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Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic local-
ization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given
detuning in a deep optical potential the secular approximation, which is frequently used for a quantum de-
scription of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full
quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling
in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative
method for the formation of high contrast spatially localized structures of atoms for the purposes of atom
lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of
localized atomic structures that can be reached in this type of light mask.
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I. INTRODUCTION

Laser cooling and manipulation of neutral atoms is one of
the priority field in atomic optics. In recent years great de-
velopments and success have been obtained in atom lithog-
raphy and direct deposition of atoms, utilizing light fields as
an immaterial optical mask for atomic beam �1,2�. In most
nanofabrication experiments, atomic spatial structures are re-
alized by a periodical conservative potential created by far
off detuned intense laser fields acting as an array of imma-
terial light lenses for atoms. The influence of the spontaneous
emission on the focusing is considered to be negligible be-
cause of the large light detuning and short interaction times.
In essence, atom trajectories are affected by the conservative
dipole force without any loses �or dissipation� of energy in
an atomic beam. In this case the atomic beam focusing has a
classical analogy and can be described with methods devel-
oped in particle optics �3,4�. As in classical optics, the fea-
ture size is limited by a combination of chromatic aberrations
caused by the broad longitudinal and transverse velocity dis-
tribution of an atomic beam. Therefore, in order to minimize
deleterious effects an additional laser field is required to pre-
pare a well collimated atomic beam by transverse laser cool-
ing. Additionally, because of spherical aberrations some at-
oms are not well focused and contribute to the pedestal
background. These factors are dominant and do not allow
one to reach the theoretically predicted diffraction limit for
atom optics determined by de Broglie wavelength of atoms.
Therefore new alternative methods for atom lithography are
intensively investigated.

The idea of combining the traditional focusing method
with the well known concept of laser cooling for a blue de-
tuned intensive light field has been suggested in Ref. �5� and
was thoroughly studied in Refs. �6,7�. In this case the inten-
sive light field is mainly used for focusing of atomic beam by
deep optical potential. Additionally dissipative light force
provides cooling of atoms to the minimum of optical poten-

tial at blue detunings. The characteristic time when the dis-
sipative processes take effect is a few inverse recoil frequen-
cies �R

−1 �where ��R=�2k2 /2M is the recoil energy, gained
by an atom with mass M at rest after emission of a photon
with momentum �k�. This time is several tens of microsec-
onds for the majority of elements with closed dipole optical
transitions suitable for laser cooling. However, for atomic
beams with the thermal longitudinal velocity it might be dif-
ficult to realize this type of dissipative optical mask experi-
mentally due to power limitations of used laser system.

In the present paper we consider an alternative regime of
dissipative optical mask, created by red detuned low inten-
sity light field with spatially inhomogeneous polarization. It
is well known that low intensity light fields with polarization
gradients can be used for sub-Doppler laser cooling of neu-
tral atoms. On the contrary to laser cooling, where the major
purpose is to reach the lowest temperatures of atoms, here
we are interested in the strongest spatial atomic localization,
while the temperature of atoms is not necessarily low. We
consider the steady-state atomic density matrix in the frame-
work of full quantum treatment. In this case the size of
atomic localization is a function of the light field parameters
only, while for the well known nondissipative light mask this
size is determined by the focal-length of light lens �1,4� and
by the initial transverse velocity distribution.

We are mainly interested in such regimes of dissipative
light masks where the strongest atomic localization is real-
ized. Obviously, the steady-state density matrix is not sensi-
tive to the initial atomic beam momentum distribution. This
solution is achieved for the long enough atom-light interac-
tion time �of order of a few �R

−1�. Thus, the main attention is
devoted to possible limits for atomic spatial localization that
can be achieved in this type of dissipative light mask.

The mechanisms of laser cooling were studied by a num-
ber of authors especially with respect to the atomic momen-
tum distribution �8–12�. The effects of spatial localization
and quantization have been first observed in one-dimensional
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optical lattices �13,14�. Theoretically the spatial atomic lo-
calization is usually studied in the secular approximation
�11,12,15–18� which is valid in the limit

�U0/��R � ���/� . �1�

Here U0 is the optical potential depth, �=�−�0 is the detun-
ing between the laser � and atomic transition �0 frequencies,
and � is the radiative decay rate. The condition �1� assumes
that the energy separations between different energy bands in
optical potential are much greater then their width, originat-
ing from the optical pumping and tunneling effects. For a
given potential depth U0 this approximation is valid at suffi-
ciently large detuning. Vice versa, it can fail in a deep po-
tential for given detuning. Moreover, even if the secular ap-
proximation is well fulfilled for the lower vibrational levels it
can break down for upper levels, where the separation be-
tween energy bands becomes smaller due to the potential
anharmonicity �12�. Certainly, the secular approximation �1�
fails for atoms moving above the potential barrier. Therefore,
these circumstances make very hard to use the secular ap-
proximation for an adequate description of hot and nonlocal-
ized atomic fraction.

In the present work we consider conditions far from the
situation of extremely low sub-Doppler cooling. Thus, to de-
scribe the localization of atoms correctly we do not restrict
our analysis by secular approximation. Rather we perform a
full quantum treatment of the generalized optical Bloch
equation for atomic density matrix by a numerical method.
In particular, we consider regimes where the light field pa-
rameters are beyond the secular approximation �1�. Finally,
we analyze the width and contrast of localized atomic struc-
tures, which are important parameters for technological ap-
plications.

II. MASTER EQUATION

Let us consider one-dimensional �along the z axis� motion
of atoms with total angular momenta jg in the ground state
and je in the excited state in a field of two counterpropagat-
ing waves with the same frequency and intensity

E�z,t� = E0�e1eikz + e2e−ikz�e−i�t + c.c.

en = �
q=0,±1

en
qeq, n = 1,2. �2�

Here E0 is the amplitude of each of the oppositely propagat-
ing waves. The unit vectors e1 and e2 determine their polar-
izations with components en

q in the spherical basis �e0

=ez ,e±1= � �ex± iey� /�2	.
In this work we restrict our consideration by the weak-

field limit where the saturation parameter S is small:

S =
�2

�2 + �2/4
� 1. �3�

Here �=−E0d /� is the single-beam Rabi frequency, d is the
reduced matrix element of the atomic dipole moment.

In the weak-field limit the atomic exited state can be adia-
batically eliminated and the atomic evolution is described by

the reduced equation for the ground-state density matrix �̂
�11,12�:

d

dt
�̂ = −

i

�
�Ĥ, �̂� + 	̂��̂	 , �4�

where the Hamiltonian Ĥ is given by

Ĥ =
p̂2

2M
+ ��SV̂†V̂ . �5�

The last term in Eq. �5� describes the interaction of atoms
with light field in the resonance approximation, where

V̂ = V̂1eikz + V̂2e−ikz = �
q=0,±1

T̂qe1
qeikz + �

q=0,±1
T̂qe2

qe−ikz, �6�

and the operator T̂q is written in terms of the Clebsch-Gordan
coefficients

T̂q = �

e,
g

C1,q;jq,
g

je,
e �je,
e
�jg,
g� . �7�

Here �je ,
e
 and �jg ,
g
 are the wave functions of Zeeman
sublevels in the exited and ground states, correspondingly.

The relaxation part of master equation �4� has the form

	̂��̂	 = −
�S

2
�V̂†V̂, �̂	

+ �S �
q=0,±1

�
−1

1

T̂q
†e−iksẑV̂�̂V̂†e−iksẑT̂qKq�s�ds , �8�

where �â , ĉ	= âĉ+ ĉâ is the anticommutator and ẑ is the po-
sition operator. This term describes redistribution of atoms
on the ground state Zeeman sublevels due to stimulated ab-
sorption and spontaneous emission with taking into account
the recoil effects. The functions K±1�s�= �1+s2�3/8 and
K0�s�= �1−s2�3/4 are determined by the probability of spon-
taneous emission of a photon with polarization q= ±1,0 into
direction s=cos��� �relative to the z axis�.

III. STEADY-STATE ATOMIC DENSITY MATRIX

There are a number of approaches developed for calcula-
tion of the evolution of atomic density matrix. The full quan-
tum treatment is difficult, because it incorporates the evolu-
tion of numerous of internal and external degrees of
freedom. The majority of works are based on the secular
approximation for density matrix elements �11,12,17� as is
discussed above. In order to take into account the effects of
spatial localization in optical potential more correctly we uti-
lize the full quantum approach for the master equation �4�.

In the Wigner representation for atomic density matrix
�̂�z , p� the master equation �4� takes the following form:

 �

�t
+

p

M

�

�z
��̂�z,p� = �̂��̂�z,p�	 − i�S�V̂†V̂, �̂��W�

−
�S

2
�V̂†V̂, �̂�z,p�	�W�. �9�

The operator V̂†V̂ in Eqs. �5� and �8� has only the zeroth and
second spatial harmonics:
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V̂†V̂ = Ŵ0 + Ŵ+ei2kz + Ŵ−e−i2kz. �10�

Thus, the commutator �. . . , . . . ��W� and anticommutator
�. . . , . . . 	�W� in the Wigner representation in Eq. �9� are writ-
ten as

�V̂†V̂�̂ � �̂V̂†V̂��W�

= Ŵ0�̂�z,p� � �̂�z,p�Ŵ0 + �Ŵ−�̂�z,p + �k�

� �̂�z,p − �k�Ŵ−�e−i2kz + �Ŵ+�̂�z,p − �k�

� �̂�z,p + �k�Ŵ+�ei2kz. �11�

The term �̂��̂�z , p�	 in Eq. �9�, describing the spontaneous
recoil effect, has the form

�̂��̂�z,p�	 = �S �
q=0,±1

�
−�k

�k dp�

�k
Kqdp�

�k
�

�T̂q
†�V̂1�̂�z,p + p��V̂2

†ei2kz + V̂2�̂�z,p + p��

�V̂1
†e−i2kz + V̂1�̂�z,p + p� − �k�V̂1

†

+ V̂2�̂�z,p + p� + �k�V̂2
†�T̂q. �12�

Equation �9� admits a solution that is periodic in the position
variable z. We expand the atomic density matrix in Fourier
series in the spatial coordinate

�̂�z,p� = �
n

�̂�n��p�ei2nkz. �13�

From the master equation �9� we have the following recur-
rence equations for the Fourier components of density matrix
�̂�n�

 �

�t
+ 2ni

p

M
��̂�n� = L0��̂�n�	 + L+��̂�n−1�	 + L−��̂�n+1�	 , �14�

where L0,±1 are some linear superoperators. Their explicit
forms can be derived from Eq. �9� with account for Eqs. �11�
and �12�.

The steady-state solution �� /�t�̂�n�=0� of this recurrence
equations can be obtained by the continued fraction method.
This method is a powerful mathematical tool, which is used
in a number of physical problems. For example, it was used
for solution of the optical Bloch equations in various spec-
troscopy tasks �19–21� as well as for the calculation of the
light force on atom �see, for example, Refs. �22,23��. The
major distinction here is that equations �14� for the density
matrix contain the recoil effects that makes them more com-
plicated. Note, similar equations were used in Ref. �24�,
where the authors analyzed the laser cooling �velocity distri-
bution� of two-level atom in the recoil limit �where ��R�,
but they restricted the consideration by the lowest spatial
harmonics for the density matrix. In other words, the spatial
localization was completely neglected in Ref. �24�. In our
case the number of spatial harmonics taken into account de-
pends on the light field and atomic parameters. Typically, we
use less than 30 harmonics that is enough to obtain the
steady-state density matrix in considered range of param-
eters.

The spatial and momentum steady-state distributions of
atoms with jg=1→ je=2 optical transition for �=−40�, S
=0.5 and chromium mass in lin� lin light field configuration
�i.e., the configuration, created by counterpropagating beams
linearly polarized with polarizations orthogonal to each
other� are shown in Figs. 1�a� and 1�b�. The spatial atomic
distribution can be characterized by two basic parameters:
the full width at half maximum �FWHM� and the contrast
which can be defined as the ratio of spatial distribution
modulation depth to its amplitude C=h /H �see in Fig. 1�a��
�1�. Figure 1�c� represents the amplitudes of spatial harmon-
ics of the total population R�n�=�Tr��̂�n��p�	dp. The zeroth

TABLE I. Dimmensionless atomic mass parameter correspond-
ing to optical transitions for different elements suitable for laser
cooling.

Element
Cooling

transition
�

�nm� M̃

7Li 22S1/2→22P3/2 671 46
23Na 32S1/2→32P3/2 589 198
39K 42S1/2→42P3/2 766 358

85Rb 52S1/2→52P3/2 780 770
133Cs 62S1/2→62P3/2 852.3 1270
52Cr 47S3→47P4 425.6 115
27Al 3p2P3/2→3d2D5/2 309.4 85
69Ga 4p2P3/2→4d2D5/2 294.4 382
115In 5p2P3/2→5d2D5/2 325.7 634

107Ag 52S1/2→52P3/2 328 601
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FIG. 1. Steady-state spatial �a� and momentum �b� distributions,
and the spatial harmonics of the total population �c� for atoms with
jg=1→ je=2 and optical transition and mass corresponding to Cr
atoms. The light field detuning �=−40� and saturation parameter
S=0.5.
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harmonic is equal to 1 due to the normalization condition. As
is seen, the higher harmonics rapidly decrease with number
n.

IV. RESULTS

In this section we turn our attention to the steady-state
spatial distribution of atoms in the optical potential created
by the light field with the lin� lin configuration. We choose
this configuration as a bright example of the light field with
spatially nonuniform polarization. Here only the light field
ellipticity varies in the position space, while the other param-
eters �intensity, phase, orientation of polarization vector� are
constant. Moreover, the optical potential created by this con-
figuration has a period of � /4 that makes it very attractive
for deposition of atomic structures with a high spatial peri-
odicity.

There are several fixed atomic parameters that character-
ize a given laser cooling situation. These are the atomic mass
M, the wavelength �, and the natural linewidth �. In addi-
tion, there are two parameters that can be varied in experi-
ment: the detuning � and the saturation parameter S. We use
reduced dimensionless units where �=1, k=1, �=1. In this

units the dimensionless atomic mass M̃ is defined from the

relation � /�R=2M̃ �6�. This is the so-called quasiclassical
parameter that characterizes the atomic kinetics in a light
field. In particular, it governs the rate of kinetic processes, so
that the typical cooling time is of order of �=�R / ��S�.

As it can be shown directly from Eq. �9�, there are only
two dimensionless parameters that characterize the steady-

state atomic density matrix: the detuning �̃=� /� and the pa-
rameter 



 = SM̃ . �15�

Thus, the procedure and result of calculations are universal
for all atoms with a given angular momentum of energy lev-
els �Table I�. First of all, we consider the simple atomic
optical transition jg=1/2→ je=3/2 that is utilized in many
theoretical works �see, for example, Refs. �9–12,15–17��.
The results for the atomic localization and contrast are
shown in Fig. 2. Note, that in the secular approximation �15�
the stationary solution is characterized only by the ratio of
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jg=1/2→ je=3/2. The dashed lines corresponds to secular approxi-
mation limit.
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FIG. 3. Asymptotic FWHM of localized atomic structures as a
function of the light field detuning for optical transition jg=1/2
→ je=3/2.
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optical potential depth to recoil energy U0 /�R, which is pro-
portional to �̃
 in our notations. In order to compare the
secular approximation with exact quantum calculations we
express the results in terms of parameters �̃ and �̃
. The
dashed lines in Fig. 2 correspond to secular approximation
limit. The different solid curves correspond to our results
obtained for different detunings in the full quantum treat-
ment. As is seen, the differences between them become more
significant with the optical potential depth U0 increasing,
corresponding to violation of secular approximation.

The major difference from secular approximation here is
that the width of the localized structures and contrast tend to
asymptotic values with increasing of the light field potential
depth ���̃
 � →��. However, this values depend on the light
field detuning. The results for the asymptotic values FWHM
are shown in Fig. 3.

Additionally, we consider here the more complex optical
transition jg=1→ je=2. Apart from the ground state sub-
levels it incorporates the evolution of coherence of the
ground state density matrix. Figure 4 represents the FWHM
and the contrast of the spatial structures as a function of
parameter 
 at different detunings for optical transition jg

=1→ je=2. The width monotone decrease for large �̃ and 
.
In spite of the fact that the equilibrium temperature is grow-
ing with the depth of optical potential, the localization of the
atoms becomes stronger. Additionally, the contrast tends to-
wards its maximum value, Fig. 4�b�. The dashed vertical
lines in Fig. 4 show the limitations of the weak-field theory
for different elements from the Table I in assumption S
�0.5 �i.e., these lines correspond saturation S=0.5�. Note,
that this is qualitative estimations for weak-field limits. For
thorough definition of these limits the solution of the quan-
tum equation for the total atomic density matrix is required
with taking into account the saturation effects. However, the
width and the contrast have a very strong dependencies on 
,
thus the localization effects remain rather significant for
enough small saturation parameter especially for “heavy” at-
oms �see Table I�.

V. CONCLUSION

We performed the full quantum treatment of the atomic
localization effects due to laser cooling in a low-intensity

with polarization low-intensity light field. Generally, the con-
ditions for a deep laser cooling mismatch the conditions for a
strong atomic localization, that requires a deeper optical po-
tential and consequently leads to higher temperatures. Addi-
tionally, in a deep optical potential the secular approximation
�1� is restricted by the relation on the light field detuning and
optical potential depth. In our treatment we had no such limi-
tations. It allows one to describe the atomic spatial distribu-
tion more correctly, taking into account localized as well as
above-barrier motioned atoms. The steady-state atomic den-
sity matrix is a function of the light field detuning � and the
dimensionless parameter 
 �15�. We analyzed the width and
the contrast of localized atomic structures as functions of
these parameters. We showed that the width and the contrast
have a strong dependence on 
 and tend to constant values,
depending on the light field detuning, with an increase of the
optical potential depth.

We demonstrated the applicability of laser cooling in a
far-off detuned deep optical potential, created by a light field
with polarization gradient, for the purposes of atom lithogra-
phy and nanofabrication, suitable for generation of spatially
localized atomic features with high contrast. This type of
dissipative light masks can be considered as an alternative
method for creation of spatially localized atomic structures.
The remarkable distinction of this method from nondissipa-
tive light masks is that the suggested one is not sensitive to
any aberration effects. Moreover, this type of optical masks
has no classical analog and cannot be described by the meth-
ods of classical optics. Here the width and the contrast of
localized atomic structures are determined by the atomic en-
ergy dissipation mechanisms in a light field. Finally, we ana-
lyzed the possible limits for the width and the contrast that
can be reached, in principle, by this type of the light masks.
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