one end and removing them through a contact at the other
end generates a current. This current, after time averaging,
reaches a constant value if the carrier excess at one end is
replenished through one contact with the battery at the same
rate at which the deficit is maintained at the other end
through the contact with the other pole of the battery.

Experimentally, a battery can be created by establishing
two separate large systems which act as reservoirs, each with
its own constant chemical potential. These may also be lat-
tices or other experimentally plausible systems, such as large
harmonic traps, containing a large number of atoms. Chang-
ing the frequency of the harmonic traps, or adjusting the
lattice height, can be used to tune the chemical poentials of
these reservoirs. Each of these reservoirs can be connected to
one end of the atomtronic system and current is then possible
from the higher chemical potential system to the lower one.
This configuration is displayed in Fig. 3. From a practical
point of view, the chemical potentials of the battery poles can
be maintained by transferring atoms, possibly classically, be-
tween the two poles.
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FIG. 3. (Color online) Schematic of atoms in a lattice connected
to an atomtronic battery. A voltage is applied by connecting the
system to two reservoirs, one of higher (left) and one of lower
(right) chemical potential. An excess (deficit) of atoms is generated
in the left (right) part of the system, giving rise to a current from
left to right.

III. ATOMTRONIC CONDUCTORS

An attractive feature of atomtronic materials is that their
conductivity properties can be easily modified. In this sec-
tion, we first discuss the possibility of varying the conduc-
tivity of a material by lattice doping as is done in semicon-
ductor systems. Second, we focus on the current-voltage
characteristics of wires made of different types of atomtronic
materials.

A. Doped materials

New materials with interesting properties can be designed
by modifying the lattice in which the atoms are confined, and
hence the many-body band structure. This can be done in
various ways. In the case of an optical lattice, the periodicity
of the lattice can be modified by superimposing a periodic
potential of different wavelength [37]. Disorder can be intro-
duced by randomly modifying individual sites [38-40]. A
further handle on the properties of the material is the sym-
metry of a two-dimensional or three-dimensional lattice
[41-43]. Finally, it is conceivable to introduce a second
atomic species, either bosonic or fermionic, and to modify
the properties of the material via interspecies interactions.

The atom analog of the doping of a semiconductor is par-
ticularly interesting. The aim of doping is to create energy
levels in the energy gap between two bands. N-type doping is
associated with energy levels located close to the lower edge
of the first empty band while P-type doping gives rise to
levels close to the upper edge of the highest full band. Both
are accomplished by modifying the potential at individual
lattice sites. N-type doping is achieved by replacing some
lattice sites with donor sites. These correspond to potential
wells which are slightly deeper than those of the unmodified
lattice. Analogously, P-type doping requires introducing ac-
ceptor sites of slightly shallower potential. The two potential
configurations are shown in Fig. 4.

The advantage of doping is that it can turn an insulator
into a conductor without having to excite particles across the
band gap into the empty conduction band. In atomtronics,
this means that doping shifts the insulator zone boundary in
the phase diagram. Figure 5 compares the phase diagram of
the undoped lattice with that of a N-doped and a P-doped
lattice. N-type doping shifts the insulating zone downwards
such that states that were previously in the insulating zone
come to lie right above the insulating zone where the lattice
has a full valence band and a few free carriers in the con-
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FIG. 4. (Color online) (a) Schematics of an N-doped lattice. The
donor sites feature a level right below the first empty many-body
band. An atom which occupies this level can easily be excited and
move throughout the lattice. (b) Schematics of a P-doped lattice.
Acceptor sites have a level right above the highest full band. Atoms
can easily be excited into this level and allow for a hole to move
throughout the lattice.

duction band. Similarly, P-type doping shifts the insulating
zone upwards such that states previously in the insulating
region come to lie right below the insulating zone where the
lattice has an almost full valence band with a few free hole
carriers. In Fig. 5 the new insulating zones were derived for
an infinite lattice where every third site was doped by Ae
=+5J using a modified Jordan-Wigner transformation [36].
The boundary between insulating and conducting zones were
found in the same manner as discussed for the phase diagram
of the uniform system in Sec. IT A.

SF
<«——— P-type doped

<— undoped
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0 0.1 0.2
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FIG. 5. (Color online) Zero temperature phase diagram of a
Bose gas in an undoped (blue), an N-doped (red) and a P-doped
(green) lattice. The boundary of the lowest Mott insulator lobe with
a filling of one atom per site is displayed as calculated using the
two-state approximation. The results for the doped lattices were
obtained by adding an energy of +5J to every third site in an infinite
lattice using a modified Jordan-Wigner transformation. N-type dop-
ing turns an insulating state into a superfluid state with more than
one atom per site. Similarly, P-type doping turns an insulating state
into a superfluid state with less than one atom per site.
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B. Currents in atomtronic wires

This section discusses the current response of atomtronic
wires to an applied voltage. The magnitude of the current
depends on the properties of the material and on the nature of
the contact with the battery. The material can be in the Mott
insulating phase or in the superfluid phase. In the Mott
phase, a small voltage does not yield a current. Only at a
large voltage, of the order of the gap U, is the battery able to
generate a current by feeding particles into the next unoccu-
pied band. If the material is in the superfluid phase, a small
voltage is enough to generate a current. Due to the superfluid
nature of the atomic carriers, this current is not slowed by
friction. Hence, the ratio of voltage to current does not have
the physical meaning usually associated with resistance, but
reflects the limits on the current at a given voltage due to
factors other than dissipation. A primary limit is set by the
hopping parameter J which quantifies how fast atoms can
move from one site to the next. The value of the hopping
parameter depends on the shape and the depth of the lattice.
A further limit on the current is due to the interaction be-
tween atoms. Repulsion forces them to move in a highly
correlated fashion. For this reason, the current does not grow
linearly with the number of carriers at fixed voltage. Instead,
the current per particle drops as more carriers are added and
eventually goes to zero when the filling is one atom per site
and the system becomes an insulator.

Apart from material dependent factors, the nature of the
contact with the battery can set the maximum achievable
current. If it is more difficult for atoms to pass through the
contact than to hop from one lattice site to the next then the
current is not limited by J but by the rate at which the battery
can feed in and remove particles. This situation is encoun-
tered when operating a battery in a regime of very weak
coupling. The same properties are present in electronic sys-
tems where there can be different types of contacts, such as
rectifying and ohmic contacts [44]. In this paper we focus on
the regime of maximum currents where currents are limited
by the hopping parameter J and are not influenced by the
properties of the battery contact (see the Appendix for de-
tails).

Figure 6 presents the current as a function of voltage for
lattices, or wires, of average filling n=1.1,1.3,1.5,1.7,1.9.
The calculation performed to obtain these current-voltage
characteristic curves are described in the Appendix. At fixed
filling, the current increases monotonically with increasing
voltage. The maximum current attainable for a half-filled
second band is ~1.4J/%. The voltage in Fig. 6 is given in
units of Au,,.c. This quantity denotes the chemical potential
differences that yield the maximum currents. It corresponds
to the chemical potential difference at which the system, for
a given filling, enters an insulating regime at one of the two
battery contacts.

The curves for fillings with an equal number of free par-
ticles and holes coincide, demonstrating the equivalence of
hole and particle motion for U>J. The inset in Fig. 6 pre-
sents the currents at different average fillings, corresponding
to different materials, at Au=Au,,. The plot is symmetric
around its maximum at half-filling reflecting particle-hole
symmetry. Note that the average current per free particle, i.e.,
holes at n>1/2, is constant.
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FIG. 6. (Color online) Current as a function of chemical poten-
tial difference (voltage) for different materials (different fillings )
in the fermionization regime where bosons are impenetrable. A wire
with a certain number of atoms carries the same current as a wire
with that number of holes (particle-hole symmetry). The chemical
potential difference is given in units of Ag,,.. This quantity de-
notes the chemical potential differences that yield the maximum
currents and corresponds to the chemical potential difference at
which the system enters an insulating regime at one of the two
battery contacts for a given n. Inset: Current as a function of filling
at Apn.. Maximum currents are attained at half-filling. Note the
symmetry in the current due to the particle-hole symmetry.

IV. ATOMTRONIC DIODES

A diode is a circuit element that features a highly asym-
metric current-voltage curve. It allows a large current to pass
in one direction, but not in the other. The analog of an elec-
tronic diode is an atomtronic circuit element that lets an
atomic current pass through when applying a voltage V
=u; — mgr While allowing no current or only a small satura-
tion current for a voltage V=—(u; — ug).

In solid state electronics, diodes are built by setting up a
PN junction in which a P-type semiconductor is brought into
contact with an N-type semiconductor. Electrons move
through the junction until an equilibrium is reached. This
process depletes the junction region of free charges, leaving
behind the static charges of the donor and acceptor impuri-
ties. As illustrated in Fig. 7(a), this creates an effective po-
tential step across the junction. When a reverse bias voltage
is applied, the energy barrier is increased, reducing the flux
of electrons from N-type to P-type. At the same time the
number of electrons that can fall down the step remains con-
stant giving rise to a reverse bias saturation current that is
independent of voltage [see Fig. 7(b)]. However, if the diode
is forward biased, more electrons are able to move from the
N-type to the P-type material than at equilibrium since the
potential barrier is decreased by the forward bias voltage [see
Fig. 7(c)]. A detailed discussion of the diode behavior of a
semiconductor PN-junction can, for example, be found in
Ref. [44].

A. Diode PN-junction configuration

As discussed previously, we can design atomtronic wires
whose conductivity properties can be described by locating
the material’s chemical potential in its phase diagram. Com-
posite materials, such as PN-junctions, can be produced by
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FIG. 7. (Color online) Schematic of the conduction band of an
electronic (left-hand panels) and atomtronic (right-hand panels)
PN-junction diode in (a) equilibrium, (b) reverse bias, and (c) for-
ward bias with N-type materials on the left and P-type on the right
of each configuration. Left-hand panels: The electronic system fea-
tures a voltage dependent energy barrier at the junction leading to
an increasing (decreasing) flux from the N-type to the P-type ma-
terial as the junction is forward (reverse) biased while the current
from P to N is independent of voltage. Right-hand panels: The
operation of an atomtronic diode is based on the existence of insu-
lating phases where dn/du=0, i.e., a change in voltage does not
lead to a change in particle transfer between battery and system. As
a consequence, only a small current can flow from N-component to
P-component through an atomtronic diode in reverse bias while in
forward bias the particle transfer between battery and system can be
varied over a large range.

connecting lattices of different doping. Another possibility of
building a junction is to superimpose additional external po-
tentials, for example, a simple potential step. This has the
effect of shifting the phase diagram of a part of the lattice
upwards or downwards with respect to that of the rest. Since
phase boundary effects are small, the state of the different
components can be accurately described by the phase dia-
grams of the individual materials (see the Appendix for de-
tails). This means that a local chemical potential can be as-
sociated with each component of the conductor that can be
located in each material’s phase diagram. Thereby, the local
conductivity properties can be identified. Of course, at equi-
librium, i.e., at zero voltage, the composite material is actu-
ally described by a single chemical potential u but it is u
relative to the zero point energy of each lattice site that de-
termines the filling of each site.

In the following, we focus on a junction created by an
external potential step since this may be the easiest experi-
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FIG. 8. (Color online) Phase diagram of the PN-junction con-
figuration of an atomtronic diode. The small (large) population of
the second many-body band in the P-type (N-type) material yields
the analog of the small (large) thermal electron population of the
conduction band in a semiconductor. The states of the P-type and
N-type materials at zero voltage are represented by the squares.
Arrows indicate the chemical potential difference (voltage) imposed
to obtain a reverse (left) and a forward biased junction (right).

mental realization of a diode. The potential step could be
generated experimentally by exposing one part of the system
to off-resonant laser light. The main characteristics of the
diode behavior are not affected by this choice.

The conduction band of a semiconductor PN-junction fea-
tures a small thermal electron population on the P-side and a
considerably larger electron filling on the N-side. An ex-
ample of an atomtronic equilibrium configuration with analo-
gous features is represented by the squares in Fig. 8. The
small (large) population of the second band in the P-type
(N-type) material yields the analog of the small (large) ther-
mal electron population of the conduction band in a semi-
conductor.

B. Diode current-voltage characteristics

To achieve diode characteristics, we exploit the possibility
of undergoing a quantum phase transition between insulating
and superfluid phases. The materials are configured such that
the chemical potentials of the battery poles remain in the
superfluid regime when hooking up the battery in one direc-
tion, but they easily enter insulating regimes when the volt-
age is applied in the opposite direction.

The effect of applying a voltage is illustrated in Fig. 8.
Forward bias is achieved by connecting the P-side to the low
voltage pole and the N-side to the high voltage pole of the
battery. In this situation, the chemical potentials of the bat-
tery poles are located in the superfluid region of the phase
diagram and atoms can flow from the P-component to the
N-component. The larger the applied voltage, the larger the
generated current. When the battery contacts are switched,
the diode is reverse biased. As the voltage is increased a
small current starts flowing. However, as soon as the voltage
is large enough to make the battery chemical potentials enter
the insulating zones, the current can not increase any further.
As a consequence, the current-voltage curve is asymmetric.
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FIG. 9. (Color online) The characteristic current-voltage curve
for an atomtronic diode. The larger the forward bias (voltage>0),
the higher the current of atoms flowing from the P-component and
to the N-component. In reverse bias (voltage<<0) the current satu-
rates since the particle transfer between battery and system cannot
be increased beyond a certain small value when the battery pole
chemical potentials enter insulating zones where dn/du=0.

The remnant current obtained in reverse bias, the saturation
current, becomes smaller as the components’ initial states are
moved closer to the insulating phase.

Figure 7 presents a schematic comparison of the conduc-
tion band of an electronic and an atomtronic diode obtained
using a step potential. For the atomtronic diode, the fact that
only a small current can flow in reverse bias is not due to the
presence of a voltage-dependent energy barrier at the junc-
tion as in the electronic case. Instead, it arises from the bat-
tery chemical potentials moving into insulating zones corre-
sponding to a full conduction band on the N-side and an
empty conduction band on the P-side. An important differ-
ence between electronic and atomtronic case is the opposite
direction of current flow. In forward bias, atoms flow from
the P-type to the N-type material as opposed to the other way
around for electrons in a semiconductor.

Figure 9 displays the highly asymmetric current-voltage
curve obtained from our calculation. The potential step is
chosen such as to yield an equilibrium configuration with a
filling of 1.99 and 1.01 atoms on the N-side and P-side re-
spectively. In this configuration, we obtain a reverse satura-
tion current of 0.14J/# while in forward bias, currents can
exceed 1.4J/%. Note that the current changes strongly in the
vicinity of V=0. This is reminiscent of the behavior of an
electronic diode as the temperature approaches zero. Reduc-
ing the potential step lowers the population difference be-
tween P-type and N-type materials at equilibrium and leads
to an increase in saturation current and to a decrease in the
slope of the current-voltage curve around V=0.

The diode currents have been calculated in the same man-
ner as the currents carried by atomtronic wires except for the
addition of the potential energy step between the two sites
(see the Appendix for details of calculations).

V. ATOMTRONIC TRANSISTOR

As in electronics, the highly asymmetric current-voltage
curve of atomtronic diodes can be exploited to build a tran-
sistor. Bipolar junction transistors (BJT) are circuit elements
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FIG. 10. Circuit schematic of an electronic or atomtronic bipolar
junction transistor of the NPN-type. A thin P-type component
(base) is sandwiched between two N-type components (emitter and
collector). The key feature is that the voltage Vyp can be used to
obtain gain in the collector current /- relative to the base current /.

that can serve as amplifiers and switches. In electronics, they
consist either of a thin P-type layer sandwiched between two
N-type components (NPN) or a thin N-type layer between
two P-type components (PNP). For our discussion, we con-
sider a PNP configuration. A detailed discussion of semicon-
ductor bipolar junction transistors can, for example, be found
in Ref. [44]. The basic circuit schematic is displayed in Fig.
10. The voltage Vg that is applied to the PN-junction
formed by the middle component, the base, and one of the
outer components, the collector, puts this junction into re-
verse bias. At the same time, the other junction formed by
the base and the other outer component, the emitter, is put
into forward bias by applying a voltage Vg. The key idea is
to use the voltage Vgp to control the current /- leaving the
collector element and thereby achieve differential gain in /-
relative to the base current /5. At V=0 one is simply deal-
ing with the reverse biased base-collector junction. In this
case, the currents /- and I both equal the small reverse bias
saturation current of the base-collector junction. The collec-
tor current /- grows drastically when Vgjp is increased such
that the emitter-base junction is forward biased. This effect
relies on the base region being very thin. The forward bias
gives rise to a flow of electrons from the emitter into the base
region, thereby significantly increasing the number of elec-
trons at the base-collector junction. Recall that at V=0, the
base is depleted of electrons by the reverse bias Vpc. The
emitter-base junction thus serves to greatly modify the num-
ber of carriers in the base that are subjected to the base-
collector reverse bias. This leads to an increase of /-~ beyond
the saturation current. Since the base is extremely thin there
is less opportunity for the electrons to leave the base com-
pared to entering the collector. Because of this, most of the
current that enters the base from the emitter moves on to the
collector instead of it leaving out the base terminal. There-
fore the relative changes in the current from the base /3 and
from the collector /- yields a large differential gain dI-/dlI.

These key features of an electronic transistor can be trans-
lated into atomtronics with atoms taking the place of elec-
trons. The important point is to mimic the carrier densities
and thus the fillings of the three components. This can be
achieved by doping or, equivalently, by using potential steps.
As with the diode, we focus on the latter implementation.
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FIG. 11. (Color online) (a) Squares: equilibrium configuration
of an atomtronic bipolar junction transistor in the phase diagram.
Arrows: direction in which the chemical potentials of the battery
contacts are varied. (b) Differential gain dI/dl as a function of
emitter-base voltage Vpp. Inset: Base current and collector current
as a function of emitter base voltage. The voltage is changed by
varying the emitter contact potential from u(ng=1) to w(ng=1.5).
The base contact is kept at w(ng=1) right below its equilibrium
value u(ng=1.005) while the collector contact is kept at the equi-
librium value u(nc=1.5).

The atomtronic transistor can be created by setting up a con-
figuration such that for zero voltage the conduction bands of
the left-hand and right-hand regions have a large filling com-
pared to the sandwiched thin base region. The phase diagram
for such an arrangement is depicted in Fig. 11(a), where the
squares represent the equilibrium configuration, while the ar-
rows indicate the way the battery chemical potentials are
tuned. A small voltage is applied to the collector-base junc-
tion such that a small current flows from the collector into
the base. When the emitter battery chemical potential wup is
lowered, atoms move from base to emitter and leave through
the emitter, giving rise to a nonzero emitter current /5. As a
back-effect, this leads to an increase in /- since the fast re-
moval of atoms from the base through the emitter allows
more atoms to move into the base from the collector. Mean-
while, the base current Iz becomes smaller the further the
emitter chemical potential wj is lowered. This is due to the
base being very thin relative to the emitter and the collector,
so atoms traverse preferentially from collector to emitter
rather than leaving out the base, thereby contributing to Ip.
The effect of the forward bias Vp on the base current I is
thus opposite to its effect on /.. Therefore, our atomtronic
transistor features an inverted amplification in which a small
decrease in the base current goes along with a large increase
in the collector current (negative gain).
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An example for the behavior of the currents in an atom-
tronic transistor is given in Fig. 11(b). The equilibrium con-
figuration has 1.5 atoms per site in emitter and collector and
1.005 atoms per site in the base. In Fig. 11(b) we plot data
obtained for the individual currents /- and Iz upon variation
of the emitter chemical potential uy while keeping the base
battery contact at a chemical potential u(ng=1) in the n=1
Mott-insulating zone and the collector contact at w(nc
=1.5). To demonstrate differential gain we display the quan-
tity |dI-/dlg| as a function of Vgg. The details of the calcu-
lation are presented in the Appendix.

VI. REMARKS

We have shown how strongly interacting ultracold
bosonic gases in periodic potentials can be used as conduc-
tors and insulators in a circuit and how they can be employed
to build atomtronic analogs of diodes and bipolar junction
transistors. From here, the implementation of an atom ampli-
fier is immediate. An atom amplifier is a device that allows
control of a big atomic current with a small one. The tran-
sistor presented above directly serves this purpose since
small changes in the base current bring along large changes
in the collector current. It is straightforward to conceive of
more complex devices such as a flip flop, a bistable device
that uses cross negative feedback between two transistors.

The similarity in qualitative behavior goes along with a
number of significant differences in the underlying physics.
First, in the atomic case the energy gap results from interac-
tions rather than from statistics as in electronics. Second, the
atomic currents are superfluid. As a consequence, the ratio
between voltage and current has the meaning of a dissipa-
tionless resistance. Further differences arise in both diodes
and transistors. Our atomtronic diode does not feature a
depletion layer, i.e., it does not exhibit a voltage-dependent
energy barrier at the junction. The asymmetry in the current-
voltage curve results from voltage-sign dependent quantum
phase transitions to an insulating phase. As a consequence,
atoms flow from P-type to N-type in forward bias rather than
flowing, as in electronics, from N-type to P-type. Note that
this difference cannot be resolved by drawing the analogy
between atom holes and electrons rather than atoms and elec-
trons since this would also require relabeling the N-type ma-
terial as P-type and vice versa and hence the current direc-
tion would again be reversed in comparison to the electronic
case. Due to the difference in diode behavior the atomic
collector current in a transistor flows from collector into base
and the emitter current flows from base into emitter, i.e.,
opposite to electronic flow in a NPN transistor. A significant
difference in the qualitative behavior of electronic and atom-
tronic transistor is given by the gain being negative in the
atomtronic case. The collector current increases as the base
current decreases. We expect that this does not affect the
functionality of devices based on the operation of bipolar
junction transistors. Yet, an adaptation of their design will be
necessary.

The data presented in this paper is obtained from calcula-
tions for a one-dimensional lattice. This choice is of an en-
tirely practical nature. The basic ideas also hold for two- and
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three-dimensional cubic lattices and extend to other lattice
geometries that make transitions between superfluid and in-
sulating phases upon changes of the chemical potential.

Working with higher-dimensional lattices increases the
magnitude of the currents that can be achieved. In an one-
dimensional optical lattice with an experimentally realizable
depth of 10ER the hopping parameter J~ 0.02Ep, where Ey
=h%m?/2md? is the recoil energy which is fixed by the lattice
period d. For 87 Rb and a lattice period of d=400 nm, the
recoil energy is Ex=(27h)3.55 kHz yielding currents on the
scale J/fi~2X71 Hz. This implies, that the currents
through a three-dimensional lattice of the same period and
depth with a cross-section of 10X 10 sites are of the order
(100X 27r) X 71 Hz.

Experiments aimed at atomtronic devices will be chal-
lenging given the current status of ultracold atom technology.
Among other challenges is the need to combine atomic po-
tentials that have typically been demonstrated in isolated sys-
tems, and, moreover, is the need to spatially cascade regions
in which atoms undergo nonlinear interactions. An optical
lattice might well serve as the basis for fabricating atom-
tronic P-type and N-type materials. Alternatively, lattice po-
tentials could be created by passing current through micro-
fabricated wires on the chip surface. And perhaps coupling
an atom magnetic waveguide to an optical or nonoptical lat-
tice as a means of transporting atoms to and from the lattice
can set the stage for atom diode experiments. In principle,
atom chips provide the means for supporting different types
of atomic potentials on a single substrate. The lattice systems
used in atomtronic circuits do not necessarily have to support
coherent currents. The important feature is that the system’s
tendency to accept or not accept particle transfer from the
battery exhibits the incompressibility associated with the
Mott insulating phase. We have provided a conceptual frame-
work of semiconductor material and device analogs that can
serve as building blocks to more sophisticated atomtronic
devices and circuits. An in-depth discussion of actual atom-
tronic device implementation necessarily goes beyond the
scope of this work.

An issue to be addressed in the future is that of the noise
associated with the inherent quantum uncertainty of the cur-
rent carrying states given the context, at least on some length
scales, of the coherent transport of atoms.

Finally, it is important to keep in mind that this paper
develops atomtronics within the Bose-Hubbard model. This
model provides an excellent description of ongoing experi-
ments with ultracold bosonic atoms in optical lattices. Other
Hamiltonians might offer alternative ways of drawing the
analogy with electronics. A natural choice for further study
are Hamiltonians describing bosons with beyond onsite in-
teractions and Hamiltonians for fermionic gases.
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APPENDIX: CALCULATIONAL DETAILS

In the following, we discuss the calculation of the current-
voltage characteristics presented in Figs. 6, 9, and 11. The
role of the system size is considered in Sec. A 1. The results
of this discussion justify the use of small systems in the
calculation of the current response to a given voltage. Our
approach is developed in Secs. A 1-A 4. These three sections
discuss the effect of the battery on the system, the character
of the resulting current carrying state and the way these two
aspects are used as a starting point in formulating our
method to calculate the current-voltage characteristics. The
details of the algorithm used for wires and diodes are laid out
in Sec. A 5. Finally, the calculation for the transistor is dis-
cussed in Sec. A 6.

1. Small system considerations

There are three primary concerns about the system size
when performing calculations with a small lattice: effects on
the phase diagram, effects at the boundary between two
phases and effects on the current. All of these effects we find
to be small.

Although phase diagrams of ultracold bosons in lattices,
strictly speaking, refer to infinite systems, it is possible to
describe phase diagrams for much smaller systems in a simi-
lar manner. For example, phase diagrams can be created for
systems that are only four or six sites large. For a small
system, the Mott insulator phase can be defined as a state
with an integer filling of the lattice. The superfluid phase is
defined by a state with noninteger filling of the lattice. Note
that adding an extra atom to a small system does require
slightly more energy than adding an extra atom to an infinite
system because in a large system the atom can distribute
itself among more sites than for a small system. This, how-
ever, does not appreciably affect the characteristics of the
different phases. The phase diagrams for small systems are
similar to that presented for an infinite system in Fig. 2. The
tip of the lobe is moved only slightly and the width of the
superfluid region, where the lattice has noninteger filling and
number fluctuations are large, only changes from 2J for a
system of only two sites to 4J for an infinite lattice. The
width of the superfluid region is already 1.6J for six sites. In
addition, the number fluctuations characteristic of superfluid
and insulating phase do not depend on the system size and
only vary on the order of a few percent between small and
large systems of the same filling. Similarly, the doped phase
diagrams presented in Fig. 5 do not change considerably
when calculated for small systems. The phase diagrams of
these systems all possess the same qualitative feature that the
insulating zone of the N-type doped lattice is pushed down-
wards while the insulating zone of the P-type doped lattice is
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pushed upwards. In conclusion, we find that small systems
can be used to replicate the infinite lattice relations u(n)
plotted in Figs. 2 and 5.

Adjoining P-type and N-type materials creates a junction
at which boundary effects could alter each component. How-
ever, we have found that the boundary only minimally affects
one to two sites of each component in the limit U>J. We
have examined the ground state of a PN configuration that
extends over 20 lattice sites and compared each side with
P-type and N-type materials in the absence of a junction. The
difference in the occupation numbers and their fluctuations
between the two systems is on the order of a few percent for
the first site at the junction and is down to a tenth of a
percent by the third site. In conclusion, using the expression
u(n) of P-type and N-type materials to describe each side of
a PN-junction individually in a small system is justified be-
cause boundary effects due to the interface between the two
materials are small.

Finally, the third reason why small systems can be used to
model larger systems is that the net current is not signifi-
cantly affected by the size of the system. We have verified
this numerically by comparing the exact dynamical evolution
in one-dimensional lattices of between two and 10 sites at
constant filling with periodic boundary conditions. In the ini-
tial state, the density is modulated with period 2d and there is
a constant phase difference between neighboring sites. This
initial state is an example of the kind of running wave that
would be created by a battery (as will be discussed below).
The evolution of this state with the Hamiltonian Eq. (1)
within the two-state approximation yields a net current that
does not significantly depend on the number of lattice sites.
This property is reminiscent of the current carried by a Bloch
state which is independent of the system size at fixed quasi-
momentum. A good estimate of the current response can
therefore be obtained by considering a very small number of
links. In this way, it is possible to circumvent calculating the
dynamics of a large lattice. Note that even within the two-
state approximation such a dynamical calculation is feasible
only for systems with a small number of sites.

2. Battery contacts

To power a circuit, the system is connected to an atom-
tronic battery by bringing two reservoirs of different chemi-
cal potential u; and uy into contact with the two ends of the
lattice. The values of u; and g determine the particle trans-
fer An which is injected through one contact and removed
through the other. The transfer An follows from the relations
pr(n+An) and ugr(n—An) with n the filling of the system at
zero voltage. Note that the chemical potentials u; and ug
should be chosen appropriately to ensure that the average
filling is kept at n.

The net current obtained by applying a voltage is given by
the average number of particles passing through the system
per unit time after a transient time has passed. The net cur-
rent not only depends on the particle transfer An as deter-
mined by the values of w, m;, and ug, but also on the
strength of the coupling between battery and system. The
latter is set by the properties of the battery contact and de-
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termines the rate at which transfers of magnitude An take
place.

3. Maximum current solution

The maximum current is obtained when subsequent trans-
fers of the battery are separated by the time it takes for one
transfer of An to free up the site to which the battery is
connected. Such a situation is achieved for transfer rates that
are close to J/#. This is the regime we focus on. It yields the
largest currents and reveals the limits on the currents that are
due to the properties of the material rather than due to the
properties of the battery contact.

The state reached after a time of transient behavior takes
the form of a running density wave. The maxima (minima)
of the wave take the value n+An (n—An) and, hence, the
wave amplitude depends on the voltage. The wavelength is
given by twice the lattice period at maximum current. Note
that in the limit of small voltages, the wave created by the
contact with the battery can be described by the elementary
excitations of the gas.

4. Current response calculation

The computation of the full dynamics of a realistic system
would require a simulation of a large lattice interacting with
several reservoirs, one at each battery contact. Instead, we
use a simplified small-system approach. This approach does
not allow us to describe the transient behavior. We expect the
duration of the transient to be set by the time it takes for the
particle transfer An from the battery to traverse the (M—1)
links of a lattice with M sites. Hence, the transient should
occur on the time scale of (M —1)(A/J).

Our calculation of the current response is performed in
two steps: First, the particle transfer An at a given voltage is
determined from the relation wu;(n+An) [or, equivalently,
from ug(n—An)] for an infinite lattice with the help of Eq.
(2). Second, using the results of the first section, we calculate
the net current in a small system carried by a running wave
with amplitude An and wavelength 2d, where d is the lattice
period. This requires preparing an initial state that corre-
sponds to the momentary state of such a wave and to evolve
it in time yielding a time-dependent current. The net current
is given by the average particle transfer per unit time.

5. Atomtronic wires and diodes

As discussed above in Sec. A 1, currents can be calculated
by considering small systems. As a consequence, for a
simple atomtronic wire the second step of the calculation,
i.e., the calculation of the net current carried by a wave of
amplitude An and wavelength 2d, can be carried out by con-
sidering a single link.

In an atomtronic diode, it is the interface region rather
than the bulk P-type or N-type material that poses the big-
gest obstacle for atom flow and thus determines the net cur-
rent. The current calculation can be reduced down to just this
single interface link since the evolution is little affected by
adding further surrounding sites.
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For a given transfer from the battery An, the current re-
sponse of a single link is calculated using an initial state with
ng=n+An particles on the right and n;=n—An particles on
the left. The initial phase relation between the two sites is
chosen so as to produce the lowest energy configuration that
has the given filling on each site. We then compute the dy-
namical evolution yielding the time-dependent current i(z).
The net current / is obtained by calculating the time average
of i(¢) over the time interval Ar and maximizing it with re-
spect to Az. With v the frequency of the density oscillation,
the time it takes for 2An particles to move from the initially
higher populated site to its neighbor is given by 1/2v.
Hence, the result for the net current is approximately given
by I=4Anv.

To calculate the currents through an atomtronic wire (see
Sec. 111, in particular Fig. 6) we consider a single link in the
absence of additional external potentials with an equilibrium
occupation 1 <n<<2. The evolution of the two site system
yields the time-dependent current

(1) = %(nR — ny)sin(4Jeh). (A1)

To obtain the net current we maximize the time average of
Eq. (A1) over a time interval Az. This yields

J

with Ar=0.587%/J. This result is close to the value /=4Anv
with the Rabi frequency v=2J/Am. From the result for the
relation I(An) we obtain the current-voltage dependence
I(Ap) using Eq. (2) for an infinite lattice.

The current characteristics of a diode (see Sec. IV) is
calculated in the same way with a potential step included
between the two lattice sites. This potential step ensures that
the two sides have the desired difference in occupation at
equilibrium. In this configuration, the calculation yields a
slightly more complicated current relation.
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6. Transistor

The calculation for the transistor are performed in a simi-
lar way as that for a wire or a diode. Similar to the case of
the diode, the current response to particle transfer from the
battery is determined by the atom flux through the two inter-
faces between emitter-base and base-collector. Moreover, as
discussed earlier, the current response has a small depen-
dence on the number of links. Therefore, the current can be
calculated by considering a three-site system, the two links
representing the two links at the two interfaces of the NPN
system. An external potential is added to raise the middle site
playing the role of the base while the outer sites represent the
emitter and collector.

The initial state is prepared as the lowest energy state with
a variable number of ny atoms in the emitter and no=1.5
atoms in the collector. The filling on the base is determined
from the height of the potential on the base and the condition
of being in the lowest energy state with fillings ny and n. on
the emitter and collector. At equilibrium (no=nz=1.5), the
base is occupied by nz=1.005 atoms. The current of atoms
passing through the base from collector to emitter is given by
ic=(icp+ipp)/2 with icp the current from collector to base
and ipg the current from base to emitter. As in the preceding
sections, we calculate the net collector current /- by maxi-
mizing the time average of i.. Since we are interested in the
me dependence of I at fixed Vp, the initial collector occu-
pation is kept fixed at n-=1.5 while the emitter occupation
ng is varied in the range 1 =ngp<1.5.

The base current is set to be Iz=I"(nz—1), where I' must
satisfy the condition I"<<J/#A. The quantity I describes the
weak coupling with the battery at the base contact which is
due to the thinness of the base. The data for I displayed in
Fig. 11(b) is obtained using I'=0.01J/%. The number of cur-
rent carriers involved in Iy is given by (nz—1) because the
chemical potential of the base contact is set to be in the n
=1 insulator region. Note that our calculation neglects the
effect of Iz on I. This is justified because the weak coupling
at the base contact implies that the reduction of ng by I is
small. Overall, the transistor current gain relies on two fac-
tors. The base region must be thin and the emitter must have
an equilibrium filling significantly larger than the base.
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