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We present a self-consistent theory for the thermodynamics of the BCS-BEC crossover in the normal and
superfluid phase which is both conserving and gapless. It is based on the variational many-body formalism
developed by Luttinger and Ward and by DeDominicis and Martin. Truncating the exact functional for the
entropy to that obtained within a ladder approximation, the resulting self-consistent integral equations for the
normal and anomalous Green functions are solved numerically for arbitrary coupling. The critical temperature,
the equation of state, and the entropy are determined as a function of the dimensionless parameter 1 /kFa,
which controls the crossover from the BCS regime of extended pairs to the BEC regime of tightly bound
molecules. The tightly bound pairs turn out to be described by a Popov-type approximation for a dilute,
repulsive Bose gas. Even though our approximation does not capture the critical behavior near the continuous
superfluid transition, our results provide a consistent picture for the complete crossover thermodynamics which
compares well with recent numerical and field-theoretic approaches at the unitarity point.
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I. INTRODUCTION

The problem of a two-component attractive Fermi gas
near a resonance of the s-wave scattering length describing
the effective interaction is one of the basic many-body prob-
lems which has been brought into focus by the recent real-
ization of molecular condensates in ultracold Fermi gases
�1–3� and the subsequent exploration of the crossover from a
Bose-Einstein condensate �BEC� to a BCS-like state of
weakly bound fermion pairs �4�. Clear signatures for the ex-
istence of paired fermion superfluidity with cold atoms have
been provided by spectroscopic measurements of the gap �5�
and the observation of a vortex lattice on the BCS side of the
transition �6�. The ability of tuning the interaction in cold
Fermi gases through Feshbach resonances relies on the reso-
nant coupling of the scattering state near zero energy of two
colliding atoms with a bound state in a closed channel �7�. A
particularly challenging problem arises right at the Feshbach
resonance, where the two-particle scattering length is infinite
�8,9�. Precisely at this point and for broad Feshbach reso-
nances, where the range r� of the effective interaction is
much smaller than the mean interparticle spacing �10–13�,
the full many-body problem has the Fermi energy �F as the
only energy scale. As pointed out by Ho �14�, the thermody-
namics of the unitary Fermi gas is then a function only of the
dimensionless temperature �=T /TF. More generally, as em-
phasized recently by Nikolić and Sachdev �15�, the univer-
sality also extends to the behavior away from the Feshbach
resonance, as long as the broad resonance condition kFr��1
is obeyed. Thus, for instance, the critical temperature Tc /TF
for the transition to superfluidity is a universal function of
the inverse coupling constant 1 /kFa.

A quantitative theoretical understanding of the many-body
problem near a Feshbach resonance has been developed
recently through numerical calculations. In particular, at
zero temperature and for a homogeneous system, fixed-node
Green function Monte Carlo calculations provide

quantitative results for the gap parameter �16�, the equation
of state �17�, and also the momentum distribution, the con-
densate fraction, and the pair size �18� of the ground state for
arbitrary values of 1 /kFa. As expected in the case of an
s-wave resonance �19�, these quantities all evolve continu-
ously as the coupling is varied from the BCS to the BEC
limit. An important ingredient in these results is their account
for the repulsive interaction between strongly bound dimers
in the BEC limit with scattering length add�0.60a�0 �20�.
This interaction is missing in the early qualitative descrip-
tions of the T=0 BCS-BEC crossover problem by Eagles
�21� and Leggett �22�, which are based on using the standard
BCS ground state as a variational ansatz for arbitrary cou-
pling �23�. Beyond a purely numerical approach, the BCS-
BEC crossover problem has recently become amenable also
to analytical methods via an �=4−d expansion �24�. It is
based on the observation �25� that at the unitarity point in
d=4 �i.e., the point where a two-particle bound state appears�
the two-component Fermi gas is in fact an ideal Bose gas,
because a zero-range interaction in d=4 can bind a state only
at infinitely strong attraction. In two dimensions, in turn,
binding appears at arbitrary small couplings and the unitary
Fermi gas in d�2 coincides with a noninteracting one �25�.
Within a field-theoretic description, the physically interesting
three-dimensional �3D� problem can thus be approached by
extrapolating expansions from the upper and lower critical
dimensions d=4 and d=2, respectively �26�. At finite tem-
perature, numerical calculations are available for the thermo-
dynamics at the unitarity point. They are based on an auxil-
iary field quantum Monte Carlo method for the continuum
problem �27� and on a diagrammatic determinant Monte
Carlo method for the negative-U Hubbard model �28�. Field-
theoretic results at finite temperature, which open the possi-
bility for controlled and systematic expansions for the cross-
over thermodynamics, have been obtained very recently by
Nishida �26� within an expansion around both the upper and
lower critical dimensions and by Nikolic and Sachdev �15�
within a 1/N expansion for a 2N-component Fermi gas.
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Our aim in the following is to present a self-consistent
many-body theory for the thermodynamics of resonantly in-
teracting fermions at arbitrary temperatures and detuning,
which directly addresses the physically relevant case of a
three-dimensional, two-component Fermi gas. The theory is
based on a conserving, so-called �-derivable approach to the
many-body problem, in which the exact one- or two-particle
Green functions serve as an infinite set of variational param-
eters. It is an extension of earlier work by one of us �29–31�
and employs a combination of the Luttinger-Ward and De
Dominicis–Martin approach for obtaining the grand canoni-
cal potential and the entropy, respectively. The condition of
gaplessness is enforced by a modified coupling constant, thus
accounting for the proper low-energy behavior in terms of a
Bogoliubov-Anderson mode. We provide quantitative results
for the critical temperature, the equation of state, and the
entropy near the Feshbach resonance as a function of both
T /TF and 1/kFa. In spite of the fact that the critical behavior
at the continuous superfluid transition is not captured cor-
rectly in our approach, which gives rise to a weak first-order
transition, the results provide a quantitative and consistent
picture of the crossover which obeys thermodynamic rela-
tions at the percent level. Our variational method is comple-
mentary both to purely numerical and to field-theoretic ap-
proaches to the problem. The results can be used, e.g., to
predict the final temperature reached after an adiabatic ramp
across the Feshbach resonance starting deeply in the BEC
regime �32� or to determine the size of the atom cloud in a
harmonic trap near unitarity as a function of temperature.

The paper is organized as follows: in Sec. II we introduce
our model and the basic many-body formalism necessary for
deriving a set of self-consistent equations for the Green and
vertex functions which are the variational parameters of the
theory. The complete thermodynamics is then determined by
integrals of the momentum- and frequency-dependent Green
functions. It is shown that with a modified coupling constant,
the theory can be formulated in a way consistent with Ward
identities, which guarantees a gapless Bogoliubov-Anderson
mode for arbitrary strength of the coupling. In Sec. III we
discuss the numerical solution, providing quantitative results
for the critical temperature, the pressure, internal energy, and
the entropy of the BCS-BEC crossover in both the normal
and superfluid phases. They are compared with both experi-
mental and theoretical results based on numerical and field-
theoretic approaches. Finally in Sec. IV we give a brief
summary and indicate open problems.

II. MANY-BODY THEORY OF RESONANTLY
INTERACTING FERMIONS

In order to describe interacting fermions near a Feshbach
resonance, it is in general necessary to include the resonant,
closed-channel bound state explicitly—e.g., within a Bose-
Fermi-resonance model �33,34�. As has been shown, for in-
stance, by Diener and Ho �11�, however, the situation can be
simplified in the case of broad Feshbach resonances, where
the effective range r� of the resonant interaction is much
smaller than both the background scattering length abg and
the Fermi wavelength �F. In this limit, which is in fact

appropriate for the existing experimental studies of the
BCS-BEC crossover problem in 6Li �5� and 40K �1�, the
problem can be reduced to a single-channel Hamiltonian
with an instantaneous interaction �10–13�. The associated ef-
fective two-body interaction is thus described by a pseudo-
potential V�r����r� �appropriately renormalized; see below�
with a strength proportional to the scattering length

a = abg�1 −
	B

B − B0
� . �2.1�

Here abg is the off-resonant background scattering length in
the absence of the coupling to the closed channel while 	B
and B0 describe the width and position of the resonance
which may be tuned by an external magnetic field B. The
interacting Fermi system is thus described by the standard
Hamiltonian

Ĥ =	 ddr




�2

2m
���


†�r�����
�r�� +
1

2
	 ddr	 ddr�





�

V�r − r���

†�r��
�

† �r���
��r���
�r� , �2.2�

where �
�r� and �

†�r� are the usual fermion field operators.

The formal spin index 
 labels two internal degrees of free-
dom, which in practice are two different hyperfine states. In
the approximation, where the effective range of the resonant
interaction is taken to zero, the interaction potential can
formally be replaced by a � potential between fermions of
opposite spin:

V�r − r�� = g0��r − r�� . �2.3�

Its strength g0 needs to be renormalized for dimensions
d�2 by introducing the scattering amplitude g via

1

g
=

1

g0
+	 ddk

�2��d

m

�2k2 . �2.4�

For dimensions d�2 the integral diverges at high momenta.
Since the scattering amplitude g is kept constant, the bare
interaction parameter g0 must be taken to zero in the limit
where the cutoff diverges. The associated limiting process
g0→−0 accounts for the replacement of the bare potential
�2.3� by a pseudopotential with the proper scattering length.
While the formulas are derived for arbitrary space dimen-
sions d, eventually we consider fermions for d=3. In this
case the scattering amplitude g is simply connected to the
s-wave scattering length a given in Eq. �2.1� by
g=4��2a /m.

In the following, we consider a homogeneous situation
described by a grand canonical distribution at fixed tempera-
ture and chemical potential. The thermodynamic properties
thus follow from the grand partition function

Z = Tr�exp�− ��Ĥ − �N̂��� �2.5�

and the associated grand potential

� = ��T,�� = − �−1ln Z , �2.6�

which is directly related to the pressure p via �=−pV.
Within our simplified model, where the range of the interac-
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tion is set to zero, the Fermi system is described by three
parameters: the temperature T, the chemical potential �, and
the s-wave scattering length a. Apart from an overall scale,
the thermodynamics thus depends only on two dimensionless
ratios. It is convenient to replace the chemical potential � by
the fermion density n=kF

3 /3�2, which defines the Fermi
wave number kF and the Fermi energy �F=�2kF

2 /2m as char-
acteristic length and energy scales. The equilibrium state is
then uniquely determined by only two parameters: the di-
mensionless temperature �=T /�F �we choose units for the
temperature in which kB=1� and the dimensionless interac-
tion strength v=1/kFa. In the special case B=B0 of an infi-
nite scattering length �the so-called unitarity limit�, the pa-
rameter v drops out and the resulting thermodynamic
quantities are universal functions of � �14�.

A. Luttinger-Ward formalism

The BCS-BEC crossover is controlled by two physical
phenomena. The first one is connected with the formation of
pairs due to the attractive interaction. The second one is the
transition to superfluidity below a certain critical temperature
Tc. In the BCS limit, the formation of pairs and the superfluid
transition are simultaneous. The transition is driven by the
thermal breakup of pairs—i.e., by excitations which may be
described by a purely fermionic theory. With increasing
strength of the interaction, however, there is an increasingly
wide range of temperatures where bound pairs coexist with
unpaired fermions. In the BEC limit, pair formation, as a
chemical equilibrium between bound and dissociated atoms,
occurs at a temperature scale much higher than the superfluid
transition. The latter is driven by collective excitations of a
then purely bosonic system. A proper description of the
crossover thus requires one to account for both bosonic and
fermionic excitations simultaneously.

Following the formalism developed by Luttinger and
Ward �35� for nonsuperfluid interacting Fermi systems, the
grand thermodynamic potential �2.6� can be expressed as a
unique functional of the Green function

G

��r − r�,� − ���

= � �

�G�r − r�,� − ��� �

�F�r − r�,� − ���

− �

�F
*�r� − r,� − ��� − �

�G�r� − r,�� − �� �

�2.7�

in the form

��G� = �−1�− 1
2 Tr�− ln G + �G0

−1G − 1�� − ��G�� .

�2.8�

The trace Tr is defined with respect to the formal index
X= �r ,� ,
 ,�� which combines the space variable r, the
imaginary time �, the spin index 
, and the Nambu index �.
The interaction between the fermions is described by the
functional ��G�, which can be expressed in terms of a per-
turbation series of irreducible Feynman Diagrams where the
propagator lines are dressed and identified by the matrix
Green function G of Eq. �2.7�.

While the formalism of Luttinger and Ward was originally
derived for normal quantum liquids, it is well suited also to

describe superfluid systems. Indeed the nondiagonal ele-
ments of the matrix Green function G represent the order
parameter of the superfluid transition. The minimization of
the grand potential ��G� as a functional of the Green func-
tion G thus incorporates the standard thermodynamic crite-
rion that the order parameter be found by minimizing the
thermodynamic potential. The stationarity condition

���G�/�G = 0 �2.9�

uniquely determines the full matrix Green function G of the
interacting system and hence the order parameter. It is im-
portant to note that the thermodynamic potential ��G� de-
pends on the exact Green function G. The formalism of Lut-
tinger and Ward thus leads via Eq. �2.9� to a self-consistent
theory for the matrix Green function G. Since the Green
functions contain information about the full dynamical be-
havior via the imaginary time dependence of the Matsubara
formalism, the Luttinger-Ward approach not only provides
results for the equilibrium thermodynamic quantities but also
determines spectral functions and transport properties. In our
present work, however, dynamical properties will not be
discussed.

The functional ��G� is defined by an infinite perturbation
series of irreducible Feynman diagrams, and an exact expres-
sion for ��G� is clearly beyond what can be done analyti-
cally. An approximation which properly describes the forma-
tion of pairs is a ladder approximation �36�. In Fig. 1, the
related diagrams of ��G� are shown. The ladder approxima-
tion is self-consistent because the propagator lines are
dressed lines which are identified by the matrix Green func-
tion G. In the weak-coupling BCS regime the ladder approxi-
mation becomes exact. For very strong attractive interac-
tions, well above the pairing threshold, the fermion system is
a Bose liquid of dilute atom pairs. In this limit the ladder
approximation describes the formation of pairs �two-particle
problem� exactly, however the interaction between the pairs
�four-particle problem� only approximately �20,37�. In par-
ticular the resulting dimer-dimer scattering length is given by
the Born approximation add

�B�=2a.

B. De Dominicis–Martin formalism

An extension of the Luttinger-Ward formalism was given
by De Dominicis and Martin �38�. They introduce up to four
external fields, which couple to products of one-, two-,
three-, and four-field operators and perform the Legendre
transformations to the corresponding conjugate variables—
the Green functions. For fermion systems only two external
fields are relevant which couple to even products of fermion
field operators. The related two conjugate variables of the

−1

3

2
1

l
l −1 l

3

2 1

l

l =1
Φ[G] = +

FIG. 1. The functional ��G� in self-consistent ladder approxi-
mation. The propagator lines are dressed lines identified by the
matrix Green function G.
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Legendre transformation are the one-particle Green function
G and the two-particle Green function G2. Within our ap-
proach below, the second Legendre transformation is per-
formed explicitly. A more convenient conjugate variable is
then the vertex function � which is related to G2 by Eq.
�2.15� below. Thus, De Dominicis and Martin obtain a ther-
modynamic potential which is a functional of both G and �.
More precisely, it turns out that the relevant functional is the
entropy S=F�2� where

F�2��G,�� = 1
2 Tr�− ln G + ��− i � �n�G − 1��

+ 1
2 Tr�ln�1 − 1

2 �̄� + 1
2 �̄ + 1

2� 1
2 �̄�2

− �1/4 ! ���̄�2�
+ K�2��G,�� �2.10�

�see �61� in the second paper of Ref. �38� and identify

G1=G, C2=−�, and C̄2=−�̄ therein�. �̄ is defined in Eq.
�2.14� below.

The formalism of De Dominicis and Martin is ideally
adapted to describe the BCS-BEC crossover because it ex-
plicitly deals with the one-particle Green function G, which
represent the properties of the single fermions, and the vertex
function �, which describes the eventually purely bosonic
properties of the fermion pairs �both condensed or noncon-
densed�. In particular, a full implementation of their formal-
ism is needed to correctly account for four-particle correla-
tion, which is necessary to obtain the exact result
add=0.60a for the dimer-dimer scattering length in the BEC
limit.

As in standard thermodynamics, the entropy �2.10�
is maximized under the constraint that all conserved quanti-
ties be kept constant. For the interacting fermion system de-
fined by the Hamiltonian �2.2� the conserved quantities

are the internal energy U= Ĥ� and the particle number
N=− 1

2 Tr�G�. Evaluating the thermal average of the Hamil-
tonian �2.2� we find that U can be expressed in terms of G
and � �see Eqs. �2.15� and �2.24� below�.

Consequently, the entropy F�2��G ,��=S�G ,��, the inter-
nal energy U�G ,��, and the particle number N�G� are func-
tionals depending on G and �. In order to find the maximum
of the entropy under the constraint of given average values
of the particle number and the internal energy, De Dominicis
and Martin �38� consider the functional

W�G,�� = F�2��G,�� − �UU�G,�� − �NN�G� , �2.11�

where �U and �N are two Lagrange parameters for the two
constraints. Alternatively and equivalently, we consider the
functional

��G,�� = U�G,�� − TS�G,�� − �N�G� , �2.12�

which is the grand thermodynamic potential where the tem-
perature T and the chemical potential � are the Lagrange
parameters. Both functionals �2.11� and �2.12� must be sta-
tionary under small variations of G and �. In this way, we
obtain the stationarity criteria

���G,��/�G = 0 and ���G,��/�� = 0, �2.13�

which uniquely determine the one-particle Green function G
and the vertex function �.

In order to simplify the second trace in the entropy func-
tional �2.10� it is convenient to define a modified vertex

function �̄ by

�̄X1X2X3X4
= GX1Y1

1/2 GX2Y2

1/2 �Y1Y2Y3Y4
GY3X3

1/2 GY4X4

1/2 , �2.14�

where the four external propagator lines are amputated only
halfway �see �46� in the second paper of �38��. For a proper
definition of the second trace and the related matrix products
the four indices of the modified vertex function must be

grouped into pairs according to �̄= �̄�X1X2��X3X4�. The last term
in Eq. �2.10�, the functional K�2��G ,�� �depicted in Fig. 2�, is
defined by an infinite perturbation series of two-line irreduc-
ible Feynman diagrams, where the propagator lines and the
vertices are dressed and identified by the one-particle Green
function G and by the vertex function �, respectively.

In order to understand the physical meaning of the various
contributions to the thermodynamic potential, we note that
the Luttinger-Ward formalism and the De Dominicis–Martin
formalism are related to each other by a Legendre transfor-
mation, in which the bare two-particle interaction as an ex-
ternal field is transformed into the two-particle Green func-
tion G2. This Legendre transformation may be interpreted as
a renormalization procedure. Since the two-particle Green
function G2 is expressed in terms of the vertex function � by

G2,X1X2X3X4
= GX1X3

GX2X4
− GX1X4

GX2X3
− GX1X2

GX3X4

− GX1Y1
GX2Y2

�Y1Y2Y3Y4
GY3X3

GY4X4
, �2.15�

the bare two-particle interaction is replaced by the vertex
function � as the renormalized interaction, which is the
many-particle generalization of the scattering amplitude g.

We may compare the functionals �2.8� and �2.10� directly
with each other. The first trace in Eq. �2.10� is identified by
the trace in Eq. �2.8�, which describe the contribution of
single particles to the grand canonical potential and entropy,
respectively. The second trace and the functional K�2��G ,��
in Eq. �2.10� which represent the interaction terms are related
to the functional ��G� in Eq. �2.8�. By close inspection �see
�62� in Ref. �38�� we find that the second trace in Eq. �2.10�
represents the inverted perturbation series of ladder dia-
grams. It includes both particle-particle and particle-hole lad-
ders, which describe the scattering and formation of pairs,
and it also includes bubble diagrams, which describe the
screening of the interaction.

+ ...+K(2 ) [G,Γ] =

FIG. 2. The functional K�2��G ,�� is the sum of all two-line
irreducible diagrams. The propagator lines and the vertices �solid
circles� are dressed and identified with G and �, respectively.
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These three types of diagrams and mixtures of them arise
because the vertices are symmetrized so that each of them
can be expressed as a sum of three unsymmetrized vertices.
As a result, the self-consistent ladder approximation of the
functional ��G� shown in Fig. 1 can be reformulated within
the formalism of De Dominicis and Martin in the following
way: the second trace is approximated by keeping only the
particle-particle ladders and the complicated functional
K�2��G ,�� is set equal to zero. This neglects the screening of
the interaction due to particle-hole excitations �see Sec. III A
below� and also the coupling between collective excitations
and bound pairs.

In the following subsections we employ the formalism of
De Dominicis and Martin to construct explicit expressions
for S�G ,��, U�G ,��, and N�G�. From Eq. �2.12� we obtain
the functional ��G ,��. The stationarity criteria �2.13� imply
two self-consistent equations for the Green function G and
the vertex function �. Solving the second equation with re-
spect to � and inserting the resulting vertex function into
��G ,�� we recover the functional ��G� of the Luttinger-
Ward formalism together with the stationarity condition
�2.9�. This fact explicitly demonstrates the equivalence of the
Luttinger-Ward and De Dominics–Martin formalism for our
approximation scheme �see Eqs. �2.41�–�2.43� below� once
the appropriate stationarity conditions have been taken into
account.

C. Thermodynamic potentials

The formalism of Luttinger and Ward �35� allows one to
calculate directly the grand thermodynamic potential �. The
functional ��G� has been evaluated explicitly in Ref. �31�.
Inserting this result into Eq. �2.8� we obtain

��G� = − Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G�k,�n��

+ �G0�k,�n�−1G�k,�n� − 1�� + Ldg0�F�0,0��2

+
1

2
Ld	 ddK

�2��d

1

�


�n

Tr�ln�1 + g0��K,�n��� .

�2.16�

In this formula the matrix Green function is defined by

G�k,�n� = „G����k,�n�… = � G�k,�n� F�k,�n�

F�k,�n�* − G�k,�n�*� .

�2.17�

Knowledge of the matrix Green functions determines the
matrix pair propagator via

��K,�n� = „�����K,�n�…

= �	 ddk

�2��d

1

�


�n

G����K − k,�n − �n�

G����k,�n�� . �2.18�

In order to distinguish between fermionic and bosonic

functions the fermionic wave vectors and Matsubara fre-
quencies are denoted by small letters, while the bosonic
wave vectors and Matsubara frequencies are denoted by
capital letters. In the second term of Eq. �2.16� the anoma-
lous Green function is identified by F�0 ,0�=F�r=0 ,�=0�.
The formulas are derived for an arbitrary dimension of space
d. The volume is assumed to be a cube with edge length L
and periodic boundary conditions, where the limit L→� is
taken.

The strength of the attractive interaction is included by
the bare interaction parameter g0. The kinetic energy of the
atoms, �k=�2k2 /2m, and the chemical potential � are im-
plicitly included via the free matrix Green function
G0�k ,�n�, which is related to the free normal Green function

G0�k,�n� = 1/�− i � �n + �k − �� �2.19�

and the free anomalous Green function

F0�k,�n� = 0 �2.20�

by a formula which is analogous to Eq. �2.17�. The tempera-
ture T is included explicitly by the factors 1 /� and implicitly
by the Matsubara frequencies �n and �n.

As evident from Eq. �2.16�, the formalism of Luttinger
and Ward, though including the exact single-particle Green
function, still contains the bare coupling constant g0. In the
De Dominicis–Martin formalism the bare coupling is renor-
malized and replaced by the exact vertex function � via a
second Legendre transformation. The corresponding func-
tional S�G ,��=F2�G ,�� is just the dimensionless entropy as
given in Eq. �2.10�.

As discussed above we restrict the second trace in Eq.
�2.10� to the particle-particle ladders and by the nature of our
interaction potential �2.3� to s-wave scattering. Furthermore,
we omit the two-line irreducible Feynman diagrams by set-
ting K�2��G ,��=0. This approximation covers the essential
features of the crossover problem: namely, the formation of
pairs and their condensation. Within our ladder approxima-
tion, the De Dominicis–Martin formalism thus leads to an
expression for the entropy of the form

S�G,�� = �Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G�k,�n��

+ �− i � �nG�k,�n� − 1��

+
1

2
�Ld	 ddK

�2��d

1

�


�n

Tr�ln�1 − ��K,�n���K,�n��

+ ��K,�n���K,�n�� . �2.21�

The first term is clear. It is directly obtained from the first
trace in Eq. �2.10�. However, the second term resulting from
the second trace in Eq. �2.10� needs further explanation.
From Eq. �2.14� and the definition of the pair propagator
�2.18� we infer
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�̄�K,�n� = ��K,�n�1/2��K,�n���K,�n�1/2

= ��K,�n���K,�n� = ��K,�n���K,�n� .

�2.22�

The reduction to particle-particle ladders implies that the
Nambu indices are pairwise identical. In this way, the four
Nambu indices of the vertex function � reduce to two
Nambu indices. As a result, the vertex function ��K ,�n�
= (�����K ,�n�) is a 22 matrix in the Nambu space similar
to the matrix Green function �2.17�. For the formalism of
Luttinger and Ward the reduction of the vertex is described
in detail in Ref. �31� and also in Ref. �29�. Since the second
trace of Eq. �2.10� is reduced to the particle-particle ladders
and the structure of the vertex function is simplified consid-
erably due to s-wave scattering, the prefactors of the terms in
the second trace of Eq. �2.21� are changed. The factor of 1

2 in

front of �̄ disappears. Furthermore, the quadratic terms in the
second trace cancel.

Another important quantity to consider is the internal en-
ergy U. With the help of the � potential �2.3� we find, for the
expectation value of the Hamiltonian �2.2�,

U =	 ddr




�2

2m
���


†�r�����
�r���

+
1

2
	 ddr




�

g0�

†�r��
�

† �r��
��r��
�r�� .

�2.23�

The second term contains an average of four fermion field
operators which can be expressed in terms of the two-particle
Green function G2. Following the formalism of De Domini-
cis and Martin �38� and using Eq. �2.15� the two-particle
Green function can be expressed by four terms. The first
three terms represent the three possibilities to factorize the
two-particle Green function into products of two one-particle
Green functions according to the Wick theorem. These terms
provide the Hartree energy, the Fock energy, and the Bogo-
liubov energy. The fourth term is the connected part of the
two-particle Green function and provides the correlation en-
ergy. Taking all terms together we obtain the internal energy

U�G,�� = − 2Ld	 ddk

�2��d�kG�k,� = − 0� + Ldg0�F�0,0��2

+
1

2
Ld	 ddK

�2��d

1

�


�n

g0Tr���K,�n�

− ��K,�n���K,�n���K,�n�� . �2.24�

Finally, the particle number N is defined by the average

N = N̂� =	 ddr




�

†�r��
�r�� , �2.25�

which can be expressed in terms of the normal Green
function in the standard form

N�G� = − 2Ld	 ddk

�2��dG�k,� = − 0� . �2.26�

The entropy �2.21�, the internal energy �2.24�, and the
particle number �2.26� are the basic functionals of the for-
malism of De Dominicis and Martin. The entropy S�G ,�� is
maximized under the constraints that the internal energy
U�G ,�� and the particle number N�G� be constant. In order
to do this, the grand thermodynamic potential ��G ,�� is
defined by Eq. �2.12� where the temperature T and the
chemical potential � are Lagrange parameters. The self-
consistent equations for the Green function G and the vertex
function � are obtained from the stationarity conditions
�2.13�. Formally, the formalism of De Dominicis and Martin
yields a different expression for the grand thermodynamic
potential � than the formalism of Luttinger and Ward does
by Eq. �2.16�. However, it can be shown that the results are
identical if and only if G and � satisfy the self-consistent
equations �see the end of Sec. II E�.

The functionals �2.21�, �2.24�, and �2.26� do not depend
explicitly on the thermodynamic parameters T and �. While
the temperature appears explicitly via the factor �=1/T and
the Matsubara frequency �n��n�T, a proper rescaling of
the functions G→�G, �→��, and �→� implies that all
factors � and T cancel in all three functionals. The tempera-
ture T and the chemical potential � enter only as Lagrange
parameters via the constraints. This fact is a general property
of the formalism of De Dominicis and Martin. The fermion
mass m, the kinetic energy �k=�2k2 /2m, and the interaction
parameter g0, which determine the microscopic properties of
the interacting fermion system, are present only in the
internal energy functional �2.24�.

An alternative expression for the entropy is obtained from
the grand thermodynamic potential of Luttinger and Ward
Eq. �2.16�, according to the standard thermodynamic relation

S = − ��/�T . �2.27�

Taking the partial derivative we obtain an expression which
formally differs from Eq. �2.21�. However, provided that G
and � satisfy the self-consistent equations, the results for the
entropy will be identical. Therefore, both the Luttinger-Ward
and the De Dominicis–Martin formalism exactly obey all the
standard thermodynamic relations provided the Green func-
tions obey the stationarity conditions �2.9� and �2.13�. The
equivalence of the different formal expressions in thermal
equilibrium is very important for the consistency of our
theory and the compatibility of the self-consistent ladder ap-
proximation for all thermodynamic quantities. Apart from
the entropy, we can also determine the pressure p=−� /Ld as
a functional of the Green function G using Eq. �2.16� or
�2.12�. The dimensionless thermodynamic quantities � /N�F,
U /N�F, and S /N will be calculated numerically in Sec. III
and discussed in the following sections.

D. Self-consistent equations for the Green
and vertex functions

The self-consistent equations for the Green functions fol-
low directly from the stationarity condition �2.9�. Inserting
the general functional of the Luttinger-Ward formalism �2.8�
into this condition we obtain the Dyson equation
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G���
−1 �k,�n� = G0,���

−1 �k,�n� − �����k,�n� . �2.28�

The self-energy � is identified by the functional derivative

�����k,�n� = −
1

�Ld

���G�
�G����k,�n�

. �2.29�

The functional ��G� is defined by a perturbation series. The
related Feynman diagrams are shown in Fig. 1 for the self-
consistent ladder approximation. Inserting the grand thermo-
dynamic potential �2.16� into the constraint �2.9�, we obtain
an explicit expression for the self-energy which is

�����r,�� = �1,�����r��F��/ � � + G����− r,− �������r,�� .

�2.30�

In the first term �F�� / � � is the fermionic delta function
which is antiperiodic. The order parameter of the superfluid
transition

	 = g0F�0,0� �2.31�

is represented by the nondiagonal elements of the matrix

�1 = � 0 	

	* 0
� . �2.32�

In the second term of Eq. �2.30�, � is the matrix vertex
function, which is related to the matrix pair propagator � by

����
−1 �K,�n� = g0

−1���� + �����K,�n� . �2.33�

Eventually, � is represented in terms of the matrix Green
function by Eq. �2.18�. Equation �2.33� is just the Bethe-
Salpeter equation in ladder approximation. It is responsible
for the fact that the binding of fermion pairs is described
appropriately. Taken together, we have now a set of
self-consistent equations for the matrix Green function G and
the matrix vertex function � which have to be solved
numerically.

Alternatively we can derive the self-consistent equations
by inserting the functional �2.12� of the formalism of De
Dominicis and Martin into the related stationarity conditions
�2.13�. We obtain the Dyson equation �2.28� from the first
condition and the Bethe-Salpeter equation �2.33� from the
second condition. In this way we prove that both the
Luttinger-Ward formalism and the De Dominicis–Martin
formalism are equivalent within our approximation.

Unfortunately, in the present form, the matrix pair propa-
gator � defined in Eq. �2.18� is divergent. While the sum
over the Matsubara frequencies is finite, the integral over the
wave vector is ultraviolet divergent for dimensions d�2. For
this reason a renormalization is necessary. We define the
regularized pair propagator by

M����K,�n� =	 ddk

�2��d� 1

�


�n

G����K − k,�n − �n�

G����k,�n� −
m

�2k2����� . �2.34�

Inserting this formula into Eq. �2.33� we obtain the renormal-
ized Bethe-Salpeter equation

����
−1 �K,�n� = g−1���� + M����K,�n� . �2.35�

The bare interaction strength g0 is renormalized according
to Eq. �2.4� and replaced by the scattering amplitude g.
For d=3 dimensions g is expressed in terms of the s-wave
scattering length a by g=4��2a /m.

The zero range of the interaction between the fermions
implies that

F�0,0� =	 ddk

�2��d

1

�


�n

F�k,�n� �2.36�

is infinite. For this reason the order-parameter formula �2.31�
must be renormalized, too. Replacing the bare interaction
strength g0 by the scattering amplitude g according to Eq.
�2.4�, we obtain the renormalized formula

	 = g	 ddk

�2��d�F�k,� = 0� + 	
m

�2k2� . �2.37�

Here, the integral over the wave vector is finite.

E. Reformulation in terms of mean-field Green functions

In the mean-field approximation the self-energy ��k ,�n�
is replaced by �1 defined in Eq. �2.32�. Since �1 depends
neither on wave vector nor on frequency, the approximation
���1 just describes the formation of a pair condensate
within a BCS-type mean-field theory where the destruction
of superfluidity is driven by the breakup of pairs. This is the
correct description in the weak-coupling limit; however, for
strong coupling the superfluid transition is driven by finite
momentum pairs whose contribution is contained in the sec-
ond term of the self-energy �2.30�. Inserting the mean-field
self-energy into the Dyson equation �2.28� we obtain

G1�k,�n�−1 = G0�k,�n�−1 − �1

= �− i�n + ��k − �� − 	

− 	* − i�n − ��k − ��
� ,

�2.38�

where G1 is the matrix Green function in mean-field
approximation.

If we consider the self-consistent equations and the for-
mulas for the thermodynamic potentials, we realize that the
spectrum �k of the fermionic atoms and the chemical poten-
tial � enter the formulas only implicitly via the free matrix
Green function G0. We can transform the formulas so that G0
is replaced in favor of the mean-field matrix Green function
G1. As a result we obtain the Dyson equation

G���
−1 �k,�n� = G1,���

−1 �k,�n� − �̃����k,�n� , �2.39�

where

�̃����r,�� = G����− r,− �������r,�� �2.40�

is the second term of the self-energy �2.30�. The other
self-consistent equations remain unchanged. The grand
thermodynamic potential �2.16� is transformed into
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� = − Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G�k,�n��

+ �G1�k,�n�−1G�k,�n� − 1�� − Ld �	�2

g0

+
1

2
Ld	 ddK

�2��d

1

�


�n

Tr�− ln���K,�n�/g0�� .

�2.41�

For a combination of the internal energy �2.24� and the
particle number �2.26� we obtain the formula

U − �N = − Ld	 ddk

�2��d

1

�


�n

Tr��G1�k,�n�−1 + i � �n�

G�k,�n�� − Ld �	�2

g0
−

1

2
Ld	 ddK

�2��d


1

�


�n

Tr����K,�n�/g0 − 1�� . �2.42�

The entropy �2.21� depends neither on G0 nor on G1. We
transform the formula into

S = �Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G�k,�n��

+ �− i � �nG�k,�n� − 1�� −
1

2
�Ld	 ddK

�2��d


1

�


�n

Tr�− ln���K,�n�/g0� + ���K,�n�/g0 − 1�� .

�2.43�

In the above three formulas we have simplified the terms
involving the vertex function � by using the Bethe-Salpeter
equation �2.33�. The grand thermodynamic potential �2.41�
was derived using the formalism of Luttinger and Ward �35�
while the other two quantities �2.42� and �2.43� were derived
using the formalism of De Dominicis and Martin �38�. It is
now not hard to see that the above expressions obey the
thermodynamic relation

� = U − TS − �N , �2.44�

which explicitly shows that both formalisms are indeed
equivalent, yielding the same results for all thermodynamic
potentials in the self-consistent ladder approximation pro-
vided G and � satisfy the appropriate stationarity equations.

F. Mean-field approximation

If we insert G1 for the matrix Green function G and ne-
glect all terms containing the vertex function �, we obtain
the thermodynamic potentials in mean-field approximation.
In particular the mean-field grand thermodynamic potential
is given by

�1 = − Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G1�k,�n��� − Ld �	�2

g0
,

�2.45�

while the mean-field formula for the combination of the
internal energy and the particle number is

U1 − �N1 = − Ld	 ddk

�2��d

1

�


�n

Tr��G1�k,�n�−1 + i � �n�

G1�k,�n�� − Ld �	�2

g0
�2.46�

and the mean-field entropy is

S1 = �Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G1�k,�n��

+ �− i � �nG1�k,�n� − 1�� . �2.47�

In order to obtain finite results, we must define the sums
over the Matsubara frequencies as described in Appendix A.
The sums can be evaluated explicitly. This yields

�1 = E0 −
1

�
2Ld	 ddk

�2��d ln�1 + exp�− ��Ek − ��� ,

�2.48�

U1 − �N1 = E0 + 2Ld	 ddk

�2��d �Ek − ��nk, �2.49�

S1 = − 2Ld	 ddk

�2��d ��1 − nk�ln�1 − nk� + nkln nk� ,

�2.50�

which are the well-known results of a BCS variational ansatz
for arbitrary coupling where

E0 = − 2Ld	 ddk

�2��d

1

2
��Ek − �� − ��k − ��� − Ld �	�2

g0

�2.51�

is an energy constant which after renormalization g0→g �see
Eq. �2.57�� reduces to the BCS condensation energy. Here Ek
is the spectrum of the quasiparticles, defined by

�Ek − �� = ���k − ��2 + �	�2�1/2, �2.52�

and nk denotes the Fermi distribution function of the quasi-
particles:

nk = 1/�exp���Ek − ��� + 1� . �2.53�

We find that the regularization of the Matsubara-frequency
sums described in Appendix A affects only the energy con-
stant E0. The regularization has been chosen such that for
zero interaction the results for the ideal Fermi gas are ob-
tained which implies E0=0. The other terms in Eqs.
�2.48�–�2.50� are not affected by the regularization.
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G. Beyond the mean-field approximation

In the mean-field approximation, the formation and con-
densation of fermion pairs occur at the same temperature.
This is the well-known BCS scenario, which is perfectly cap-
tured by the exact solution of the reduced BCS Hamiltonian.
Formally, this solution can easily be extended to arbitrary
coupling strengths �23�. At zero temperature, it provides a
smooth crossover from the BCS ground state of highly over-
lapping pairs to a perfect Bose-Einstein condensate at infinite
coupling, similar to the variational ansatz of Eagles �21� and
Leggett �22�. At finite temperature, however, superfluidity in
this model is destroyed by fermionic excitations: namely, the
breakup of pairs. The critical temperature is therefore of the
same order as the pairing gap at zero temperature, consistent
with the well-known BCS relation 2	0 /Tc=3.52 in weak
coupling. Clearly, such a picture is appropriate for weak cou-
pling, where the transition to superfluidity is driven by the
gain in potential energy associated with pair formation. By
contrast, for sufficiently strong interactions, the superfluid to
normal transition is instead driven by a gain in kinetic en-
ergy, associated with the condensation of preformed pairs
rather than their thermal breakup. The critical temperature is
then of the order of the degeneracy temperature of the gas
and thus is completely unrelated to the pair binding energy.
For a proper description of the BCS-BEC crossover at finite
temperature and arbitrary coupling, we therefore need to go
beyond the mean-field approximation, including excitations,
which drive the superfluid order parameter to zero without
destroying the bound pairs altogether. On a formal level,
this is accomplished by the nontrivial wave-vector-
and frequency-dependent term G� in the exact fermion
self-energy, as given in Eq. �2.30�.

For the numerical calculation we decompose the thermo-
dynamic potentials into a mean-field part and a correction
term according to �=�1+	�, S=S1+	S, etc. The mean-
field contributions have been derived in the previous subsec-
tion. While in these contributions the Matsubara-frequency
sums have been performed explicitly, the integrals over the
wave vector remain and must be evaluated numerically. By
subtracting the mean-field formulas �2.45�–�2.47� from the
general formulas �2.41�–�2.43� we obtain the correction for
the grand thermodynamic potential,

	� = − Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G1�k,�n�−1G�k,�n��

+ �G1�k,�n�−1G�k,�n� − 1�� +
1

2
Ld	 ddK

�2��d


1

�


�n

Tr�− ln���K,�n�/g0�� , �2.54�

the correction for the combination of the internal energy and
the particle number,

	U − �	N = − Ld	 ddk

�2��d

1

�


�n

Tr��G1�k,�n�−1 + i � �n�

�G�k,�n� − G1�k,�n���

−
1

2
Ld	 ddK

�2��d

1

�


�n

Tr����K,�n�/g0 − 1�� ,

�2.55�

and the correction for the entropy,

	S = �Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G1�k,�n�−1G�k,�n��

+ �− i � �n��G�k,�n� − G1�k,�n���

−
1

2
�Ld	 ddK

�2��d

1

�


�n

Tr�− ln���K,�n�/g0�

+ ���K,�n�/g0 − 1�� . �2.56�

In formulas �2.54�–�2.56� the sums over the fermionic Mat-
subara frequencies �n converge so that the regularization of
Appendix A is not needed. However, the sums over the
bosonic Matsubara frequencies �n are not well defined and
must be regularized. Thus, for a numerical evaluation the
formulas �2.54�–�2.56� must be transformed further, which
will be done in the next subsection.

H. Renormalization of the thermodynamic potentials

Since the interaction has zero range, the interaction
strength g0 must be renormalized and replaced by the scat-
tering amplitude g according to Eq. �2.4�. In a first step we
renormalize the mean-field formulas of the thermodynamic
potentials. In Eqs. �2.48�–�2.50� the interaction strength g0
does not occur explicitly. The integrals are thus finite, and no
renormalization is needed for these formulas. However, the
condensation energy �2.51� contains two infinite terms—a
divergent integral and the last term with the infinite factor
1 /g0—which compensate each other. By renormalizing the
interaction strength we obtain

E0 = − 2Ld	 ddk

�2��d

1

2
��Ek − �� − ��k − �� −

�	�2

2�k
� − Ld �	�2

g
,

�2.57�

where both the integral and the last term are now separately
finite. Note that the wave vector integrals in Eqs.
�2.48�–�2.50� and in Eq. �2.57� are finite in any spatial di-
mension d with 2�d�4.

In a second step we renormalize the correction formulas.
In the correction of the grand thermodynamic potential
�2.54� we decompose ln���K ,�n� /g0�=ln���K ,�n� /g�
+ln�g /g0�. The separated term ln�g /g0� can be neglected be-
cause it does not depend on the Matsubara frequencies �n.
Following the arguments of Appendix A the Matsubara-
frequency sum of this term is zero. Thus, for the correction
of the grand thermodynamic potential we obtain the renor-
malized formula

THERMODYNAMICS OF THE BCS-BEC CROSSOVER PHYSICAL REVIEW A 75, 023610 �2007�

023610-9



	� = − Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G1�k,�n�−1G�k,�n��

+ �G1�k,�n�−1G�k,�n� − 1�� +
1

2
Ld	 ddK

�2��d

1

�



�n

Tr�− ln���K,�n�/g�� . �2.58�

Both terms of this formula are now finite. However, Eq. �A4�
is needed to evaluate the second term.

In correction �2.55� the second term must be renormal-
ized. This can be achieved by the following sequence of
equations:

− Ld	 ddK

�2��d

1

�


�n

Tr����K,�n�/g0 − 1��

= Ld	 ddK

�2��d

1

�


�n

Tr���K,�n���K,�n��

= Ld	 ddk

�2��d

1

�


�n

Tr��̃�k,�n�G�k,�n��

= Ld	 ddk

�2��d

1

�


�n

Tr�G1�k,�n�−1�G�k,�n� − G1�k,�n��� .

�2.59�

First, by using the Bethe-Salpeter equation �2.33� we write
the integrand as a product of the matrix vertex function �
and the matrix pair propagator �. Second, we express � in
terms of the matrix Green function G by Eq. �2.18�, inter-
change the orders of the integrals and sums, and combine �

with one of the G into the self-energy �̃ by Eq. �2.40�. Fi-

nally, we replace �̃ in favor of G and G1 by using the Dyson
equation �2.39�. The bosonic integral and sum are trans-
formed into a fermionic integral and sum. Hence, the second
term of Eq. �2.55� can be combined with the first term. As a
result we finally obtain

	U − �	N = −
1

2
Ld	 ddk

�2��d

1

�


�n

Tr��G1�k,�n�−1 + 2i � �n�

�G�k,�n� − G1�k,�n��� . �2.60�

By considering Eq. �2.38� we explicitly prove

G1�k,�n�−1 + 2i � �n = G1�k,− �n�−1. �2.61�

Consequently, for the correction of the combination of the
internal energy and the particle number we obtain the
compact formula

	U − �	N = −
1

2
Ld	 ddk

�2��d

1

�


�n

Tr�G1�k,− �n�−1

�G�k,�n� − G1�k,�n��� , �2.62�

which is essential for a stable numerical evaluation of the
correction term. The Matsubara-frequency sum is evaluated
by using Eq. �A3�. The wave vector integral is finite.

The correction of the entropy �2.56� is renormalized in an
analogous way. Alternatively, we use the thermodynamic
relation �2.44�. As a result we obtain

	S = �Ld	 ddk

�2��d

1

�


�n

Tr�− ln�G1�k,�n�−1G�k,�n��

+ �G1�k,�n�−1G�k,�n� − 1�� −
1

2
�Ld	 ddk

�2��d


1

�


�n

Tr�G1�k,− �n�−1�G�k,�n� − G1�k,�n���

−
1

2
�Ld	 ddK

�2��d

1

�


�n

Tr�− ln���K,�n�/g�� .

�2.63�

The final results are the mean-field formulas �2.48�–�2.50�
together with Eq. �2.57� and the correction formulas �2.58�,
�2.62�, and �2.63�. In these formulas each term by itself is
finite. Eventually, the thermodynamic potentials are obtained
by adding the terms together according to �=�1+	�,
S=S1+	S, etc.

I. Symmetry breaking and Thouless criterion

The interacting fermion system is invariant under the
symmetry transformation

�
�r� → ei��
�r�, �

†�r� → e−i��


†�r� , �2.64�

which is related to a global change of phase of the fermion
fields by �. The superfluid phase breaks this symmetry since
the order parameter 	 is transformed as 	→e2i�	. Clearly,
however, the thermodynamic potentials must remain invari-
ant under a global change of the phase in both the normal
and superfluid states. In the superfluid, the free energy in-
crease associated with a slowly varying phase ��r� vanishes
like ����2. By Goldstone’ s theorem, this implies the exis-
tence of modes whose energy vanishes in the long-
wavelength limit. For a neutral superfluid, this is the well-
known Bogoliubov-Anderson mode. It has a sound like
dispersion ��k�=ck and is physically related to fluctuations
of the phase of the order parameter.

In technical terms, the existence of zero-energy collective
modes can be derived from Ward identities related to the
symmetry transformation. By considering the grand thermo-
dynamic potential ��G�, in Ref. �31� the Ward identity



YY�

�XX�,Y�Y
−1 ���YY� = 0 �2.65�

has been derived �see �2.57� in Ref. �31��. Here ���XX� is the
variation of the self-energy under the transformation �2.64�
with an infinitesimal phase change ��. This quantity may be
interpreted as the generalized order parameter of the system.
On the other hand, �XX�,YY�

−1 is the inverse vertex function.
For a shorthand notation the indices X ,X� and Y ,Y� are used,
which represent a combination X= �r ,� ,
 ,�� of the space
variable r, the imaginary time �, the spin index 
, and the
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Nambu index �. According to Eq. �2.65� the inverse vertex
function �−1 may be interpreted as a linear operator which
acts on the order parameter ���. In the superfluid state the
order parameter is nonzero so that the inverse vertex function
must have a zero eigenvalue, which is related to a zero-
energy collective mode. For superfluid fermion systems this
fact is known as the Thouless criterion �39�.

The Ward identity �2.65� has been derived for the exact
theory. However, our present crossover theory is an approxi-
mation, based on a certain truncation of the exact functional
which enters either into the Luttinger-Ward or the De
Dominicis–Martin formalism. In general, such a truncated
functional will not obey the Ward identity. Indeed, we find
that our inverse vertex function ����

−1 �K ,�n� obeys instead
the equation



��

����
−1 �K = 0,�n = 0�	�� = O��	�3� , �2.66�

where �	��= �	 ,	*� �see �3.56� in Ref. �31��. Taking the
longitudinal part, this equation correctly describes the
smooth evolution from a Ginzburg-Landau-type description
of weak-coupling BCS superfluids to a Gross-Pitaevskii-like
theory of a dilute, repulsive Bose gas �31�. The transverse
part, however, also gives a finite value on the right-hand
side of Eq. �2.66� in the limit K=0 and �n=0, thus violating
the Ward identity by terms of order �	�3. As a result, the
Thouless criterion is violated and there is no proper
Bogoliubov-Anderson mode in our approach without a
further modification �see below�.

Unfortunately, the violation of the Goldstone theorem for
continuous symmetries is a general property of conserving
approximations based on the Luttinger-Ward formalism. This
problem has been known for a long time for superfluid Bose
systems �40� and is sometimes referred to as the
“conserving-gapless dichotomy” �41,42� in the literature. For
the exact theory, a Ward identity holds for the inverse matrix
boson Green function GB, which reads



��

GB,���
−1 �K = 0,�n = 0��B,�� = 0. �2.67�

In the superfluid state the inverse matrix boson Green func-
tion has a vanishing eigenvalue. For superfluid boson sys-
tems this is known as the Hugenholtz-Pines theorem �43�.
Conserving approximations, however, violate the
Hugenholtz-Pines theorem. For example, this is true already
for the lowest approximation, the well-known Hartree-Fock-
Bogoliubov theory.

In our fermion system for strong attractive interactions
v=1/kFa�1, the fermions are bound into pairs. These pairs
form a Bose system with an effective repulsive interaction
which, for a dilute system, is described by the exact scatter-
ing length add�0.60a of the four-particle problem associated
with dimer-dimer scattering. In the strong-coupling limit,
therefore, our crossover theory for interacting fermions must
converge to an effective theory of repulsively interacting
bosons, where both theories are based on the Luttinger-Ward
formalism. From the analytical arguments in Refs. �29,31�
and also from our numerical calculations, we find that the

crossover theory converges to the Hartree-Fock-Bogoliubov
theory quickly for interactions v=1/kFa�2. The boson or-
der parameter �B and the matrix boson Green function
GB�K ,�n� can be identified with the order parameter 	 and
the vertex function ��K ,�n� according to �29,31�

�B = ± i�8��b
2a3�−1/2	 , �2.68�

GB�K,�n� = − �8��b
2a3�−1��K,�n� . �2.69�

The validity of these relations requires both strong coupling,
but also low frequencies and momenta. Indeed, it is only at
low energies where the composite particles behave like
bosons. At higher frequencies or momenta, the composite
nature of the pairs becomes visible. This becomes evident,
for instance, in the different behavior GB��n

−1 of a Bose
Green function at large frequencies compared to that of the
vertex function, which behaves like ���n

−1/2 as a result of
the two-particle continuum associated with broken fermion
pairs. Clearly, at large coupling constants v�1, this con-
tinuum moves up to very large frequencies of the order of the
binding energy �b�v2.

We conclude that the violation of the Thouless criterion in
our crossover theory is related to the violation of the
Hugenholtz-Pines theorem in the Hartree-Fock-Bogoliubov
theory for bosons to which our Luttinger-Ward formulation
of the fermionic many-body problem converges at large cou-
pling. In the following section, it will be shown that this
problem may be solved by an appropriate modification of the
coupling constant. In this manner, a self-consistent formula-
tion of the many-body problem is possible which obeys
Goldstone’s theorem and thus provides a correct description
of both fermionic and collective, bosonic excitations along
the BCS-BEC crossover.

J. Modified coupling and gapless Bogoliubov-Anderson mode

In the following, our aim is to modify the theory in a way
which is consistent with the Thouless criterion, giving rise to
a gapless Goldstone mode in the whole regime of coupling
strengths. If we require the Thouless criterion



��

����
−1 �K = 0,�n = 0�	�� = 0, �2.70�

a further equation will be added to the self-consistent equa-
tions for the Green and vertex functions in Sec. II D. How-
ever, then another equation must be discarded or a further
parameter must be introduced. We find that the Bethe-
Salpeter equation �2.35� and the order-parameter equation
�2.37� cannot be satisfied together if Eq. �2.70� is required.
For this reason we modify the theory by introducing a modi-
fied scattering amplitude gmod, which is determined by the
modified order-parameter equation

	 = gmod	 ddk

�2��d�F�k,� = 0� + 	
m

�2k2� . �2.71�

We have solved the self-consistent equations together with
the Thouless criterion �2.70� and the modified order-
parameter equation �2.71�. The numerical effort is much less
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for the modified theory than for the original theory. Since the
scattering amplitude g is related to the scattering length a,
we obtain a modified dimensionless interaction strength
vmod=1/kFamod. We find a difference �vmod=vmod−v in the
range between 0.0 and −0.1.

In order to obtain a consistent theory, we must check that
the modification is compatible with the Luttinger-Ward for-
malism. We must find a modified grand thermodynamic po-
tential �mod�G�, so that the condition for stationarity �2.9�
yields the self-consistent equations with the modified order-
parameter equation �2.71�. For this purpose we consider the
second term of Eq. �2.16� which reads

�0�G� = Ldg0�F�0,0��2 = Ld�	�2/g0. �2.72�

We replace this term by the modified term

�0,mod�G� = Ld�	�2/g̃0,mod��	�� , �2.73�

where

	 = g0,mod��	��F�0,0� �2.74�

is the modified order-parameter equation. The modified in-
teraction strengths g̃0,mod= g̃0,mod��	 � � and g0,mod

=g0,mod��	 � � depend on the order parameter �	�, are not
equal, and differ from the bare interaction strength g0. In
order to apply the stationarity condition �2.9� we must con-
sider the variation of Eq. �2.73� with respect to G. Since the
modified parameter g̃0,mod��	 � � depends implicitly on G via
Eq. �2.74�, the chain rule of differential calculus must be
applied. Eventually, the variation of Eq. �2.73� must have the
form

��0,mod�G� = Ld	 ddk

�2��d

1

�


�n

Tr��1�G�k,�n��

= Ld�	�F�0,0�* + 	*�F�0,0�� . �2.75�

By comparing the resulting terms with Eq. �2.75�, we obtain
the differential equation

�

� �	�
�	�2

g̃0,mod��	��
= 2�	�

�

� �	�
�	�

g0,mod��	��
. �2.76�

On the other hand, Eq. �2.66� implies that the Thouless
criterion holds without modification if �	 � =0. Thus, we find

g̃0,mod = g0,mod = g0 for �	� = 0, �2.77�

which is an initial condition for Eq. �2.76�. Equation �2.76�
can be integrated together with Eq. �2.77�. We obtain

1

g̃0,mod��	��
=

2

g0,mod��	��
−

1

�	�2	0

�	� 2�	��d�	��
g0,mod��	���

.

�2.78�

The thermodynamic state of the interacting fermion system
in the superfluid state is therefore determined by three
parameters. We may choose the order parameter �	�,
the chemical potential �, and the interaction strength g0 for
these parameters. Hence, the modified interaction strengths
g0,mod=g0,mod��	 � ,� ,g0� and g̃0,mod= g̃0,mod��	 � ,� ,g0� are
functions of these parameters. While g0,mod��	 � ,� ,g0� is

uniquely determined by Eq. �2.74� and the other self-
consistent equations, g̃0,mod��	 � ,� ,g0� depends on the path
in the parameter space when the integral �2.78� is calculated.
Since g0 and � are external parameters of the theory, for a
correct formulation of the modification these parameters
must be kept constant.

The modification is compatible also with the De
Dominicis–Martin formalism. In this case the internal energy
U�G ,�� includes the term �2.72� which must be modified
according to Eq. �2.73�. The modification of the coupling
constant g0 described by Eqs. �2.76�–�2.78� is derived in an
analogous way.

Equations �2.72�–�2.78� describe the modification of the
crossover theory in terms of the bare interaction parameters
g0, g0,mod, and g̃0,mod. A renormalized version of the modifi-
cation is obtained if we replace the bare parameters by the
renormalized scattering amplitudes g, gmod, and g̃mod accord-
ing to Eq. �2.4�. Equations �2.76�–�2.78� are valid also for
the renormalized scattering amplitudes without changes.
From Eq. �2.78� we obtain

1

g̃mod��	��
=

2

gmod��	��
−

1

�	�2	0

�	� 2�	��d�	��
gmod��	���

. �2.79�

The renormalized modified order-parameter equation is de-
fined by Eq. �2.71�. In order to obtain the modified formulas
of the renormalized thermodynamic potentials in Sec. II H
only a single change is needed. We must replace the energy
constant �2.57� by

E0,mod = − 2Ld	 ddk

�2��d

1

2
��Ek − �� − ��k − �� −

�	�
2�k

�
+ Ld�	�2�g̃mod

−1 − 2g−1� . �2.80�

The other formulas �2.58�, �2.62�, and �2.63� remain un-
changed. Since the renormalized scattering amplitude g is
related to the dimensionless interaction parameter v=1/kFa,
we can transform Eq. �2.79� into a dimensionless form. For
�vmod=vmod−v and �ṽmod= ṽmod−v we obtain

�ṽmod��	�/�F,v� = 2�vmod��	�/�F,v� − ��	�/�F�−2

	
0

�	�/�F

�vmod�X,v�2XdX . �2.81�

While �vmod is obtained directly from Eq. �2.71� by solving
the self-consistent equations, �ṽmod is obtained by evaluating
the integral in Eq. �2.81� numerically. As a result we obtain
modifications which are restricted to the interval

− 0.1 � �vmod � �ṽmod � 0 for �	� � 0. �2.82�

In Fig. 3 the modifications �vmod and �ṽmod are shown as a
red solid curve and blue dashed curve, respectively, for
T=0 and �	 � = �	0�. Clearly, the modifications are largest in
the crossover region close to the unitarity point. At finite
temperature for increasing T the order parameter �	� and the
modifications �vmod and �ṽmod decrease together. Eventually,
for �	 � =0 the modifications are �vmod=�ṽmod=0.

In the previous subsection we have argued that for strong
attractive interactions the fermions are bound into pairs. Our
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crossover theory for the interacting fermion system then con-
verges to a Luttinger-Ward-type theory for interacting
bosons. Since the modified version of our theory obeys the
Ward identity, its strong-coupling limit necessarily leads to a
description of dilute, repulsive bosons which has the correct
linear spectrum of excitations at low energies. It turns out
that the limiting theory here is the Luttinger-Ward version of
the so-called Shohno theory �44,45� which is equivalent to
the more well-known Popov approximation. While we have
not been able to derive the Shohno-Popov theory analytically
from the Luttinger-Ward functional of the original fermionic
model, we find a quick convergence numerically in all ther-
modynamic quantities for dimensionless couplings v�2.
Considering the entropy, in particular, the Shohno-Popov
theory gives rise to the standard expression

S = Ld	 ddK

�2��d ��1 + nK
B �ln�1 + nK

B � − nK
B ln nK

B � �2.83�

for the entropy of a noninteracting gas of bosonic quasipar-
ticles with the standard distribution function

nK
B = 1/�exp���EK

B − �B�� − 1� . �2.84�

The corresponding spectrum of excitation energies

EK
B − �B = ���2K2/2mB�2 + ��2K2/2mB�2gB��B�2�1/2

�2.85�

has the well-known form of a Bogoliubov spectrum with a
temperature-dependent condensate density nB,0= ��B�2 and a
positive Bose-Bose scattering amplitude gB. Within our ap-
proximation, we have gB=2g; i.e., the exact dimer-dimer
scattering length add�0.60a is replaced by its Born approxi-
mation result add

�B�=2a �46�. The effective mass and chemical
potential take their obvious values mB=2m and �B=2�+�b
where �b=�2 /ma2 is the two-particle binding energy on the
BEC side of the crossover, where a�0. The order parameter
�B is given by Eq. �2.68�. Other thermodynamic quantities
are obtained using more complicated expressions, which are
not presented here in detail �47�. As will be shown explicitly
in the following sections, the numerical results for the

critical temperature or the entropy converge quickly to that
of the Shohno-Popov theory for coupling strengths v�2.

III. NUMERICAL RESULTS

Following the detailed discussion of the formalism used
to describe the thermodynamics of attractively interacting
fermions at arbitrary coupling and temperature, we now
present numerical results which cover both the normal and
superfluid regimes. These results require a solution of the
self-consistent equations determining the Green function G
and the vertex function �, which are scalars above and two-
by-two matrices below the critical temperature. An iteration
procedure is performed where a numerical Fourier transfor-
mation is needed to transform the functions back and forth.
Since the Green function G, the vertex function �, and the

related functions �̃ and M are singular at small values of r
and � and also exhibit significant variation over several or-
ders of magnitude, the numerical Fourier transformation is
quite challenging. In practice, the variables need to be dis-
cretized on logarithmic scales. Standard procedures like the
fast Fourier transformation are therefore not applicable. The
basic principles of our special numerical Fourier transforma-
tion are described in Appendix B.

A. Critical temperature

The crucial quantity which determines the overall struc-
ture of the phase diagram is of course the critical temperature
Tc for the transition to a superfluid. This temperature is
known analytically only in the extreme BCS and BEC limits.
In the BCS limit kF �a � →0, where the average distance be-
tween the fermions is much larger than the magnitude of the
scattering length, the standard solution of the gap equation
for an attractive pseudopotential gives a critical temperature

Tc
�BCS� =

8e�E

�e2 �Fexp�− �/2kF�a�� , �3.1�

with �E=0.5772. . . Euler’s constant. Tc
�BCS� is exponentially

small on the characteristic scale of the Fermi energy. Since
typical Fermi temperatures in cold gases are of the order of
micro-kelvins, the BCS regime is in practice hardly attain-
able in these systems.

The leading-order corrections to the BCS result in an ex-
pansion in the small parameter kF �a � �1 were determined a
long time ago by Gorkov and Melik-Barkhudarov �48�. They
arise from induced interactions, where one fermion sees the
polarization in the Fermi gas due to a second fermion. The
density-induced interaction changes the dimensionless cou-
pling constant N�0�g=2kFa /� of the BCS theory to �49�

g → g + g2N�0�
1 + 2 ln 2

3
, �3.2�

where N�0�=mkF /2�2�2 is the standard density of states per
spin at the Fermi energy. Since the additional contribution to
the two-body scattering amplitude g�0 is positive, the in-
duced interactions weaken the attractive interaction between
two fermions in vacuum and lead to a reduction of the tran-

−4 −2 0 2 4
v = 1/kFa

−0.2

−0.1

0

0.1

δv
m

od

FIG. 3. �Color online� Modifications of the dimensionless inter-
action parameter: the red solid curve shows �vmod and the blue
dashed curve depicts �ṽmod as a function of v for T=0 and
�	 � = �	0�.
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sition temperature by a factor �4e�−1/3�0.45. The nonana-
lytic dependence of the BCS-transition temperature on the
dimensionless coupling constant kFa thus gives rise to a fi-
nite change in the prefactor in Eq. �3.1� from the BCS value
0.61 to 0.28, even though the contribution of induced inter-
actions is of order kFa compared to the bare interaction.

On the BEC side, the zeroth-order result for the critical
temperature is obtained from the value

Tc
�BEC� = 3.31

�2nB
2/3

mB
= 0.218�F, �3.3�

obtained for an ideal Bose gas with density nB=n /2 and
mass mB=2m. The leading corrections to this result arise
from the residual interactions between the strongly bound
bosonic dimers. As shown by Petrov et al. �20,50�, these
interactions can be described by a positive dimer-dimer scat-
tering length add�0.60a. With the quite plausible assump-
tion that the total potential energy in a dilute gas of dimers is
the sum of its two-body interactions, the scattering length of
the four-fermion problem determines the corresponding in-
teraction constant in the theory of a weakly interacting Bose
gas in the regime of a small gas parameter nB

1/3add�1, where
Bogoliubov theory is applicable. The exact dependence of
the critical temperature of the dilute, repulsive Bose gas on

the interaction strength has been calculated only in recent
years. To lowest order in the interaction, the shift is positive
and linear in the scattering length �51�,

Tc/Tc
�BEC� = 1 + cnB

1/3add + ¯ , �3.4�

with a numerical constant c�1.31 �52,53�. As a result, the
evolution of the critical temperature in the homogeneous
case as a function of the dimensionless coupling constant v
=1/kFa necessarily exhibits a maximum, since the
asymptotic ideal Bose gas result is approached from above.
Such a maximum was found in the early calculations of Tc
along the BCS-BEC crossover by Nozières and Schmitt-Rink
�54� and by Randeria �55�. The precise height and location of
this maximum, however, have not been determined so far in
a quantitatively reliable manner. Given that our present
theory exhibits a first-order transition, there is a range of
multivaluedness of the thermodynamic potentials as a func-
tion of temperature. This regime is bounded in Fig. 4 by the
upper and lower Tc curves, respectively. The lower Tc curve
�shown as the red dashed line� which is monotonic in v co-
incides with the Tc curve previously calculated �30� by
implementing the Thouless criterion coming from the normal
fluid side. In a situation where a true first-order transition is
expected, we would need to perform a Maxwell construction
to obtain the proper transition line. As was discussed above,
however, the first-order transition is an artifact of the ap-
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FIG. 4. �Color online� �c
�lower� �red dashed line� and �c

�upper�

�solid black line, identified as Tc� compared with the Shohno result
�blue dot-dashed line� with add

�B�=2a and the exact �QMC� result
�light-blue squares� with 	Tc /TBEC=cnB

1/3addand c=1.31 and add

=0.60a. The yellow dashed line and green triangles show the BCS
result without and with Gorkov and Melik-Barkhudarov
corrections.
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FIG. 5. �Color online� S�T� at various interaction strengths v.

FIG. 6. �Color� Entropy as a function of � and v obtained using
Eqs. �2.50� and �2.63�.

FIG. 7. �Color� Pressure as a function of � and v obtained using
Eqs. �2.48� and �2.58�.
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proximations involved. In particular the spectrum of excita-
tions right at Tc is free particle like in our approximation
rather than �K�K3/2 �56�.

In order to determine the proper critical temperature
within our approximation, we have used two essentially
equivalent criteria: the fact that the exact entropy is continu-
ous at Tc suggests that our best approximation for the critical
temperature is where the jump in the entropy between the
two branches characterizing the superfluid and the normal
regime has a minimum. Essentially the same value is ob-
tained by defining Tc through the criterion that it be the
maximum temperature at which the order parameter 	�T� is
nonzero. Remarkably, these criteria lead to a critical tem-
perature �shown as �c

�upper� in Fig. 4� which exhibits a maxi-
mum on the BEC side of the crossover around v�1 as ex-
pected on general grounds. Moreover, our theory predicts the
correct asymptotic functional form �3.4� of the Tc enhance-
ment in the BEC limit v�1. Even though the dimer-dimer
scattering length add

�B�=2a and the prefactor c�0.58 of our
approximate Popov-type theory differ from the exact values
add=0.60a and c�1.31, respectively, the agreement of our
theory with the exact result is very good �see Fig. 4�.

A quite sensitive test of the quantitative reliability of our
present result for the critical temperature at arbitrary cou-
pling is provided by a comparison with the recent, rather
precise numerical results right at the unitarity point by Bu-
rovski et al. �28�. In fact, our result for the dimensionless
ratio Tc /�F�0.16 of the critical temperature in units of the
bare Fermi energy, which is one of the universal numbers of
the BCS-BEC crossover problem �see Sec. III B below�,
agrees precisely with the numerical results of Burovski et al.
within the given error bars. As will be shown below, a simi-
lar rather precise agreement is obtained with other thermo-
dynamic quantities, except for the chemical potential. Thus,
even in the absence of a small parameter which would allow
one to control our theory systematically in the crossover re-
gime, the agreement with the numerical results at unitarity
gives us confidence that the approach is quantitatively reli-
able at arbitrary coupling strengths.

In Fig. 5 the temperature evolution of the entropy is
shown for various coupling parameters v. Here the multival-
ued character is clearly seen which reflects the first-order
transition. Furthermore, three-dimensional plots of the en-
tropy and of the pressure are presented in Figs. 6 and 7,
respectively. In both figures a rather sharp drop is observed
in the crossover region from weak coupling v�−1 �fermi-
onic regime� to strong coupling v� +1 �bosonic regime�. In
the weak-coupling limit v�−1 the results of the nearly ideal
Fermi gas are approached which are defined by the BCS
formulas �2.48�–�2.50� and �2.57�. On the other hand, in the
strong-coupling limit v� +1 the results of Shohno’s mean-
field theory are approached. While the strong-coupling en-
tropy is defined by Eq. �2.83�, the other thermodynamic
quantities are defined by more complicated formulas �47�.
For v�1.0 and very low temperatures the pressure is nearly
zero which reflects a special property of Shohno’s mean-field
theory of weakly interacting bosons. At high temperatures
T��F the entropy, the pressure, and the related thermody-
namic quantities approach the Boltzmann limit.

Figure 8 shows the order parameter which vanishes expo-
nentially 	�T=0� /�F→ �8/e2�exp��v /2� according to the

well-known BCS result for v�−1.0. In the opposite limit of
strong coupling the behavior can be derived from �n→
−	2 /2g which reflects the fact that the fermion chemical
potential in the strong-coupling limit is governed by the po-
tential �i.e., binding� energy. This yields 	�T=0� /�F

→��16/3��v with the square root behavior clearly visible in
Fig. 8. Near Tc the gap function displays the multivalued
behavior characteristic of a first-order transition.

At low temperatures the entropy has to vanish in accor-
dance with the third law of thermodynamics. The way it does
is in fact universal along the full BCS-BEC crossover. In-
deed, at low temperatures, the two-component Fermi gas is
in a superfluid state, independent of the strength of the at-
tractive interaction. On quite general grounds, therefore, the
low-lying excitations above the ground state are sound
modes of the Bogoliubov-Anderson type. These modes give
rise to an entropy

S�T� = V
2�2

45
� T

�c
�3

+ ¯ , �3.5�

which vanishes like T3 for arbitrary coupling strength. The
associated sound velocity c is constant at low T and may be
determined from the pressure via mc2=�p /�n. Figure 9 dis-
plays �c /vF�2 at T=0 as a function of coupling strength with
vF the Fermi velocity. The dilute interacting Fermi gas limit
�c /vF�2= �1+2/ ��v�� /3 and the BEC limit �c /vF�2

=kFadd / �6�� for add=0.60a are represented by the blue
squares and the green triangles, respectively. The red tri-
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FIG. 8. �Color online� 3D view of the order parameter.
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FIG. 9. �Color online� Isothermal sound speed mc2=�p /�n as a
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angles are obtained by extending the expression of the
ground-state energy of a dilute weakly interacting Fermi gas
�57,58� with the help of a Padé approximation to the strong-
coupling regime �8,9�,

E

�FN
�

3

5
+

2

3�
kFa

1 −
6

35�
�11 − 2 ln 2�kFa

, �3.6�

and the thermodynamic identity

c2 =
1

m

�

�n
�n2�E/N

�n
� . �3.7�

Obviously the present crossover theory provides a very good
description of the equation of state and sound velocity except
in the regime v�1, where our results underestimate both the
pressure and its density dependence.

In principle we should be able to independently obtain c
from the low-entropy asymptotics �3.5�. Our numerical re-
sults are consistent with S�T��T3; however, they are not
precise enough at such low temperatures to extract the sound
velocity in this manner.

B. Thermodynamics in the unitarity limit

After presenting the results for the critical temperature
and the thermodynamics at arbitrary coupling, we now turn
to a more detailed discussion of the unitarity limit, where the
scattering length is infinite. This particular line in the phase
diagram has received a lot of attention recently. In particular,
precise numerical results are available at this point �28�,
which provide a sensitive test of analytical approaches to the
crossover problem.

As has been mentioned before, the Fermi gas at infinite
scattering length v=0 is rather special since the only relevant
length and energy scales remaining in the problem are the
Fermi wavelength set by the density and the Fermi energy
�F, provided we remain within the zero-range pseudopoten-
tial approximation. The free energy has a simple scaling
form

F�T,V,N� = f���N�F. �3.8�

In particular, there are a number of universal ratios which
characterize the crossover problem right at the unitarity
point, both at zero temperature and at Tc. Examples, which
will be determined below, are the chemical potential and the
internal energy in units of the Fermi energy or the entropy
per particle at Tc. In addition, also the gap for single-particle
excitations and the condensate fraction at zero temperature
are universal at the unitarity point.

Figure 10 shows the temperature dependence of the inter-
nal energy calculated in two different ways. The solid line is
our numerical result which is compared with the internal
energy �depicted as the dashed line� as obtained from the
numerically calculated pressure p=−� /V via the scaling re-
lation U=3pV /2 valid at the unitarity point. Our numerical
results display perfect scaling above Tc. The scaling violation
below Tc is a consequence of the modification of the theory.

In order to preserve the conserving nature of our theory
while obeying the Thouless criterion an extra length scale
amod had to be introduced, leading to a modified dimension-
less interaction strength vmod=1/kFamod with �vmod=vmod
−v in the range between 0.0 and −0.1 with vmod�0 for v
=0 �see Secs. II I and II J for details�.

Figure 11 displays the behavior of the chemical potential
��T� as a function of temperature. Using ��T� in a local
density approximation

� = �h�n�r�,T�r�/TF� + V�r� , �3.9�

with �h the chemical potential of the homogenous case, we
can calculate the density profiles of harmonically trapped
ultracold gases at unitarity �59�. We have also checked the
convergence of our ��T� to the high-temperature expansion
obtained by Ho and Mueller �60� which, however, only oc-
curs for T��F.

Note that below Tc the chemical potential ��T� is an in-
creasing function of T. This perhaps counterintuitive result
can be understood quite easily from the fact that the low-
temperature thermodynamics is determined by the
Bogoliubov-Anderson mode. As argued in the previous sec-
tion, this leads to an entropy which vanishes with a power
law �T3. Figure 12 displays the entropy at unitarity as a
function of temperature. Now, at a given volume, there is a
Maxwell relation of the form
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FIG. 10. Internal energy at unitarity as a function of temperature
calculated using Eqs. �2.49� and �2.62�. The dashed curve is ob-
tained from the calculated pressure using the scaling formula U
= 3

2 pV valid at unitarity.
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FIG. 11. The single-particle chemical potential at unitarity as a
function of temperature obtained from the number conservation
constraint �2.26�.
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� ��

�T
�

N,V
= − � �S

�N
�

T,V
, �3.10�

which connects the temperature dependence of the chemical
potential to the density dependence of the entropy. Using the
universal result �3.5� for the low-temperature entropy, this
relation shows that at low temperatures the chemical poten-
tial exhibits a T4 dependence with a prefactor determined by

��

�T
=

3S

2Vmcs
2

�2p

�n2 � 0. �3.11�

Obviously, this argument is not confined to the unitarity
point, showing that the chemical potential at low T has a
behavior ��T�=��0�+O�T4� for arbitrary coupling strengths
along the BCS-BEC crossover. A well-documented quantity
which determines the density profile of dilute fermions in a
trap at unitarity and T=0 is the so-called � parameter defined
via

��T = 0� = �F�1 + �� . �3.12�

Our value of ��−0.640 is very close to �=−0.67 obtained
via simply Padé-approximating the weak-coupling result for
the ground-state energy �8,9� and the experimental results of
Bartenstein et al. �61�, �=−0.68−0.10

+0.13, and Bourdel et al.
�62�, �=−0.64±0.15, but smaller than the results obtained at
Duke �63�, at Rice �64� and recent QMC results �16,17� �see
Table I�. Evidently, there is still considerable uncertainty in
both the experimental and theoretical results.

A promising route in the direction of thermometry for
trapped gases is provided via the reversible adiabatic �isen-
tropic� sweeps �5,61� from the BEC limit. In Fig. 13 we
depict the resulting changes in temperature when moving
across the unitarity limit for the homogenous case. For the
trapped case this cooling mechanism was first advocated by
Carr et al. �32� and recently quantitatively refined by Hu et
al. �66�. Finally to facilitate quantitative comparison with
various quantum Monte Carlo results we have collected
available data from the literature presented in Tables I and II.
Apart from the value for Tc which is explicitly quoted in the
paper by Bulgac et al. �27� �with errors� we have estimated
the remaining quantities from their presented results and uti-
lized scaling to fill in the missing data below.

The T=0 results are fixed-node QM results by Astra-
kharchik et al. �17� and Carlson et al. �16� �see Table III�.
Note that our result for 	 /�F is close to the value
	GMB/�F= �2/e�7/3=0.49 obtained by a naive extrapolation
of the Gorkov-Melik-Barkudarov result to kFa=�.

At Tc our results are in very good agreement with those of
Burovski et al. except for the value of the dimensionless
chemical potential � /�F and that of the entropy per particle
at Tc. Now Burovski et al. have obtained their values for the
pressure p /n�F and the entropy S /N indirectly from the in-
ternal energy and the chemical potential by using 3pV=2U
right at unitarity and the Gibbs-Duhem relation. The different
results for the chemical potential then entail a considerable
discrepancy in the value of S /N at Tc. Within our numerical
scheme, the chemical potential is the most directly—via Eq.
�2.26�—obtainable quantity among the thermodynamic data.
In light of the excellent agreement of all other quantities with
the numerical results of Burovski et al., the discrepancy for
the chemical potential is thus quite surprising. Indeed, we
believe that our values for both the chemical potential and
the entropy, for which the validity of the Gibbs-Duhem rela-
tion and of 3pV=2U at unitarity has been checked indepen-
dently, are rather close to the exact results. This point of
view is supported by considering the evolution of the entropy
per particle right at the critical temperature as a function of
the dimensionless coupling. In the BCS limit, the entropy
associated with single-particle excitations can be calculated
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FIG. 12. Entropy at unitarity as a function of temperature.

TABLE I. Recent experimental results for � compared with cal-
culated values.

�

Experimental
results

Bartenstein et al. �61� −0.68−0.10
+0.13

Bourdel et al. �62� −0.64�15�
Duke �63� −0.49�4�

Partridge et al. �64� −0.54�5�
Calculated

values
Astrakharchik et al. �17� −0.58�1�

Carlson et al. �16� −0.56�1�
Hu, Liu, and Drummond �67� −0.599

Perali et al. �65� −0.545

Padé approximation�8,9� −0.67

Present work −0.64
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FIG. 13. Temperature reduction on performing an isentropic
sweep across v=0 from v=2 to v=−2.
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from the exactly soluble reduced BCS Hamiltonian and is
given by the standard mean-field expression �2.50�. At the
critical temperature this entropy coincides with that of an
ideal Fermi gas:

S�Tc�/N = ��2/2��Tc/TF� . �3.13�

Since the ratio Tc /TF is exponentially small in the weak-
coupling limit, the entropy �3.13� associated with fermionic
excitations is dominant compared to the contribution arising
from the collective Bogoliubov-Anderson mode. Indeed, ex-
trapolating the corresponding low-temperature entropy �3.5�
associated with collective excitations up to the critical tem-
perature gives rise to a contribution of order �Tc /TF�3, which
is negligible compared to Eq. �3.13�.

At very large coupling strengths, the strongly bound fer-
mion pairs form an eventually ideal Bose gas, for which the
entropy per particle right at Tc can again be determined ana-
lytically. Recalling that the number of bosons, NB=N /2, in
this limit is just half the number of fermions, we obtain a
universal number

S�Tc�/N =
5��5/2�
4��3/2�

= 0.6417 . . . . �3.14�

As is evident from Fig. 14, where the complete evolution of
the ratio S�Tc� /N is shown as a function of the dimensionless
coupling parameter v, the limiting value of the ideal Bose
gas is in fact not far from the entropy which is obtained from
the Shohno-Popov theory of noninteracting bosonic quasi-
particles in the range v�1, according to Eq. �2.83�.

It is interesting to note that the entropy per particle right
at Tc exhibits a maximum as a function of the coupling con-
stant of order S�Tc� /N�0.78 around the same coupling,
where the critical temperature exhibits a maximum. Consid-

ering the smooth evolution of S�Tc� /N as a function of v, the
value S�Tc� /N�0.16 at unitarity, which is deduced from the
results of Burovski et al., appears to be far too small. On the
other hand, the result S�Tc� /N�0.99 obtained by Bulgac et
al. seems to be too high.

IV. DISCUSSION AND CONCLUSION

In conclusion let us summarize what has been achieved,
mention shortcomings of the present approach and indicate
possible future extensions.

The formal basis of our results is a self-consistent, con-
serving theory, which is based on an approach due to Lut-
tinger and Ward and De Dominicis and Martin, in which the
exact one- or two-particle Green functions serve as an infi-
nite set of variational parameters. In order for this approach
to provide consistent thermodynamic results it is essential
that the Green functions satisfy self-consistency conditions
which reflect the stationarity of the appropriate thermody-
namic potentials. Approximate formulations, in which free
Green functions are replaced by full ones according to a
choice of G0G0, GG0, or GG, will in general not obey con-
servation laws or exact thermodynamic identities, in contrast
to the � derivable formulation presented here. The station-
arity conditions were also crucial for the proof of thermody-

TABLE II. Comparison with diagrammatic determinant Monte Carlo �Burovski et al. �28��, quantum
Monte Carlo �Bulgac et al. �27��, �=4−d expansion �Nishida and Son �24,26��, Borel-Padé approximation
connecting an expansion in �=4−d and one in �=d−2 �26�, and a 1/N expansion �Nikolić and Sachdev� �15�
at T=Tc.

Tc /�F � /�F U /N�F P /n�F S /N

Bulgac et al. 0.23 �2� 0.45 0.41 0.27 0.99

Burovski et al. 0.152 �7� 0.493 �14� 0.31 �1� 0.207 �7� 0.16 �2�
Nikolić and Sachdev �N=1� 0.136 0.585 0.164 0.109

Nishida ��=1� 0.249 0.18 0.212 0.135 0.698

Borel-Padé 0.183 0.294 0.270 0.172 0.642

Present work 0.160 0.394 0.304 0.204 0.71

TABLE III. Comparison with fixed-node Green function Monte
Carlo �Astrakharchik et al. �17� and Carlson et al. �16�� at T=0.

� /�F U /N�F P /n�F 	 /�F

Astrakharchik et al. 0.41 �2� 0.25 �1� 0.17 �1�
Carlson et al. 0.43 �1� 0.26 �1� 0.17 �1� 0.54

Present work 0.36 0.21 0.15 0.46
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FIG. 14. Entropy at Tc as a function of v=1/kFa. Numerical
result �solid� line obtained with Eqs. �2.50� and �2.63� compared
with the limiting results: the BCS mean-field result �triangles� from
Eq. �2.50� and �dashed line� from Eq. �3.13� and the Shohno-Popov
result �dot-dashed line� from Eq. �2.84�.
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namic equivalence of the Luttinger-Ward with the De
Dominicis–Martin formalism on the level of our approximate
functional for the grand canonical potential or the entropy. In
fact, to our knowledge, the theory presented here is the first
concrete application of the De Dominicis–Martin formula-
tion to the fermionic many-body problem.

An important point we want to emphasize is the necessar-
ily self-consistent nature of the formalism. Indeed, within the
Luttinger-Ward or De Dominicis–Martin formulation an ap-
proximate functional for the grand canonical potential ��G�
or the entropy S�G ,�� is made stationary by determining the
space- and time-dependent Green and vertex functions from
the variational conditions �2.9� and �2.13�, respectively. The
solution of these equations necessarily leads to a self-
consistent mutual dependence of the various Green func-
tions. Self-consistency is thus reached precisely at the sta-
tionary point of these functionals. At this point, Eqs. �2.9�
and �2.13� are valid, conditions which are necessary for the
theory to give consistent thermodynamics, as pointed out,
e.g., in the context of Eq. �2.27�.

A well-known shortcoming of conserving approximations
is the dichotomy with the gapless nature of the collective
modes, which reflects the broken continuous symmetry of
the superfluid state. For the present theory the formal reason
for this dichotomy is a violation of the Ward identity result-
ing from the global gauge symmetry of the exact theory. In
order to overcome this problem an extension of the theory
was introduced which forces the gapless nature in the
symmetry-broken phase while remaining � derivable at the
same time to maintain the conserving property.

We have provided quantitative results for essentially all
thermodynamic properties at temperatures below half the
Fermi temperature, thus covering the relevant regime of the
degenerate gas. Overall our results agree remarkably well
with recent numerical calculations at the unitarity point, giv-
ing confidence that our approach is quantitatively reliable
over the full range of couplings between the BCS and BEC
limits. In particular, we provide concrete predictions for a
number of universal ratios characterizing the unitary Fermi
gas both at T=0 and at T=Tc.

The extensive numerical work entering the solution of the
stationarity constraints and thermodynamic potentials is re-
flected most clearly in the three-dimensional plots of the en-
tropy �Fig. 6�, pressure �Fig. 7�, and order parameter �Fig. 8�.
Most noteworthy are the quite abrupt change from fermionic
to bosonic character for v in the interval −1�v� +1 which
are most obvious in the entropy and pressure and the quick
convergence to a Shohno-Popov theory of noninteracting
bosonic quasiparticles for v�1.

An initially unexpected result, which is clearly visible in
the numerical data, is the fact that our superfluid phase tran-
sition is weakly first order, instead of being continuous as it
should be. The origin of this failure to capture the critical
behavior correctly is found in the Shohno-Popov theory,
which is obtained from our approach in the limit v�1. The
Shohno-Popov theory of a dilute, repulsive Bose gas gener-
alizes the Bogoliubov theory to finite temperatures. It takes
into account the thermal depletion of the condensate by in-
cluding the effect of bosons with finite-momentum K in the
particle number equation. Long ago Reatto and Straley �44�

analyzed Shohno’s theory in a self-consistent formulation
and obtained a first-order superfluid transition. Physically,
the origin of the associated entropy jump is the collapse of
the single-particle spectrum right at the transition. Indeed,
within the Shohno-Popov theory, the single-particle spectrum
changes from initially linear to initially quadratic on raising
the temperature through Tc. As a result, the density of states
is changed from a �2 dependence below Tc to the free par-
ticle �� result right at and above Tc. The associated drastic
increase in the available phase space leads to a jump in the
entropy.

For a purely bosonic system, a proper treatment of the
behavior near the critical point was recently given by Baym
and co-workers �51�. Holzmann and Baym �68� showed that
a change of the spectrum for long-wavelength excitations
occurs right at Tc. This hardening of the spectrum �the low-K
spectrum is of the form K� with ��2� leads to the required
reduction in the density of states to render the superfluid
transition continuous. The subtle low-K correlations neces-
sary for this change in spectrum are clearly missing in our
self-consistent approach.

The BCS-BEC crossover being continuous, however, im-
plies that the first-order result also pertains to the v�−1
limit of our theory. We have checked that at the transition the
discontinuities of all thermodynamic quantities are �exp�
−C �v � � for v�−1 �47�. The associated difficulties of a
proper treatment of bosonic excitations do not occur in the
reduced BCS Hamiltonian which neglects collective modes
altogether, resulting in a continuous superfluid transition. To
correctly account for the critical regime 	T /Tc→0 our
theory would need to be extended to treat the feedback be-
tween different bosonic modes accurately. Bickers and Scala-
pino �69� have shown that this requires the incorporation of
single-particle self-consistency and two-particle self-
consistency on the same level of approximation. This may be
achieved via so-called parquet resummations. Currently,
however, the inclusion of these contributions appears ex-
tremely challenging. A systematic and analytically accessible
description of the crossover which is uniformly valid in both
the normal and superfluid regimes and which gives a proper
account of the critical behavior is provided by a 1/N expan-
sion as recently shown by Nikolić and Sachdev �15�. This
method can in fact be extended in a straigthforward manner
to the case of unbalanced spin populations, a subject which
has attracted a lot of attention very recently �64,70�.
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APPENDIX A: REGULARIZATION OF DIVERGENT
MATSUBARA-FREQUENCY SUMS

In our formulas of the thermodynamic potentials most
sums over Matsubara frequencies are not well defined. The
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functions which are summed do not decay to zero fast
enough so that the Matsubara-frequency sums diverge. How-
ever, this problem can be fixed. To do this we first perform a
Fourier back transformation to obtain a function in terms of
the imaginary time �. Then we take the limit �→−0 or �
→ +0 which is finite and well defined.

We must distinguish between fermion and boson func-
tions which have different Matsubara frequencies. Fermion
functions are of the type

A�k,�n� = � A�k,�n� B�k,�n�

− B�k,�n�* A�k,�n�*� , �A1�

where A�k ,�n� may be either A�k ,�n�=−ln�G�k ,�n�� or
A�k ,�n�= �G0�k ,�n�−1G�k ,�n�−1�. �Note that the lower
row of the matrix �A1� has the opposite sign than the lower
row of the matrix �2.17�. The reason is that in the terms of
the thermodynamic potentials always an even number of fer-
mion Green functions are multiplied together.� In this case
we define

1

�


�n

Tr�A�k,�n�� = 2A�k,� = − 0� , �A2�

where we assume that A�k ,�� is real. Similarly consider a
bosonic function of the form

A�K,�n� = �A�K,�n� B�K,�n�

B�K,�n�* A�K,�n�*� , �A3�

with A�K ,�n�=��K ,�n� or A�K ,�n�=−ln���K ,�n��. In
this case we define

1

�


�n

Tr�A�K,�n�� = 2A�K,� = − 0� , �A4�

where we assume that A�K ,�� is real.
In some terms of our formulas the fermion function

A�k ,�n� or the boson function A�K ,�n� is proportional to
the unit matrix 1. In this case the Fourier back transform
A�K ,�� is �F�� / � � or �B�� / � �, respectively. Hence, the re-
lated Matsubara-frequency sums �A2� and �A4� are zero.

APPENDIX B: NUMERICAL FOURIER
TRANSFORMATION

The special numerical Fourier transformation was in-
vented a long time ago by one of the authors in a different
context in order to solve the mode-coupling equation for the
liquid-glass transition �71�. In this case relaxation phenom-
ena are considered on a logarithmic time scale over many
decades, starting at microscopically short times and extend-
ing up to very long macroscopic times. Thus, a Fourier trans-
formation is needed which can handle functions with fea-
tures on logarithmic time and frequency scales extending
over ten and more decades. Clearly, a standard fast Fourier
transformation cannot be applied because a constant step
width would be needed. Rather the function to be trans-
formed has been discretized on a logarithmic scale and inter-
polated by cubic spline polynomials. Since for polynomial

functions the Fourier integrals can be evaluated exactly, we
end up with a transformation formula which depends on the
spline coefficients of the function.

Later this special numerical Fourier transformation was
extended to transform Matsubara Green functions in order to
solve the self-consistent equations for the BCS-BEC cross-
over �30�. Here, three-dimensional spatial Fourier transfor-
mations of isotropic functions and discrete Fourier sums with
Matsubara frequencies were considered. These Fourier trans-
formations are used also in the present paper for the numeri-
cal calculations. Only a few modifications and optimizations
have been made over the years. The basic principles of the
special numerical Fourier transformation are described in the
Appendix of Ref. �30�. Here we present the fundamental for-
mulas in order to make the numerical method available for
applications.

In order to perform a discrete Fourier transformation the
following sum must be evaluated:

f�k� = 

x=xmin

xmax

	xeikxf�x� , �B1�

where x is a discrete variable with constant step width 	x. In
this formula and in the following formulas the sum over x is
defined as a trapezoid sum. This means that the first term and
the last term in the sum are multiplied by a factor 1

2 , respec-
tively. The continuous Fourier transformation is defined by a
related integral which is obtained from Eq. �B1� in the limit
	x→0.

We assume that the function values are known in a finite
subset of points xj according to f�xj�=aj where j
=0,1 , . . . ,N. The points xj cover the whole interval between
xmin and xmax on a logarithmic scale so that xmin=x0�x1
� ¯ �xN−1�xN=xmax. Consequently, the Fourier sum �B1�
can be divided into a sum of N trapezoid sums according to

f�k� = 

j=0

N−1�

x=xj

xj+1

	xeikxf�x�� . �B2�

Now, we assume that the function is given by the cubic
spline polynomial

f�x� = aj + bj�x − xj� + cj�x − xj�2 + dj�x − xj�3 �B3�

if x is located in the interval xj �x�xj+1. The spline coeffi-
cients aj, bj, cj, and dj are calculated numerically. Inserting
the cubic spline polynomial �B3� into the formula �B2� we
find that the trapezoid sums within the curved brackets can
be evaluated exactly. Thus, as a result we obtain the Fourier
transform

f�k� = 

j=0

N−1

�ajIj
�0��k� + bjIj

�1��k� + cjIj
�2��k� + djIj

�3��k�� , �B4�

where

Ij
�n��k� = eikxj�− i

�

�k
�n�	x

2i
cot� k	x

2
��eik�xj+1−xj� − 1�� . �B5�
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By construction a cubic spline function and its first two
derivatives are continuous. These facts imply the following
continuity conditions:

f�xj+1� = aj + bj�xj+1 − xj� + cj�xj+1 − xj�2 + dj�xj+1 − xj�3

= aj+1, �B6�

f��xj+1� = bj + 2cj�xj+1 − xj� + 3dj�xj+1 − xj�2 = bj+1,

�B7�

f��xj+1� = 2cj + 6dj�xj+1 − xj� = 2cj+1, �B8�

which may be used to regroup the terms in Eq. �B4�. Conse-
quently, as a result we obtain the alternative formula

f�k� = J�0��k��eikxNaN − eikx0a0� + J�1��k��eikxNbN − eikx0b0�

+ J�2��k��eikxNcN − eikx0c0� + J�3��k�



j=0

N−1

��eikxj+1 − eikxj�dj� , �B9�

where

J�n��k� = �− i
�

�k
�n�	x

2i
cot� k	x

2
�� . �B10�

The terms with spline coefficients aj, bj, and cj have can-
celed for j=1,2 , . . . ,N−1. In the limit k→0 the functions
�B10� diverge according to J�n��k���k�−�n+1�. For this reason,
the alternative formula �B9� can be applied numerically only
for large k so that �kxj � �1 for all j=0,1 , . . . ,N. On the other
hand, the function �B5� is finite in the limit k→0 so that
formula �B4� can be applied numerically for small k where
�kxj � �1 for all j=0,1 , . . . ,N. In practice we use a combina-
tion of both formulas �B4� and �B9�. Which formula is used
for a particular j we decide by considering the value of �kxj�
and comparing this value with 1. In this way we obtain a
special numerical Fourier transformation which is stable and

reliable for points xj and kl distributed on a logarithmic scale
over many decades.

We have derived our special numerical Fourier transfor-
mation for discrete variables x with a finite constant step
width 	x. The continuous Fourier transformation is obtained
easily and naturally by taking the limit 	x→0 in the func-
tions �B5� and �B10� which is well defined.

In order to transform the Green and vertex functions for-
ward and backward, we need two kinds of Fourier transfor-
mations. First, we transform between the Matsubara frequen-
cies and the imaginary time variable. In this case we can
apply a continuous �forward� and a discrete �backward� Fou-
rier transformation �B1� directly. Second, we transform be-
tween the wave vector and the spatial coordinate in d=3
dimensions. Since the functions are spherically symmetric,
an integration over the angles can be performed, so that the
resulting transformation integrals are one dimensional de-
pending only on radial variables: a radial wave number and a
radial space coordinate, respectively. For d=3 the transfor-
mation integrals can be recast into a one-dimensional con-
tinuous Fourier transformation so that our special numerical
Fourier transformation �B1� can be used once again.

In practice we use N=300 points for all variables. The
values of the wave numbers and the values of the space
coordinates are distributed on logarithmic scales over six de-
cades, respectively. The Matsubara frequencies are distrib-
uted on a logarithmic scale over about 12 decades. The
imaginary time variables are distributed appropriately over a
finite interval with two logarithmic scales, one for each
boundary.

The Green and vertex functions are singular and have
slowly decaying long tails. For this reason, reference func-
tions must be subtracted which remove the singularities and
the long tails. The reference functions are derived from free
Green functions and the two-particle scattering amplitude �T
matrix�. For these reference functions analytical expressions
must be available in all Fourier representations. The differ-
ence functions f�x� which are eventually transformed by our
numerical method �B1� must be smooth in x and decay ac-
cording to f�x��x−2 or faster for �x � →�.
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