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We study the dynamics of phase transitions in the one-dimensional Bose-Hubbard model. To drive the
system from a Mott insulator to a superfluid phase, we change the tunneling frequency at a finite rate. We
investigate the buildup of correlations during fast and slow transitions using variational wave functions,
dynamical Bogoliubov theory, Kibble-Zurek mechanism, and numerical simulations. We show that time-
dependent correlations satisfy characteristic scaling relations that can be measured in optical lattices filled with
cold atoms.
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I. INTRODUCTION

The spectacular experimental realization of the Bose-
Hubbard model �BHM� using cold atoms in an optical lattice
�1� triggered an avalanche of both theoretical and experimen-
tal activity �2,3�. The excitement comes mostly from the fact
that the derivation of the BHM in this system can be carried
out rigorously �2,4�, its parameters can be experimentally
manipulated in real time �1�, and lattice geometry can be
engineered almost at will: it can be one, two, three dimen-
sional and can have different shapes—e.g., rectangular, tri-
angular, etc.

The physics of the Bose-Hubbard model is of both funda-
mental and practical interest. Indeed, the BHM is one of the
model systems on which our understanding of quantum
phase transitions �QPT’s� is based �5,6�. The quantum phase
transition happens in the BHM between the gapless super-
fluid �SF� phase and the gapped Mott insulator �MI� phase.
Recently its signatures have been experimentally observed
�1�. In a homogeneous system at fixed density, the transition
takes place only when the number of atoms is commensurate
with the number of lattice sites. The practical interest in the
BHM originates from the possibility of the realization of a
quantum computer in a system of cold atoms placed in an
optical lattice �7�.

In spite of experimental studies of the BHM and the large
number of numerical and analytical contributions, under-
standing of the BHM physics is far from complete. In par-
ticular, a theory of the dynamics of the MI-SF quantum
phase transition is still in its initial stages �8–11�. This is not
surprising, as until very recently �8,11–15�, QPT’s were stud-
ied as a purely equilibrium problem. The recent progress in
dynamical studies has been obtained after applying the
Kibble-Zurek mechanism �KZM� �16,17�, which was suc-
cessful in accounting for nonequilibrium aspects of thermo-
dynamical phase transitions �18�, to the quantum case
�12,14,15,19,20�.

In this paper we investigate the dynamics of the one-
dimensional �1D� BHM, focusing on two-point correlation
functions. To describe their time dependence, we develop
and use a variety of analytical approximations. We find that
the two-point correlations satisfy simple characteristic scal-
ing relations that should be experimentally measurable. Fi-

nally, we check the accuracy of our predictions with numeri-
cal simulations.

Section II presents the model and defines the quantities of
interest. In Sec. III we discuss predictions coming from a toy
two-site model. Section IV �V� analyzes scaling relations of
correlation functions induced by fast �slow� changes of the
tunneling coupling.

II. MODEL

In terms of dimensionless variables used throughout this
paper, the Hamiltonian reads

Ĥ = − J�
i=1

M

�âi+1
† âi + H.c.� +

1

2�
i=1

M

n̂i�n̂i − 1� , �1�

where we additionally assume a density of one particle per
site. Such a model should be experimentally accessible in a
ring-shaped optical lattice �21�, where the geometry of the
problem imposes periodic boundary conditions on Eq. �1�.
Another setup for investigations of the Bose-Hubbard model
�1� will be provided by the ongoing experiment in the Raizen
group �22�, where a 1D homogeneous model with open
boundary conditions will be realized. Below, we will assume
periodic boundary conditions to minimize finite-size effects.

The Hamiltonian is driven from the MI to the SF regime
by a linear ramp of the tunneling coupling

J�t� =
t

�Q
, �2�

where �Q is the quench time scale �17,23�. The evolution
starts at t=0 from the ground state of Eq. �1�— i.e.,
�1,1 , . . . �, where the numbers denote boson on-site occupa-
tions. The evolution stops at t=�QJmax, where Jmax�1.
Therefore, the system ends up very far away from the critical
point separating MI and SF phases: J�0.29 �24�. Experi-
mentally, the change of the tunneling coupling alone can be
achieved by proper manipulation of the lattice potential am-
plitude, followed by adjustment of the atomic interaction
strength via Feshbach resonances �25�.

We are interested in the correlation functions
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Cl�t� =
1

2
	��t��âi+l

† âi + H.c.���t�� ,

which are directly experimentally measurable because the
momentum distribution of atoms in a lattice is their Fourier
transform 
�lexp�ikl�Cl �k is the atomic momentum� �2�.
This observation shows that the correlation functions are
good observables for our problem: by the end of time evo-
lution J�1 so that interactions between atoms are asymp-
totically negligible. As a result, the correlation functions take
well-defined final values.

III. DYNAMICS OF TWO-SITE BOSE-HUBBARD MODEL

In this section we consider a toy two-site model, a prob-
lem that can be completely solved analytically. The results of
this section will be useful later for studies of larger systems.
Using symmetries of the Hamiltonian, one can show that the
evolution starting from the uniform “Mott” state �1,1� leads
to

���t�� = a�t��1,1� + b�t�
�2,0� + �0,2�

�2
, �3�

where �a�2+ �b�2=1 and

i
�

�t
�a

b
 =� 0 − 2

t

�Q

− 2
t

�Q
1 ��a

b
 . �4�

A change of basis

�a�,b�� = eit/2�a − b,− a − b�/�2 �5�

yields

i
�

�t
�a�

b�
 =

1

2�
t

�
1

1 −
t

�
��a�

b�
, � =

�Q

4
. �6�

This is exactly the Landau-Zener �LZ� model �26�, whose
relevance for the dynamics of QPT’s was recently shown in
Refs. �12,14,15,19,20�. The quantity of interest is C1�t�
=2 �b��t��2−1, where b��t� is provided by the exact solution
of the Landau-Zener model in the case when the system
starts its time evolution from the ground state at t=0—i.e.,
from the anticrossing center �19,20�. This solution is a super-
position of Weber functions �see Appendix of Ref. �20��, and
it leads to

C1��� = − 1 +
4

��
sinh���

4
e−��/8���1 +

i�

8


+ ei�/4��

8
��1

2
+

i�

8
�2

, �7�

which has the following small-�Q �fast quench� expansion:

C1��� =
��

4
��Q + O��Q

3/2� . �8�

For large �Q �slow quench�, we expand the gamma functions
for large absolute values of the argument �27�,

��z� = �2�zz−1/2ez�1 +
1

12z
+

1

288z2 + O�z−3� ,

and use that

���ix��2 =
�

x sinh��x�
,

���1

2
+ ix�2

=
�

cosh��x�
,

� 1 + ix

1

2
− ix�

ix

→
x→�

e−�x+3/2+3i/8x−3/8x2
,

to obtain

C1��� = 1 −
8

�Q
2 + O��Q

−4� . �9�

Equation �9� is surprising since C1���=1−2pex, with pex the
excitation probability of the LZ system �6� at t=�. Indeed, it
implies that the excitation probability equals

pex�t:0 → � � =
4

�Q
2

when the LZ system �6� starts its evolution from the ground
state at the anticrossing center �t=0� and evolves slowly until
t=�, while it is exponentially small �assuming �Q�1�,

pex�t:− � → � � = exp�−
��Q

8
 ,

for the LZ model evolving from t=−� to t=�.
We have verified numerically that a slightly larger system

�four atoms in four lattice sites� exhibits the same scaling of
C1�+� � in the fast and slow transition limits. Thus, these
characteristics are not specific to a two-site toy system only.
In the following sections we will use different techniques to
argue that the same scaling properties are shared by large
lattice models.

Before proceeding further, however, we mention that the
power-law behavior of the excitation probability when the
evolution starts at the anticrossing can be relevant for quan-
tum adiabatic algorithms �28�. Indeed, by starting �or, by
symmetry �20�, ending� the algorithm near the anticrossing
center, the computation has a much higher failure probabil-
ity. Thus, such situations have to be fiercely avoided when
designing a path in Hamiltonian space between the initial
and solution Hamiltonians.

IV. FAST TRANSITIONS

In this section we consider systems undergoing fast ��Q

�1� quenches. Let us start by summarizing some relevant
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numerical findings on C1. We studied numerically system
sizes M =3, . . . ,10 �M is the number of lattice sites and at-
oms� and found that in all cases �29�

C1��� = ��Q
	 �10�

for �Q’s smaller than about 10−1. Depending on the system
size, �� �0.37,0.5�, while 	 equals 1 /2 within fitting errors:
see the inset of Fig. 1 for the M =10 case.

Moreover, as depicted in Fig. 1, the whole C1�t� function
after the rescaling

C1�t� →
C1� t

��Q


��Q

�11�

takes a universal form for �Q smaller than about 10−1.
Two remarks are in order now. First, the two-site predic-

tion, Eq. �8�, shares the same scaling with �Q and a prefactor
of the same order of magnitude ��� /4�0.44� as the numer-
ics for larger systems. Second, it is interesting to ask whether
the scaling relation �10� can be experimentally verified. Tak-
ing 10−1 as the largest �Q for which Eq. �10� works very well,
we get C1����0.16 in the M =10 case �Fig. 1�. This is to be
compared to the ground-state predictions at �i� the critical
point �C1�0.8 �30�� and �ii� the asymptotic value deep in
superfluid �C1=1�. Thus, our results suggest that, despite the
fast drive of the system through the transition point, the first
correlation builds up macroscopically. Therefore it should be
experimentally measurable in a low-temperature regime
where our zero-temperature approximation is justified.

In the following we will explain the observed behavior of
C1 first by time-dependent perturbation theory and then by
developing a bosonic Bogoliubov theory.

A. Short-time diabatic dynamics

For short times we can approximate the wave function
using time-dependent perturbation theory,

���t�� = a�t��1,1, . . . � + b�t���0,2,1, . . . � + �2,0,1, . . . �

+ �1,0,2,1, . . . � + �1,2,0,1, . . . � + ¯ �/�2M ,

�12�

where M 
2 is assumed and �a�2+ �b�2=1. A time-dependent
variational principle predicts in this case that the dynamics of
a�t� ,b�t� is governed by Eq. �4� with �Q replaced by �Q /�M.
Therefore, the familiar LZ problem shows up again, and it is
useful to define new amplitudes a� and b� in the same way as
in Eq. �5�. The dynamics of a��t� and b��t� is governed by
Eq. �6� with �→� /�M.

To describe the buildup of

C1�t� = �2�b��t��2 − 1�/�M

for the wave function �12�, we expand the exact solution of
b��t� �20� for small �Q, obtaining, in the lowest order,

C1�t�
��Q

=
2

3� t
��Q

�3

. �13�

Expression �13� is interesting: it implies that the way in
which the first correlation builds up over time is independent
of system size and takes some universal �independent of �Q�
form after simple rescalings. In Fig. 2 this prediction is com-
pared to the numerical solution of the ten-site Hubbard
model. A perfect agreement is found for times smaller than
about 1

2
��Q. As will be explained in Sec. IV B, the number

fluctuations start to develop significantly around t
��Q, so
it is not surprising that a simple wave function �12� fails to
describe subsequent dynamics.

B. Bogoliubov theory

Using the insight gained from the above studies, we de-
velop a Bogoliubov approach that includes a macroscopic
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FIG. 1. Scaling properties of the first correlation function ob-
tained numerically. Solid line: �Q=0.001. Dots: �Q=0.03. Inset:
solid line is a power-law fit to data for 0.001��Q�0.1 giving
C1���= �0.501±0.005��Q

0.498±0.002. All data are for M =10 and Jmax

=600.
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FIG. 2. Short-time dynamics of the first correlation function.
The numerics for M =10 and Jmax=600 is given by the solid line
��Q=0.001� and large dots ��Q=0.1�. The dashed line is the varia-
tional approach, Eq. �13�. The pluses �+� stand for a numerical
solution of the Bogoliubov model for �Q=0.001 and prediction �24�
for l=0 �both data overlap�.
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number of excitations into the wave function and is able to
describe longer than nearest-neighbor correlations. Our ap-
proach is a variant of the theory developed by Altman and
Auerbach �11� for a large density of particles.

We truncate the Hilbert space to states with only �0,1 ,2�
particles per site. The initial state is the Mott state with ex-
actly one particle per site. In a fast transition, �Q�1, we can
get well into the superfluid regime of J�1 before any sub-
stantial number fluctuations build up around the initial Mott
state. Thus, in a fast transition the truncation remains valid
well in the superfluid regime.

As already mentioned, the correlators Cl are conserved by
the hopping term in the Hamiltonian. The hopping term
dominates when J�1, and this is why in this regime the
correlators are observed to be more or less constant; see Fig.
1. Our idea is to use a truncated theory to predict the corr-
elators Cl�t� up to an instant t̃ so large that J�t̃��1, but small
enough to keep the number fluctuations negligible. The pre-
dicted correlators do not change in the following evolution
dominated by the hopping term, so that Cl�t̃��Cl���.

In the truncated Hilbert space we call two particles in a
site a quasiparticle and an empty site is called a quasihole.
The Mott state with one particle in each site is now the
“empty” vacuum state. We introduce the quasiparticle and

quasihole creation operators as ĉi
† and d̂i

†, respectively. Their
action is best illustrated by mapping the boson occupation
number onto two numbers �nc ,nd�, where nc �nd� are quasi-
particle �quasihole� occupation numbers. This way we have
in each site �2�= ��1,0��, �1�= ��0,0��, and �0�= ��0,1��. Since
within the �0,1 ,2� subspace we cannot have two quasiparti-
cles or holes in the same site, the hard-core constraint has to

be implemented: �ĉi
†�2�0 and �d̂i

†�2�0. All this leads to
ĉi � . . . , �nc ,nd�i , . . . �=�1nc

� . . . , �nc−1,nd�i , . . . �, ĉi
† � . . . , �nc ,

nd�i , . . . �=�0nc
� . . . , �nc+1,nd�i , . . . �, and analog relations for

the action of d̂i and d̂i
†. Additionally, we have to remove the

states with one quasiparticle and quasihole in the same site,
� . . . , �1,1�i , . . . �, since these states also do not map onto the

�0,1 ,2� subspace. This is done by the projector P̂=�i�1
− ĉi

†ĉid̂i
†d̂i�. Finally, we note that since we deal with hard-core

bosons all the commutators of quasiparticle and hole opera-
tors at different lattice sites commute.

In this new language the Hamiltonian �1� in the �0,1 ,2�
subspace equals exactly P̂Ĥ2P̂, where Ĥ2 is quadratic in
quasihole and quasiparticle operators,

Ĥ2 = − J�
	i,j�

�2ĉi
†ĉj + d̂i

†d̂j + �2�d̂iĉj + d̂i
†cj

†�� + �
i

ĉi
†ĉi,

�14�

where 	i , j� denotes nearest-neighbor pairs. We also mention
here that the new operators satisfy periodic boundary condi-
tions as the original bosonic operators do.

The truncated Hamiltonian P̂Ĥ2P̂ is exact in the �0,1 ,2�
subspace, but it is not quadratic in ĉ and d̂. In order to pro-

ceed we approximate Ĥ� Ĥ2 and lift the hard-core bosonic
constraint in all subsequent calculations: from now on

�ĉi , ĉj
†�=�ij and �d̂i , d̂j

†�=�ij. This way we arrive at a bosonic

theory with a quadratic Hamiltonian Ĥ2 leading to solvable
linearized equations of motion. The quadratic theory remains
self-consistent as long as the average density of excitations
�31�,

ex = 	ĉi
†ĉi� = 	d̂i

†d̂i� �
1

2
. �15�

When ex�
1
2 it is likely to find quasiparticles and quasiholes

occupying the same lattice site and the constraint imposed by

the projector P̂ is violated.
We proceed by going to momentum space

ĉr =
1

�M
�

k

ĉke
ikr, d̂r =

1
�M

�
k

d̂ke
ikr.

To simplify the time-dependent calculations we add to the
Fourier-transformed Hamiltonian two terms �kJ�ĉk

†ĉk

− d̂k
†d̂k�cos k and �k

1
2 �d̂k

†d̂k− ĉk
†ĉk�, which both commute with

the Hamiltonian itself and therefore do not change the evo-
lutions considered in this paper. The resulting Hamiltonian
becomes

Ĥ2 = − J�
k

cos k�3ĉk
†ĉk + 3d̂k

†d̂k + 2�2�ĉkd̂−k + H . c . ��

+
1

2�
k

�ĉk
†ĉk + d̂k

†d̂k� . �16�

It can be conveniently rewritten in the form

Ĥ2 = �
k

�ĉk
†,− d̂−k��

1

2
− 3J cos k − 2�2J cos k

2�2J cos k 3J cos k −
1

2
�� ĉk

d̂−k
† �

+ �
k
�3Jcos k −

1

2
 . �17�

Below we look at a description of the time evolutions,
leaving the discussion of the static properties of our theory to
the Appendix. As in former sections we start the time evolu-
tion from J=0 and J�t� is given by Eq. �2�. We work in the
Heisenberg picture where the system wave function �the
ground state at J=0: �1,1 , . . . �� is time independent while

the operators evolve according to i d
dt ĉk= �ĉk , Ĥ2� and i d

dt d̂−k
†

= �d̂−k
† , Ĥ2�. It leads to

i
d

dt
� ĉk

d̂−k
† � = �

1

2
− 3

t

�Q
cos k − 2�2

t

�Q
cos k

2�2
t

�Q
cos k 3

t

�Q
cos k −

1

2
�� ĉk

d̂−k
† � ,

�18�

which has the following general solution:

ĉk�t� = uk�t�ĉk�0� + ṽk�t�d̂−k
† �0� ,
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d̂−k
† �t� = vk�t�ĉk�0� + ũk�t�d̂−k

† �0� ,

with initial conditions uk�0�= ũk�0�=1 and vk�0�= ṽk�0�=0.
After some algebra based on Eq. �18� one finds that ṽk=vk

*

and ũk=uk
*—this simplification showed up thanks to the con-

venient addition of the two constants of motion to the
Fourier-transformed quadratic Hamiltonian �see above�. The
time evolution of the modes is given by

i
d

dt
�uk

vk
� = �

1

2
− 3

t

�Q
cos k − 2�2

t

�Q
cos k

2�2
t

�Q
cos k 3

t

�Q
cos k −

1

2
��uk

vk
� .

�19�

Additionally, we see that the Bose commutation between the
time-dependent operators requires that �uk�t��2− �vk�t��2=1,
which is conserved by the time evolution �19�. All expecta-
tion values can be calculated after solving Eq. �19� using the
fact that the wave function in the Heisenberg picture is ���
= �1,1 , . . . � for all times, so that d̂r�0� ���=0 and ĉr�0� ���
=0.

In the following we use a perturbative solution of Eq. �19�
in powers of ��Q. The discussion is simplified by introducing
a new timelike variable

s =
t2

�Q
, �20�

whose form is motivated by the scaling property �11�. Equa-
tion �19� becomes

i
d

ds
�uk

vk
� + cos k�

3

2
�2

− �2 −
3

2
��uk

vk
� =

��Q

4�s
�1 0

0 − 1
��uk

vk
� ,

�21�

with uk�0�=1 and vk�0�=0. This equation can be solved it-
eratively in powers of the small parameter ��Q�1.

As a self-consistency check, we calculate the density of
excitations, Eq. �15�. Assuming a fast-transition limit, �Q

�1, we solve Eqs. �21� to zero order in ��Q and find that

ex =
1

2�
�

−�

�

dk�vk�2 � s2

for small s. Therefore, ex�
1
2 for s� 1

�2
so that the quadratic

approximation breaks down at

t̃2

�Q
� s̃ �

1
�2

�22�

or at t̃���Q /�2. In a linear quench �2� this breakdown time
corresponds to

J̃ �
1

��2�Q

� 1,

which is well in the superfluid regime for a fast transition.
Therefore, when �Q�1, our linearized Bogoliubov approach
does not break down until well in the superfluid regime.

These calculations prove that the Bogoliubov approach

works reliably before J̃�1 and the correlation functions are
�see the Appendix for static predictions� �32�

Cl = �
−�

� dk

2�
cos�kl��3�vk�2 + �2�ukvk

* + uk
*vk�� . �23�

Solving Eq. �21� we find that C2l�t�=O��Q�, while

C2l+1�t�
��Q

=
8�s3/2

3 �
n=l

�

�− 1�n+1�l,ns2n, �24�

with coefficients

�l,n =
�3

4


n
��2 + 2n���1 − 2l + 2n�−1��3 + 2l + 2n�−1

n ! �3

2


n
�7

4


n
��−

1

2
− l − n���1

2
+ l − n�

and �x�n���x+n� /��x�. To obtain this series expansion we
differentiate d

dsCl in Eq. �23�, remove the resulting s deriva-
tives with the help of the equations of motion �21�, keep only
the leading terms 
��Q, and finally integrate such obtained
d
dsCl over s to get Cl�s�.

The first term in the l=0 version of Eq. �24� reproduces
Eq. �13�. As shown in Fig. 2, Eq. �24� works very well until
s�1/�2—i.e., up to the expected breakdown of the Bogo-
liubov approach �22�.

Since we consider �Q�1, we have J̃= t̃ /�Q�1, and thus

the rest of the evolution after J̃ is dominated by the hopping
term that does not change the correlation functions. There-
fore, the correlators at the break down time t̃ are good esti-
mates of the final correlation function

Cl��� � Cl�t̃� . �25�

Setting s= s̃=1/�2 in Eq. �24� for definiteness we get,
with an accuracy of O��Q

3/2�,

C1��� � 3.9 � 10−1��Q,

C3��� � − 3.5 � 10−3��Q,

C5��� � 1.4 � 10−5��Q.

By solving Eq. �21� perturbatively we find with an accuracy
of O��Q

2 � that

C2��� � 4.0 � 10−2�Q,

C4��� � − 3.2 � 10−4�Q,
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C6��� � 1.1 � 10−6�Q.

The first correlation C1��� fits well our numerical results—
compare to Eq. �10�. Reliable numerical verification of
longer-range correlations would require calculations done on
systems larger than our M �10. Indeed, in small-size numer-
ics it is hard to filter out finite-size effects especially when
the long-range correlations, which are small in magnitude,
are considered. Nevertheless, the Bogoliubov theory and our
finite-size numerics agree that correlations Cl decay fast with
the distance l.

In contrast to the simple two-site toy model of Sec. III,
the Bogoliubov approach is able to describe not only nearest-
neighbor but also longer-range correlations. However, it
turns out that in fast transitions the correlation functions are
dominated by the nearest-neighbor term C1 with other terms
being relatively small, if not negligible. This explains why
already the simple two-site toy model gives such surprisingly
accurate predictions for larger systems in the fast-transition
limit.

V. SLOW TRANSITIONS

In this section we focus on the limit of slow transitions—
i.e., �Q�1. Numerical studies in this regime are extremely
time consuming; therefore, we concentrate only on analytical
results. Our predictions are based on the Kibble-Zurek
mechanism that was successful in describing nonequilibrium
thermodynamical phase transitions and apparently works for
quantum phase transitions as well �12,14,15,19,20�.

According to KZM, excitations of the system after a slow
transition have the characteristic length scale �23�

� 
 �Q
�/�z�+1�, �26�

where z and � are critical exponents and the quench time �Q
is taken as �dJ /dt�−1 at the critical point �J is the parameter
driving the transition�. For the Bose-Hubbard model the dy-
namical exponent z=1. The MI-SF transition �at fixed integer
density of atoms� in a d-dimensional Bose-Hubbard model
belongs to the universality class of a �d+1�-dimensional XY
spin model �6�. In one dimension this mapping implies that
�→� �Kosterlitz-Thouless transition�. As a result, 1−C1,
which is proportional to the hopping energy of long-
wavelength excitations, should scale for �Q�1 as

1 − C1��� 

1

�2 

1

�Q
2 . �27�

The exponent −2 means a rather steep dependence of the
hopping energy on the quench time �Q, which should make it
easily discernible experimentally.

Using �26� and �27� it is easy to provide predictions for
two- ���0.67 �33�� and three- ��=1/2 �6�� dimensional
Bose-Hubbard models. In the two-dimensional case one has

1 − C1��� 

1

�Q
0.8 ,

while in the three-dimensional model

1 − C1��� 

1

�Q
2/3 .

It would be very interesting to verify scaling relations shown
in this section either experimentally or numerically.

VI. SUMMARY

We described the buildup of correlations in the BHM dur-
ing transitions from a Mott insulator to a superfluid regime
using a variational wave function, the dynamical one-
dimensional Bogoliubov theory, the Kibble-Zurek mecha-
nism, and numerical simulations. The time-dependent corre-
lations satisfy characteristic scaling relations that are directly
experimentally measurable.
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APPENDIX: GROUND-STATE PROPERTIES OF THE
BOSE-HUBBARD MODEL WELL IN THE MOTT REGIME

Here we discuss the ground-state properties of the Bose-
Hubbard model predicted by the Bogoliubov theory. The
Hamiltonian �16� can be diagonalized by the Bogoliubov
transformation

ĉk = ukB̂k + vk
*Â−k

† , d̂−k
† = vkB̂k + uk

*Â−k
† , �A1�

where uk�J� and vk�J� determine the static properties of the
Bogolubov vacuum.

Here the Bogoliubov modes �uk ,vk� are the eigenmodes
of the stationary Bogoliubov–de Gennes equations

�k�uk

vk
� = �− 3J cos k +

1

2
− 2�2J cos k

2�2J cos k 3J cos k −
1

2
��uk

vk
� , �A2�

with positive norm �uk�2− �vk�2=1 and eigenfrequency

�k =
1

2
�4J2 cos2 k − 12J cos k + 1.

The normalization condition guarantees bosonic commuta-

tion relations of Âk and B̂k operators: �Âk , Âp
†�= �B̂k , B̂p

†�=�kp,

�Âk , B̂p�=0, etc. The diagonalized Hamiltonian

Ĥ2 = �
k

�k�Âk
†Âk + B̂k

†B̂k� + �
k
��k + 3J cos k −

1

2
 �A3�

is a sum of Bogoliubov quasiparticle excitations. Its ground

state is a Bogoliubov vacuum annihilated by all Âk and B̂k.
Now we calculate different quantities assuming that the

system size M→�. As a self-consistency check we calculate
the density of excitations
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ex =
1

2�
�

−�

�

dk�vk�2 = 4J2 + O�J4� . �A4�

The density remains �
1
2 for J�

1
2�2

—compare to �15�.
The expression for correlation functions in the static cal-

culations is obtained after using �32�. Due to similarity in the
notation, it is the same as Eq. �23�, except that now uk and vk
depend on J rather than t. As a result we get

C1 = 4J + O�J3� ,

C2 = 18J2 + O�J4� ,

C3 = 88J3 + O�J5� ,

C4 = 450J4 + O�J6� ,

C5 = 2364J5 + O�J7� ,

C6 = 12642J6 + O�J8� ,

C7 = 68464J7 + O�J9� .

These results in the lowest nontrivial order listed above agree
perfectly with perturbative ones. Indeed, C1 , . . . ,C3 can be
found in Eq. �5� of �30�, while C4 , . . . ,C7 match unpublished
results by one of us �B.D.�. A discussion of this intriguing
finding is beyond the scope of this study and is left out for
further detailed investigations.

To close the discussion of the static properties of our
theory, we notice that also the ground-state energy per site
�E�, predicted by the Bogolubov theory, agrees in the lowest
order with exact perturbative calculation. Indeed, we get
from Eq. �A3� that

E =
1

2�
�

−�

�

dk��k + 3J cos k −
1

2
 = − 4J2 + O�J4� ,

which has to be compared to Eq. �3� of �30�.
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