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Experimental and theoretical investigation of the Stark effect for manipulating cold molecules:
Application to nitric oxide
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As part of an ongoing investigation of cold-molecule collisions involving nitric oxide (NO), we here theo-
retically assess the first- and second-order perturbation-theory approximations to the Stark shifts; such approxi-
mations have been used almost exclusively in previous published research on NO in external electric fields. We
perform this assessment by comparison to Stark shifts from the corresponding nonperturbative two-state
model, considering field strengths from zero to values typical of current experimental studies of cold mol-
ecules. To facilitate the future use of this model, we give expressions for the Stark energies in a generic form
that can trivially be applied to any molecules in the class under consideration. To provide insight into the
validity of the two-state model, we also experimentally assess the two-state Stark shifts for NO.

DOLI: 10.1103/PhysRevA.75.023410

I. INTRODUCTION

Laser cooling and trapping of atoms has produced a
wealth of fundamental and applied physics because these
techniques allow unprecedented control of the external de-
grees of freedom of the trapped particles (see, for example,
Refs. [1-3]). A high point of this research was the production
of Bose-Einstein condensation of dilute gases in traps
formed by electromagnetic fields (see, for example, Refs.
[4,5]). Because laser cooling lends itself most easily to the
alkali metals, these experiments use conservative confining
potentials with either static magnetic fields (the Zeeman ef-
fect) or laser fields (the ac Stark effect).

Currently researchers are developing new techniques for
producing cold (7<1 K) and ultracold (7<1 mK) mol-
ecules [109]. The idea is to trap samples of cold paramag-
netic or polar molecules using techniques similar to those
that have successfully trapped alkali metal atoms [6,7]. The
intense current interest in trapped cold molecules stems from
several features of these systems. Cold molecules exhibit in-
triguing collision phenomena [8] and novel collision dynam-
ics [9,10]. The chemistry may be controlled at the quantum
level using static electromagnetic fields and modified
through Feshbach resonances [11]. New molecular com-
plexes can be created through photoassociation [12] or
through field-linked states [13,14]. Cold molecules may
serve as quantum computers [15]. Traps with nonzero field
minima [16] may have sufficiently long trap lifetimes to en-
able measurement of the electric dipole moment of the elec-
tron using molecules [17-19].

Many molecules have permanent electric dipole moments,
so their quantum states exhibit large dc Stark shifts. This
property can be exploited to construct deep electrostatic con-
fining potentials [7]. The present work was motivated in part
by experimental programs at the University of Oklahoma
[20] and elsewhere [21] to perform cold-molecule experi-
ments on nitric oxide (NO) using electrostatic trapping tech-
niques that involve the dc Stark effect at field strengths on
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the order of 100 kV/cm. Specifically, we are interested in
NO in its ground (*II) state.

Prior theoretical [22,23] and experimental [24-29] re-
search on the Stark effect in NO focused on microwave spec-
troscopy, where the applied electric fields are quite weak.
This feature has two consequences that affect analysis of
microwave spectra. First, for weak external fields, hyperfine
effects must be incorporated into the theoretical analysis
[26,30-35]. (Some microwave spectroscopy experiments on
molecules other than NO require nonperturbative treatments
similar to the one in this paper; see, for example, Ref. [36]).
Second, for weak fields second-order perturbation theory—
the quadratic Stark effect—accurately approximates the
Stark shifts. Consequently, almost all prior literature on the
Stark effect in NO makes heavy use of perturbative treat-
ments. Neither of these consequences, however, necessarily
pertains to the much stronger fields used in current Stark-
effect-based techniques for cooling and trapping molecules.

To be sure, current computers often permit one to simply
forego consideration of a perturbative treatment [ 110]. Cold-
molecule physics, however, is one of several contexts in
which the suitability of perturbation theory is an issue that
may be of great importance. For example, the recent (2004)
exhaustive analysis of the Stark slower by [37] uses
perturbation-based Stark shifts to simplify subsequent math-
ematical analysis. Similarly, recent discussions of the feasi-
bility of constructing a storage ring for polar molecules in
strong-field seeking states [38,39] consider perturbative
treatments of the Stark effect. Perturbation theory also plays
a role in recent calculations related to the use of electric
fields to align molecules [40,41]. Finally, work published
since about 1980 on trajectory simulations of Stark hexapole
guides for molecular beams have used either first-order
[42-44] or second-order [45,46] perturbation theory, or a
two-state model [47] similar to the one described in Sec. III.
In recent literature on cold-molecule experiments that use the
Stark effect, some use a perturbative theory (see, for ex-
ample, Refs. [48-50]); many papers, however, do not contain
information on how the Stark effect is treated (see, for ex-
ample, Refs. [51-55]).

Although the present research concerns the Stark effect in
NO, some of our results and conclusions pertain to other
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diatomic radicals with *IT ground electronic states in situa-
tions where the hyperfine Hamiltonian is negligible com-
pared to other terms in the system Hamiltonian (including
the Stark Hamiltonian), and the two states of interest are
well-separated in energy from all other states. Even with
these caveats, this study encompasses a number of important
molecules, including LiO, OH, ClO, BeH, SH, PbF, YbF, and
CH.

The present paper has two goals. The first goal is to in-
vestigate analytically and quantitatively the validity of per-
turbative treatments of the Stark effect for NO at fields char-
acteristic of current cold-molecule experiments. The second
goal is to shed light on the accuracy of the nonperturbative
equations for the Stark shifts in NO. This goal we accom-
plish through comparison to experimental data.

Specifically, in Sec. III we adapt to the problem at hand—
the Stark effect for NO (and similar molecules) at electric
fields as large as 100 kV/cm—the two-state model of time-
independent quantum mechanics [[56,57], p. 253] (see Sec.
III A). We then obtain the approximate linear and quadratic
Stark shifts of perturbation theory by truncating series ex-
pansions of the two-state shifts (Sec. III B). With this back-
ground, we compare these perturbative approximations to the
two-state shifts in Sec. III C in order to quantify the errors
introduced by perturbation theory for field strengths from
0 to 100 kV/cm. Within this range we have found errors in
perturbative Stark shifts that are sufficiently large that the
two-state model may be preferable.

To gain insight into the accuracy of the two-state model
for cold-molecule experiments on NO, we compare two-state
Stark shifts to data measured with the Stark guide described
in Sec. IV. To facilitate use of the equations of the two-state
model for radicals other than NO we present “generic forms”
that can be applied trivially to any diatomic with a °IT
ground electronic state (for detailed information about these
molecules, see the compilation in Ref. [58]). While the ven-
erable two-state model is not new to the quantum mechanics
of Stark effect (see, for example, Refs. [36,47]), to our
knowledge no previous publication quantitatively assesses
the errors inherent in the linear and quadratic Stark shifts for
field strengths characteristic of current cold- and ultracold
molecule experiments (around 100 kV/cm).

To define a physical context for discussion of our results
and to establish notation we begin in Sec. I by summarizing
the relevant physics of zero-field states of NO. We also
present contemporary values of spectroscopic and other data
needed to calculate zero-field energies and Stark shifts for
this molecule.

II. SUMMARY OF RELEVANT PROPERTIES OF NO

Molecules such as nitric oxide (NO) stand out among
stable diatomic radicals in that they have an odd number of
electrons and a “IT ground-state term. The latter corresponds
to quantum numbers S=1/2 for the total electronic
spin S and A==+1 for the projection of the total electronic
orbital angular momentum on the internuclear axis R. In its
ground electronic state, NO is an open-shell, weakly polar
radical whose dominant orbital configuration is

PHYSICAL REVIEW A 75, 023410 (2007)

3500

(@)

3000

2500

2000

1500

1000

Q=1/2

Q=32

500

946.950
946.945
946.940
946.935
946.930
946.925
946.920
946.915
946.910
946.905
946.900
946.895
946.890

(b)

Energy (cm™)

@J+1)

1) = Z5ar-1-0)

2027+ 1)

[°1,,v=0,0=1/2)

2J+1)

le)= 75 (+0)+1-2))

FIG. 1. Zero-field rovibronic energies of N0 relative to a
zero of energy at the lowest spin-orbit level of the ground electronic
term at the equilibrium internuclear separation R,. (a) The 11 lowest
rotational energies for the v=0 and v=1 vibrational manifolds of
the 2H1/2 and 21'[3,2 fine-structure levels. (b) The energies of the
A-doublet levels for the J=1/2 states of the v=0 manifold of the
2H1 1 electronic state (on an expanded energy scale). Each level is
labeled by its degree of degeneracy (above the line) and by the
appropriate state designations (below the line); for the ¢ and f
states, see Eq. (A6b)

10%20%30%40°50%1 7*27. In this state, spin-orbit interac-
tions yield a multiplet with Q=A+3=%1/2,%3/2, where
the quantum number 3 corresponds to the projection of S on
R. The spin-orbit multiplet is regular, the 2H3/2 level lying
above the “I1,,, level [59,60]. The quantitative effects of the
spin-orbit interaction on the Born-Oppenheimer energies in
the ground electronic state of NO are shown (to scale) in Fig.
1(a).

In NO, coupling of the electron spin to the internuclear
axis is sufficiently strong that for low-lying rotational states,
this molecule is accurately described by Hund’s case (a)
[25,31,61,62]. Strictly, this case is appropriate for values of
the quantum number J, which corresponds to the total angu-
lar momentum excluding nuclear spin, such that |[AA, g
>2JB,, where A, q is the spin-orbit coupling constant [see
Eq. (Alb)], and B, is the rotational constant for the vth vi-
brational state [63,64]; for NO, Gallagher et al. [25] give

For any molecule in a rovibronic state with |A|>0, the
molecular energies (for fixed A, X, Q, v, J, and laboratory-
frame projection quantum number M) are twofold degener-
ate because the electronic Hamiltonian is invariant under re-
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flection in a plane that contains the internuclear axis. The
rotational Hamiltonian, however, perturbs these electronic
states, shifting their energies and lifting this degeneracy. In
NO the rotational Hamiltonian couples the *I1,,,, *I,, and
3, ,» Tovibronic states so that the actual ground state is a
superposition of these states [34,65-67]. This coupling re-
sults in a splitting of each rotational level (of a particular
vibrational manifold) into two nearly degenerate levels with
opposite total parity. It also causes a breakdown of the
Hund’s case (a) description [24,62,64—66]. The rotational
’[1,,, states of NO are more accurately described by case ag,
“an intermediate case, slightly removed from Hund’s case
(a)” [26]. The pure Hund’s case (a) description, however, is
accurate for the “Il;, state because of the comparatively
small [28] influence of the rotational Hamiltonian (see Sec. 8
of Ref. [68]).

Due to mixture of +A states, each 2(2J+ 1)-fold degener-
ate rovibronic energy level splits into two closely spaced
(2J+1)-fold degenerate sublevels. This A-doublet splitting
was first observed in NO in microwave measurements of
pure rotational spectra by Burrus and Gordy [24]. The result-
ing sublevels of the A doublet are most often labeled e and f
[69,70]. The splitting between these sublevels due to the ro-
tational Hamiltonian increases with increasing J, accelerating
the transition from Hund’s case (a) to (b) as J increases. The
A doublet splitting for the lowest rovibronic level of the
2l'[l 1, state is shown (on an expanded scale) in Fig. 1(b).

In analyses of pure rotational spectra [24-26,28] or of
weak-field Stark-effect measurements of the dipole moment
of NO [27,29], one must take into account magnetic hyper-
fine effects. Typical zero-field hyperfine splittings for NO
[29] range from 0.0013 to 0.0027 cm™'. But this energy
range corresponds to trap depths of a few uK, which is much
lower than the depth of current Stark traps for molecules [7].
Hence we shall neglect nuclear spin and hyperfine coupling.

A. The zero-field molecular states and energies of NO

The zero-field stationary states and energies of diatomic
radicals of the class to which NO belongs are well-known
[108]; relevant definitions and notation are summarized in
the Appendix. This section gives the final equations we used
in the present analysis.

To calculate the A-doublet splitting one should use the
e/f-symmetrized molecular functions in Eq. (A6b)
[23,68,71], since the L-uncoupling operator of Eq. (A8) does
not mix e and f states. In an analysis of the Stark effect,
these rotationless parity labels therefore pertain to the zero-
field states of the A doublet (see Sec. IIT). In NO the perturb-
ing *3,,, state lies above the *II state [67]. Both the e and f
levels are lowered by the L-uncoupling operator, but not by
the same amount; Geuzebroek et al. [72] have unambigu-
ously verified by two experiments that, as illustrated in Fig.
1(b), the e state (which for the lowest rotational state has
total parity 7= +1) lies below the f state (w=-1).

The splitting between the energy levels of the A doublet,

(1a)

is given to second order in the L-uncoupling operator by
[25,68,73,74]

fe — _f e
Aej0=¢€,0-€,0>0,

v
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TABLE 1. Molecular constants in cm™ for the 2IT levels of
N'0. Data from Refs. [74,76-78]. For variations in measured
spectroscopic constants, see [79]. For further references, see foot-
notes to the table on '“N'°0 in Huber and Herzberg [76].

Value
Physical significance Symbol (em™)
Rotational constant at equilibrium Be(zl'[m) 1.72016
B,(*I1,,,) 1.67195
Centrifugal distortion constant De(zl'[m) 10.2X 107°
D,(*11,,) 536X 107°
Rovibrational interaction constant ae(2H3/2) 0.0182
a,(*T1, ) 0.0171
Harmonic angular frequency we(zl_[m) 1904.04
w,(T,,,)  1904.20
Anharmonicity constant wexf(zl_[_g,z) 14.100
w1, 5) 14.075
A = 1 2
€012 —Pe<f+ 2) for “I1, 5, (1b)

1 3
A€ = %<J2 - Z) <J+ 5) for *Iy,. (1c)
The constants p, and ¢, are defined in terms of the spin-orbit
constant, the rotational constants, and the separation in en-
ergy AEX'=Ex—E;>0 between the X “II term and the
higher-lying perturbing A >3, ,, term as [65,66]

4AU,3/ZBU
P, = v for *T1,,, (2a)
8B2 5
=———<+ for “Il;,. 2b
1 Ay 3pAESTT Lo (20)

These expressions assume that the shapes of the X *II and
A 221 ,» potential energy curves are identical and hence that
these states have the same vibrational wave functions, an
approximation that is valid for NO [75]. (For details con-
cerning the effect of A doubling on rotational states in the
’TI states, see Table III of Ref. [26].) Taking into account the
A-doublet splitting, the zero-field rovibronic energies are
[see also Eq. (3.5) of Ref. [25]]

elf

1
/
€r0=6r0t EAEJ;(,EJ,W 3)

where €, is the Born-Oppenheimer rovibronic energy
(A9), Ae{fJ’Q is the A-doublet splitting of Eq. (A9), and the
+ and — signs correspond to the f and e states, respectively.

B. Molecular data for NO

The molecular constants required to evaluate the zero-
field energies Eq. (A9) are identified and their measured val-
ues given for NO in Table I. In addition to these constants,
one requires values for the spin-orbit constants of Eq. (Ala).
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TABLE II. Experimental (E) and theoretical (T) values for vi-
brationally averaged dipole moments in the ground and first-excited
vibrational states in the 211 spin-orbit states of 4N'%0. Values are
given in Debye, where 1 D=3.33564 X 1073 cm™!. Note that ex-
perimental measurements yield only |u,,q|.

Source #o(D) ui(D)
(E) Liu et al. [89] 0.1595(15) 0.1425(16)
(E) Burrus and Graybeal [27] 0.158+0.006
(E) Neumann [84] 0.15782+0.0002
(E) Hoy er al. [29] 0.1574 0.1416
(T) Billingsley [85] -0.139 -0.119
(T) Langhoff et al. [87] -0.169 -0.152
(E) Rawlins et al. [88] —-0.1588 -0.1406

Hallin et al. [80] experimentally determined the spin-orbit
constants for low-lying vibrational states of the 2H3/2
level; for the ground and first vibrational states,
they obtained Ag3,=123.13907(25) cm™ and A3,
=122.89490(27) cm™' (see Refs. [28,60,78,81]). The corre-
sponding equilibrium spin-orbit constant for the ground elec-
tronic state is [76] As»(R,=1.15077 A)=119.82 cm™'. The
separation between the interacting I and *3,, Born-
Oppenheimer electronic states is [59] AE>"=43 966 cm™.

The constant p, in the A-doublet splitting energy (1) de-
pends on the vibrational state. One can experimentally deter-
mine this splitting from the frequency separation
of A-doublet spectral lines for rotational transitions
J—J+1. From analysis of high-resolution Fourier spectra,
Amiot et al. [82] (corrected in Table III of Ref. [83]) deter-
mined the values py=0.0116893(80) cm™' and p,
=0.011 6878(14) cm™! (for related determinations see Refs.
[24,25,28,35,83]). For the A-doublet parameters of the 2H3/2
level, these authors obtained g,=9.507(74) X 10° cm™! and
q,1=9.443(68) X 10 cm™'. The resulting A-doublet split-
tings are in good accord with the theoretical calculations of
[67], who discuss the theoretical underpinnings of this phe-
nomenon and the wide variation in contemporary experimen-
tal values of g, (see also Refs. [29,65,66]).

C. Dipole moments for NO

To evaluate the Stark shifts, we require the vibrationally
averaged dipole moments for the v=0 and v=1 states of the
spin-orbit state of interest. This quantity, the permanent elec-
tric dipole moment in the vth vibrational state [70]

/‘l’v,ﬂ = <a’v7S’A9E’Q’J3MJ|IU/ a’U’S7A’E,Q’J’M‘/>’ (4)

depends on the magnitude but not on the sign of (). The
permanent dipole moment for the *I1,,, state of '“N'°O has
been measured, calculated, and discussed extensively; key
results appear in Table II. The experimental results in this
table come from microwave spectra except the value of Neu-
mann [84], which was determined using a molecular-beam
resonance technique. These measurements cannot determine
the sign of u, o. But the calculations of Billingsley [85], who
used the optimized-valence-configuration multiconfiguration
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self-consistent-field method, show the polarity of the ground
state to be N"O™, i.e., the dipole moment points from the
nitrogen nucleus to the oxygen nucleus and therefore, by
definition, is negative. This finding explains the signs in
Table II. The more recent calculations of Refs. [86,87] entail
multireference singles-plus-doubles configuration-interaction
calculations. The values we use in the calculations of Sec. IV
are those of Rawlins er al. [88]. These authors analyzed ex-
perimental data for vibrational-transition branching ratios,
previous measurements of the static dipole moment, and ab-
sorption coefficients for transitions from the ground to the
first vibrational state. They then used a nonlinear least-
squares fit to determine a dipole moment function wq(R),
from which they calculate the vibrationally averaged mo-
ments in Table II.

III. THEORY: THE STARK EFFECT FOR NO

We here summarize the application of the two-state model
and the standard perturbation-theory approximates to NO.
For a static, homogeneous external electric field of strength £
that points along the laboratory-frame Z axis, the Stark
Hamiltonian is

HE=—p-E=— u&cos b, (5)

where p is the permanent dipole moment of the molecule,
and 6 is the polar angle of the field axis with respect to the
internuclear axis. We require the matrix of this Hamiltonian
in a basis defined by the two states of NO that are relevant to
the experiments under consideration.

Symmetry properties of the Stark Hamiltonian HE facili-
tate calculating its effect on the zero-field NO energies. Since
7:(5 commutes with jz, it does not couple states of different
|Q2|; nor does it couple a state with +() to the corresponding
state with —(). Therefore in the rovibronic basis defined by
Eq. (A2), whose elements we will here abbreviate as |()), the
matrix representation of the Stark Hamiltonian is diagonal:

o <<9|7%5|9> 0 )
oy = et |
0 QR0

(6a)

where we have exploited the symmetry of the molecule to
relate the (nonzero) diagonal elements [23]. But the Stark
Hamiltonian does couple the e and f states defined in Eq.
(A6b), which we will here abbreviate by |e/f). In this basis
the diagonal matrix elements of HE are zero, so the matrix
representation is

N R
{lerf)} — ’

6b
e[Hfy O o)

where we have used the Hermiticity of HE to equate the
(nonzero) off-diagonal elements.

The sole matrix element <Q|ﬂ5|Q> needed to construct
the representation (6a) of HE in the |Q) basis is [23]

023410-4



EXPERIMENTAL AND THEORETICAL INVESTIGATION OF ...

Hf,J,MJ,Q:<a»U,S,A,2,Q,],MJ| .

(7a)

== SMU,Q<J’MJ’

Q), (7b)

where Q) is the rotational eigenstate in Eq. (A2) and
My 0 1s the vibrationally averaged dipole moment defined in
Eq. (4). Since the laboratory-frame polar angle 6 is the di-
rection cosine &, the diagonal matrix element of this quan-
tity with respect to the rotational state Q) is the ex-
pectation value of «Z in this state, the value of which is (see
Sec. 3.9 and Table 3.2 of Ref. [69])

J.M,,Qla O ={a}) = . 8
(.M, == ®
The Stark matrix element (7a) is therefore
M,
v,J,MJ,Q=_Iu‘v,QgJ(J D M;=-J,....,+J. (9
A. The Stark effect in a two-state model
Although the zero-field Born-Oppenheimer states

|a,v,S,A,E,Q,J,M,,e/f) are not degenerate, the
A-doublet splitting in NO is so small that these states are
well-separated in energy from all other rovibronic states [see
Fig. 1(a)]. [This feature has been verified experimentally by
Gallagher and Johnson [26] and by Hoy er al. [29] (see also
Refs. [22,23]).] Moreover, applied fields in current cold mo-
lecular experiments are sufficiently strong that the product
My € is much larger than the hyperfine splitting [90]—
conditions that bring into question the suitability of pertur-
bation theory. Under these circumstances, we can determine
the Stark energies by modeling the molecule as a two-state
system [47,91]. We shall show in Sec. IV, such a nonpertur-
bative approach is required for field strengths larger than a
few kV/cm because second-order perturbation theory, which
leads to the familiar “quadratic Stark effect” [22,29], is
highly inaccurate for these field strengths.

We now define the two states in the present application of
this model. The states |a,v,S,A,2,Q,J,M,,e/f) of Eq.
(A6b) for fixed v, J, A, 2, and ) constitute a basis of
2(2J+1) eigenvectors in which we can expand the desired

eigenvector of the total Hamiltonian H=H+HE (see the

Appendix). Since HE commutes with jz, the Hamiltonian
matrix in this basis is block diagonal with respect to the
magnetic quantum number M ;. Hence we can consider each
2 X 2 submatrix for fixed M separately and obtain the eigen-

values of H by diagonalizing [92]
H, H, €0 (eHD
Hiem=\y, 4 |= (e ; ., (10)
fe Bl \(Hf) &g

where the second equality follows from the symmetry prop-
erties of the e/f basis (Sec. IIT). The diagonal elements in
Hy/p) are just the zero-field energies of the e and f states

given in Eq. (3). By Hermiticity of H the off-diagonal ele-
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ments in this matrix are equal: Hy,=H,s. By orthonormality
of the e/f states, these elements are H, = (e|ﬂ0+ﬂ5|ﬂ
=({e|HE|f). To evaluate H,; we use Eq. (A6b) to express the
off-diagonal matrix element in terms of the {|Q%)} basis

states. According to Eq. (6a), the matrix HE . s diagonal.

{lo®)}
So the matrix element simplifies to the one already evaluated
in Eq. (9):
JU+1)

(11

Diagonalizing the matrix (10) yields the Stark energies in
the two-state model,

(el Hl) = QA Q) = H,

v, J MQ= = My 0f

/ 2
Eze;J;,MJQ—_(vaQ"'vaQ)"' \/4| v M, Q| + (A€ 0)%

(12a)

where the + sign corresponds to the f state and the — sign to
the e state. Noting from Eq. (3) that the average of the ¢ and
f zero-field energies is just the rovibronic energy €, ; , of Eq.
(A9), and defining the two-state Stark shift

AEi/J;M Q= \/4|ijM Q|2+(AEUJQ)2’ (12b)
we can write Eq. (12a) as
£
Ev/§M Q=& 0% AEU,J,MJ,Q (12¢)

This form emphasizes that Eq. (12b) gives the Stark shifts to
the zero-field Born-Oppenheimer r0V1bron1C energies €, ;¢
of Eq. (A9), not to the e/f energies € JQ of Eq. (3).

Equations (12) show that the Stark effect increases the
energies of the upper (f) levels [see Fig. 1(b)] and decreases
the energies of the lower (e) levels [90]. These shifts depend
on the magnitude but not on the sign of M, that is, the
Stark-shifted levels remain twofold degenerate. To calculate
these shifts we require only the field strength and the (aver-
aged) dipole moments in the relevant vibronic states (see
Sec. 1 C).

B. Perturbation theory regained: The strong- and weak-field
limits

Burrus and Graybeal [27] used Stark spectroscopy to
measure the dipole moment for the v=0 vibrational state of
the 2I1, , level of '*N'°O. Subsequently, Hoy et al. [29] used
laser Stark spectroscopy to measure u, ¢ for the ground and
first vibrational states and considered both “IT levels. As be-
fits such microwave-spectroscopy experiments, these authors
focused on the weak-field limit, included hyperfine splitting,
and used perturbation theory [22,23] to calculate the qua-
dratic (second-order) and linear (first-order) Stark shifts. We
here give the equations of perturbation theory for NO as
approximations to those of the two-state model [93].

Although we obtained the perturbation-theory approxi-
mates using standard perturbation theory, they can be math-
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ematically related to the two-state results of Sec. IIl A by a
series expansion of the exact result. We thus write the Stark
energy levels of Egs. (12) as

el e
EU];MQ UJQ (AEUJM - AEJ;,J,Q>~ (13)

In the presence of A doubling, second-order perturbation
theory is valid only if the external electric field is sufficiently
weak. In this weak-field limit the two-state Stark shift re-
duces to the familiar quadratic shift. Writing Eq. (13) as

HS 2
e v,J.M ;,Q)
Ae{:J’Q[ \/1+4(_A =] -1

UJQ
(14a)

elf elf
EUJM Q= vJQ—

we expand the square root in the small parameter
|ny 0! Ae’;fj’d and retain only the first term to obtain

~

»
E 0= €0 Ey, 0 (14b)

where the plus and minus signs refer to the f and e states,
respectively, and we have identified the second-order correc-
tion term as the quadratic Stark shift to the zero-field e/f
energies:

E; s, aOF

15
AEUJQ ( )

(2) -
Ejm,0=

For the second-order approximation to the Stark shift to be
accurate, the applied field must be weak enough that

|HUJM @< AGUJQ (16)

In the other extreme—the strong-field limit, where the
field is strong enough to render the A-doublet splitting
negligible—Eq. (12¢) reduces to

QM,
JU+1)
(17)

olf olf
EvJM Q= v,JQ+HvJMJQ_E + pp0f

The second term in this result agrees with the first-order
(linear) Stark shift [22],

M,
JU+1)’

Ez(;JM o=(QHIQ) =~ u, o€ (18)
which one obtains by neglecting the A doublet splitting al-
together [29].

To conclude we write our equations for the Stark shifts in
a form that is convenient for application to other molecules
and for the comparisons of Sec. IV. To this end we introduce
the dimensionless variable

£
HU,J,MJ,Q

Ui , (19)

fe
Aeyso

which is the Stark matrix element for an arbitrary rovibronic
state normalized to the splitting of the A doublet. In terms of
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this variable, Egs. (12b), (15), and (18) for the Stark shifts
become

1
E
AE, ;v 0= i 7, (20a)
EX w0 ( + 772> (20b)
W) 1
Eyjman=* St (20c)

where the + and — signs refer to the f and e states, respec-
tively. Note that because 7 is defined in terms of the matrix
element HU M, this variable depends on the field strength

and on the r0V1bromc state under consideration. Equations
(20) are “generic” expressions for the Stark shifts, applicable
to any molecule with a *IT ground state under conditions
where hyperfine effects are negligible.

C. Assessing perturbative treatments of the Stark effect

In the preceding section, we described three ways to cal-
culate Stark shifts for any molecule with |A| >0 that is well-
represented by Hund’s case (a) under conditions where hy-
perfine structure is negligible. Three points are relevant to
these comparisons.

(1) The linear Stark shift [Eq. (14b)] results from first-
order perturbation theory; this result is valid only when the
Stark interaction energy is large compared to the A-doublet
splitting.

(2) The quadratic Stark shift [Eq. (15)] results from
second-order perturbation theory and assumes that the Stark
energy is small compared to the A-doublet splitting. When
this approximation holds, the first-order Stark shift is zero.

(3) The two-state model diagonalizes the Hamiltonian, as-
suming only that the A-doublet splitting and Stark interac-
tion energies are small compared to the separation of the
rovibronic level under consideration from other levels.

In Fig. 2(a), we plot the Stark shifts for the ground rovi-
bronic state (v=0,J=1/2) of the *II, 1, spin-orbit level as a
function of field strength. This figure shows significant dif-
ferences between the quadratic Stark shift and that of the
two-state theory—even for relatively low electric fields. Ac-
cording to perturbation theory, the second-order correction
lowers the energies of e states and raises the energies of f
states. Qualitatively this behavior is the same as that of the
two-state Stark shifts. Quantitatively, however, the condition
(16) breaks down at field strengths above a few kV/cm. (The
linear approximation is not expected to be accurate at low
field strengths; it is valid only for Stark shifts greater than the
A-doublet splitting.) To quantify the implications of Figs
2(a), we compare in Table IIT Stark shifts for the f state from
the (very low) field strengths at which the quadratic shift is
accurate to the (very high) strength at which the linear ap-
proximation holds.

In Figs 2(b), we compare the fractional difference be-
tween the linear and quadratic Stark shifts of Egs. (20) to
those of the two-state model. Since the dimensionless vari-
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FIG. 2. (a) The dc Stark shifts for the v=0, J=1/2 state of the
2Hl 1> spin-orbit level as a function of electric field strength. Shifts
in the two-state model and in first- and second-order perturbation
theory are shown over an experimentally realistic range of field
strengths. (b) The fractional difference between Stark shifts, as cal-
culated using perturbation theory and using the two-state model
[see Egs. (20)], for a rovibronic state of a Hund’s case (a) molecule.
First- and second-order perturbation theory give the linear and qua-
dratic approximations, respectively. The parameter 7, the Stark ma-
trix element normalized to the A-doublet splitting, is defined in Eq.

(19).

able 7 of Eq. (19) depends on the dipole moment, electric
field, and quantum state, these curves show the relative ac-
curacy of perturbation theory for any rovibronic state of any
radical that can be treated in Hund’s case (a) when hyperfine
effects are negligible. Especially noteworthy is the striking,
rapid increase in the error of the quadratic Stark shift around
n=1.

To illustrate the behavior of Stark shifts over the range of
field strength that is experimentally accessible for electro-
static trapping, we show in Fig. 3 results from the two-state
model for the J=1/2 and J=3/2 rotational levels of the
*I1,, state and for the J=3/2 and J=5/2 levels of the *I1,,,
state. In both cases we consider the ground vibrational mani-
fold (v=0). Since the Stark energies depend on the magni-
tude but not the sign of M, each Stark-shifted level remains
twofold degenerate. Because the A-doublet splitting is so
small for 21_[3,2 states, the Stark shift for these states is es-
sentially linear over the entire range of field strengths of
interest. For the J=3/2 state of the “II, » level, the Stark
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TABLE III. Comparison of two-state, quadratic, and linear Stark
shifts in cm™! for the v=0, J=1/2, M,;=1/2 zero-field energy of the
e state of the 21'[1 ;» level in NO as a function of electric field
strength € in kV/cm. The “linear” column gives the Stark shift [18]
obtained by neglecting the splitting of the A doublet compared to
the Stark matrix element [9]. Field strengths were chosen to illus-
trate the breakdown of the linear and quadratic approximations.

&

(kV/cm) Two-state Quadratic Linear
0.5 0.00002 0.00002 0.00044
2.0 0.00026 0.00027 0.00178
5.0 0.00150 0.00169 0.00444

10.0 0.00479 0.00676 0.00889
20.0 0.01287 0.02704 0.01778
50.0 0.03898 0.16897 0.04444
100.0 0.08323 0.67589 0.08889
300.0 0.26088 6.08300 0.26666
500.0 0.43862 16.8970 0.44443
1000.0 0.88303 67.5890 0.88886

energy at 40 kV/cm is more than half of the energy of the A
doublet, and Fig. 2(b) shows that as the field strength in-
creases, second-order perturbation theory rapidly and signifi-
cantly breaks down. Indeed, for the J=1/2 rotational state of
this level, this approximation is invalid for most relevant
trapping fields.

IV. EXPERIMENT: PRODUCING COLD NO MOLECULES
WITH A STARK GUIDE

One way to produce cold samples of atoms and molecules
is to select the cold fraction (T<1 K) of molecules in the
Maxwell-Boltzmann speed distribution that emerges from a
thermal source. In this approach an atomic or molecular
beam is directed into a two-dimensional guide that is bent at
an angle such that there is no line-of-sight between the input
and output ends of the guide. This guide transmits only par-
ticles that move slowly enough to be repelled from the walls
by magnetic or electric fields and guided. The feasibility of
this method has been demonstrated for Li [94], Rb [95], and
HzCO and ND3 [96]

In our experimental study of the feasibility of using such
a device to produce cold NO we inject NO molecules from
an effusive source at 77 K into a straight hexapole Stark
guide. As illustrated in Fig. 4(a), in this apparatus there does
exist a line-of-sight between the input and the output. The
hexapole guide, a cross section of which is shown in Fig.
4(b), consists of six wires, with positive and negative volt-
ages placed on alternating wires, and produces electric fields
as high as 65 kV/cm. Although our objectives are different,
our NO guide is functionally identical to the hexapole NO
guide used by Stolte and co-workers [97,98]. The primary
difference is that we use a 77 K effusive source, while Stolte
and co-workers used a molecular-beam source. The electric
field inside the guide is not azimuthally symmetric. Along
the circle that defines the highest edge values of the guide
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FIG. 3. The dc Stark shifts for
the two lowest rotational levels of
the ground vibrational manifold of
the 1=1/2 and =3/2 states of
YN0 as a function of the
strength of the applied electric
field. In each case, the states
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potential, the potential energy attains a minimum at each
wire and a maximum halfway between each wire [Fig. 4(b)].
Calculating the electric field inside the guide, we find that the
easiest escape route for the particles corresponds to a field
strength of 35 kV/cm at a guide voltage of 4.5 kV.
Particles whose trajectories are not along a line-of-sight to
the output will be guided to the output if their transverse

C)

extraction plates
source can

source

detection region

oo
o

FIG. 4. (a) Schematic of the experimental apparatus (not to
scale). (b) Cross section of the hexapole guide. The central circle
defines the highest edge of the two-dimensional guide potential. On
this central circle the cross and small open circle indicate points of

lowest and highest guide potential, respectively, along the edge of
the guide.

40 50 60 70 80 90 100

kinetic energy is smaller than the energy of their Stark inter-
action with the electric field. Due to this collimation effect,
the number of molecules at the output will be enhanced.
Because the Stark interaction energy is small compared to
the average thermal energy of the beam, only the cold frac-
tion is collimated. Further details of the apparatus are de-
scribed in Ref. [99].

In the present experiments, we observe enhancement of
the number of molecules in the lowest rovibrational state of
N0, The particles are detected by exciting the transition
X 2M,,,0=0,/=1/2)—|A %%, ,,0=0,/=3/2,N=2) at
226.180 nm [100]. The excited A state is then ionized with
327 nm laser radiation, and the resulting cations are detected
on a microchannel plate. Because of drifts in laser intensity
and flux from the source, constant normalization of the de-
tected signal is necessary. To measure the effect of the guide
on the molecular beam, the number of particles in the
|2H, 12.0=0,J=1/2) state is measured as the guide voltage is
increased from O to 4.5 kV.

We now present data for the enhancement of NO mol-
ecules due to passage through the Stark guide. Since this
enhancement depends on the Stark interaction, we can use
the variation of this quantity with guide voltage to assess the
theoretical treatment in Sec. III in the context of experiments
on cold molecules. Figure 5 shows the number of ions de-
tected by the microchannel plate. Because fluctuations in the
number of detected molecules were smallest at the highest
count rates, we normalized the data in this figure to the num-
ber of ions detected with maximum voltage applied to the
Stark guide, V=4.5 kV.

In each measurement we count the number of ions col-
lected during 320 laser pulses with a particular voltage on
the guide and divide the result by the corresponding number
of ions for a voltage of 4.5 kV. In order to determine the
statistical error we take ten consecutive measurements of this
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FIG. 5. The number of detected particles leaving the guide in
the /=1/2 ground rovibrational state as a function of guide voltage.
Comparison of results from the two-state model of Sec. III to mea-
sured data. The flux is normalized to the flux at the maximum
voltage, 4.5 kV, and the data is compared to normalized fluxes cal-
culated using two-state equations for the Stark shift. Note the dis-
cussion in the text of the effects of the normalization procedure
used in generating this figure.

type. We then repeat this process on several days, adjusting
the alignment of the ionizing lasers and the input pressure of
NO in order to evaluate systematic errors in the apparatus.
The data are subject to a systematic error that is comparable
in magnitude to the statistical uncertainty, which we deter-
mine by comparing data taken with different configurations.
We add the systematic error (in quadrature) to the statistical
error to determine the error bars in Fig. 5(a), which corre-
spond to a 20 confidence interval.

We model the electric field £(r) using the numerical soft-
ware program SIMION [101] including in the model file the
conducting surfaces of the source can, the source tube, the
guide, and the detection plates. Motion of particles in the
guide is calculated by finding the force on the particles, F
=-VU(r), where the potential energy U(r) is given by the
Stark shift AEf’ IM,.0 of Eq. (12b) as determined using the

two-state model of Sec. IIl A. [The dependence on r enters
the Stark shift through the r-dependent electric field strength,
which appears in the matrix element of Eq. (11).] Only mol-
ecules in states whose energy increases with increasing elec-
tric field (so-called “low-field seeking states”) are guided.
From the potential energy U(r) for our system we create an
equivalent electric field for ion propagation in an identical
geometry. The SIMION program calculates Monte Carlo tra-
jectories of ions in arbitrary electric fields. So once we have
found U(r) for our system, we create an equivalent electric
field for ion propagation. Thus the SIMION ion-trajectory
simulator calculates our neutral particle trajectories.

In simulating the output of the guide, we assume that the
source provides an isotropic angular distribution, although
we considered only particles whose trajectories permitted
them to enter the guide. In a previous measurement, we de-

. o . 2
termined that the speed distribution is proportional to v2e=%
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(where « is constant) as in a standard one-dimensional
Maxwell-Boltzmann distribution. The expected speed distri-
bution for the flux from an effusive source is proportional to
v® [99]. The time during which laser radiation is on, how-
ever, is small compared to that required for the particles to
undergo any significant movement. Therefore we measure
the density directly. Assuming this speed distribution, we
found the temperature of the gas to be 77 K, in agreement
with a thermistor measurement of the temperature of the
source tube. For each voltage on the guide we simulated
20 000 trajectories and counted the number of particles that
were successfully guided into the detection region. The result
of each simulation at each voltage was divided by the corre-
sponding value for 4.5 kV; as noted above, this step normal-
izes the data. Thus no fitting parameters were involved in
generating the comparison in Fig. 5.

The error bars for both the experiment and the Monte
Carlo simulations represent a 20 confidence interval. As Fig.
5 shows, the two-state model and the data disagree signifi-
cantly only for a guide voltage of 0 kV. This disagreement
most likely results from incomplete modeling of fringing
fields at the input. At the input of the guide, a dielectric piece
holds the wires in place. This piece will modify the fields at
the entrance—an effect that cannot be easily simulated in
SIMION. Note that this effect is present in all data, even the
data at 0 kV, because these data are normalized to the output
at 4.5 kV. Since improperly modeling the input fields will
similarly affect data simulated at different voltages, the larg-
est such effect will appear in data at 0 kV. Another possibil-
ity is a background signal in the data that would have the
largest effect on the small signal comparison at 0 kV. We
conclude that the results from the two-state model are con-
sistent with the measured data over the range of voltages
considered.

V. CONCLUSIONS

In previous literature concerning NO, the Stark effect for
’[1,,, states has been often described as “linear” and that for
’[,,, states as “quadratic.” Each of these characterizations
implies a particular perturbative model. We have demon-
strated the extent to which for field strengths which are rel-
evant to trapping cold NO these characterizations and the
assumptions inherent in them are unsuitable.

The Stark shifts of perturbation theory (Sec. III B) are
mathematical approximations (in the strong- and weak-field
limits) to the Stark shifts of the nonperturbative two-state
model of Sec. IIT A. The numerical comparisons of Sec. III C
quantify the validity of these approximations for NO mol-
ecules at field strengths from O to 15 kV/cm and show the
magnitude of the error that perturbative approximations in-
troduce into calculated Stark shifts.

The experimental aspect of this work considers the valid-
ity of the two-state model itself. The relative isolation of the
states of interest in the present work on NO from other states
of the molecule, and the small magnitude of (neglected) hy-
perfine interactions give reason for optimism. The experi-
mental data reported in Sec. IV and the simulations in Fig. 5
show that for NO in its ground state, the two-state model is
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accurate for applied electric field strengths on the order of
100 kV/cm. In Figs. 2 and 3 these equations are applied to
the class of radicals to which NO belongs [102].

Because the two-state model is not significantly more
complicated and does not break down in the relevant range
of experimental fields, we recommend that the two-state
model be used except where compelling reasons argue for
the perturbation-theory alternative (see, for example, [37]),
and that extreme care be exercised if the further simplifica-
tion of perturbation theory is desired.

We hope that these quantitative assessments along with
our two-state equations for the Stark shifts, used in conjunc-
tion with Egs. (A9) for the rovibronic energies (including
spin-orbit and spin-uncoupling effects) and Egs. (1) for the
splitting of the A doublet, will constitute a reliable resource
for cold-molecule experiments involving *IT molecules with
an odd number of electrons.
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APPENDIX: ZERO-FIELD MOLECULAR STATES AND
ENERGIES OF NO

We denote eigenvectors of the Born-Oppenheimer elec-

tronic Hamiltonian H¢ by |a,S,A,3,Q.J), where the
(signed) quantum numbers A, 3, and Q) refer to projections
along the internuclear axis, the z axis of the molecular (body-
fixed) coordinate system. The quantum number S corre-
sponds to total electronic spin, and « denotes the electronic
energy (e.g., X,A,a, etc.). For NO, which essentially belongs
to Hund’s case (a), the quantum number )= A +%, is redun-
dant. It is useful, though, to include €} as a state label be-
cause () identifies the sublevels that result from the spin-
orbit interaction.

Absent spin-orbit interactions, the Born-Oppenheimer

electronic energy Efg)(R), the eigenvalue of He for elec-
tronic state |a,S,A,>,(,J), depends on the spin multiplic-
ity 2S+1 and on the magnitude—but not the sign—of A. For
an arbitrary angular momentum coupling scheme, adding the

spin-orbit Hamiltonian to HE results in states in which nei-
ther A nor X are rigorously good quantum numbers. Since
the sum A+2 is a constant of the motion, spin-orbit states
are labeled by . In the Hund’s case (a) idealization, how-
ever, 2 and A remain good quantum numbers and are used
as state labels [62,64,69]. For a II state, the allowed values
of ) are +£1/2 and +3/2, but the spin-orbit energies depend
only on the magnitude of ().

Neglecting second-order corrections (see Sec. 2.4.1 of
Ref. [75]), the spin-orbit shifts to EE??(R) are the diagonal
matrix elements of the spin-orbit Hamiltonian in the basis of
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Born-Oppenheimer electronic states. The first-order shift,
written in terms of the spin-orbit coupling constant Ag(R), is

Ag(R)AS = (a,S,A,3,Q,J|H5°

a,S,A2,0.0).
(Ala)

The resulting fine-structure levels are equally spaced about
the Born-Oppenheimer electronic energy. Following Huber
and Herzberg [76], we choose the zero of energy at the low-
est spin-orbit level of the ground electronic term at the equi-
librium internuclear separation R,. Thus A;,(R,)=0, and the
energy of the upper spin-orbit level is Az, (R,) >0. When we
include rovibrational motion, we measure spin-orbit level en-
ergies from the ground rovibrational state, so A, 1,=0.

Since the molecule vibrates, the actual spin-orbit constant
is the average of An(R) over a vibrational state of the mol-
ecule,

1
Ay 0= [AaB®)v)g=Aa(R,) - Xe(v + 5) . (Alb)

where the spectroscopic constant y, corrects the equilibrium
spin-orbit coupling constant Ag(R,) to allow for vibrational
motion, and the subscript R signifies integration over the
internuclear separation.

For a Hund’s case (a) molecule the Born-Oppenheimer
rovibronic states are represented by the direct products [73]

a,v,85,A, 2,0, M) =|a,S,A\,2,Q,0) ® |v J) ® |J,M,Q).
(A2)

Here the vibrational state is denoted |v,J). The quantum
number J corresponds to the angular momentum operator
(sans nuclear spin), i.e., the sum of the total electronic angu-
lar momentum and the rotational angular momentum of the
molecule N [103]

J=L+S+N. (A3)

The (symmetric top) rotational state |J,M,,Q)| is an eigen-

vector of J2, J,, and j (see Sec. 1.3.3 of Ref. [75]), where
the subscripts Z and z refer to the polar axis of the (space-
fixed) laboratory frame and the (body-fixed) molecular
frame, respectively. Since rotation takes place in the plane of
the internuclear axis, N is perpendicular to this axis. Hence
the projection of N along the internuclear axis is zero, and
the quantum number that corresponds to J, is Q=A+2.. The
ket |a,S,A,2,Q,J) is an eigenvector of the Born-
Oppenheimer electronic Hamiltonian and that part of the ro-
tational Hamiltonian [Eq. (A7b) below] whose matrix ele-
ments are diagonal [75],

1
2uR?

,F(rot (R) =

o [(2=J%) +(L-L%) - (§*=§2)].

(A4)

Because of the isotropy of free space, properly symme-
trized eigenfunctions of the molecular Hamiltonian have
well-defined total parity. In Born-Oppenheimer theory, these
parity eigenfunctions are linear combinations of degenerate
rovibronic stationary-state wave functions that have positive
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and negative projection quantum numbers () (for fixed ()
#0).

These linear combinations are eigenfunctions of the ver-
tical reflection operator &,(xz), where xz signifies a plane
containing the internuclear axis (the z axis of the molecular
reference frame) (see Chap. 9 of Ref. [70]). The operator
J,(xz) inverts internal coordinates through the origin
[61]. When G,(xz) acts on a rovibronic state
la,v,S,A,%,Q,J,M,), the resulting eigenvalues m==+1 de-
fine the total parity of the state [104]. At first glance, it would
seem easy to construct properly symmetrized rovibrational
states by simply adding or subtracting states
la,v,S,A,%,QJ,M,;) with positive and negative values of
the angular-momentum projection quantum numbers:

A

2 Q

’J’Mj’

v, s a’v’S’A7E’Q’J’MJ>

1
=
2

+

a,v,8,— A,—3,-Q,J,Mp). (AS)

The problem is that it is not necessarily the case that the plus
sign on the right-hand side of this linear combination corre-
sponds to even parity (w=+1) and the minus sign corre-
sponds to odd parity. Rather, the total parity of a group of
energy levels, such as the upper and lower states of the A
doublet, alternate with increasing J. In this alternation lies
the usefulness of the e/f symmetry classification scheme: in
this scheme the signifiers, such as 7(—=1)’7"2 for a molecule
with an odd number of electrons, factor out this
J-dependence and so are independent of the rotational state
of the molecule [64]. The values of these signifiers are there-
fore referred to as the rotationless parity of the rovibronic
state [105]. The e/f classification scheme of a rovibronic
state gives no more information than the total-parity ()
scheme, but because the e/f scheme is “rotationless,” it is
much more convenient [106].

Except for molecules with an even number of electrons in
an electronic state in which A=0Q=0, construction of the e/f
rovibronic eigenvectors proceeds in a straightforward man-
ner depending on whether the molecule has an even or odd
number of electrons. For a molecule such as NO that has an
odd number of electrons in an electronic state with |A|>0,
the properly symmetrized rovibronic states wave functions
have the form [73,107,111,112]

a,v,5,A,%,Q,J,M,elf)

1
Tz[ a’v>S5A3E3Q7]7MJ>
\

+ (_ 1)S+1

CY,U,S,_A,—E,_Q,J,MJ>], (A6a)

where the plus yields an e state, and minus yields an f state.
For NO in a °I1 state S=1/2, so the e/ f rovibronic states are

1
a’,U,S,A,E,Q,J,MJ,e/f} = TE(
\

a’,U,S,A,E’Q’J’MJ>

+

a,0,8,—-A,—2,-Q,J,M))).
(A6b)

The rotational Hamiltonian lifts the degeneracy of the states
(A6D).
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In addition to the spin-orbit operator, electronic and rota-
tional terms in the nonrelativistic molecular Hamiltonian can
mix the Born-Oppenheimer states of Eq. (A2) and change
the corresponding energies [69,75]. For the states and pro-
cesses of interest here, these corrections are negligible except
for those due to terms in the rotational Hamiltonian that in-
duce the A-doublet splitting. The rotational Hamiltonian is

ﬁrol — NZ
2uR?

(A7a)

where u is the reduced mass of the molecule. With the defi-
nition (A3) this Hamiltonian assumes the form [75]
+ r):[SE + r’f(Sun + 7"_{Lun

ﬂrol — ﬂrot

o (A7b)

where the part of ™ that is diagonal in the Hund’s (a) basis

Tot

is given by Eq. (A4). The operator ’Ftdiag does not couple
different electronic states; its expectation value is just the
rotational contribution to the energy of the state
la,v,S,A,%,Q,J,M,). Of the other terms, HE is the spin-
electronic term, which mixes states of the same () and S but
different A and 3, and H5"™ is the spin-uncoupling term,
which mixes states with different |()| that have the same A
and S but different 3 (see Sec. 7 of Ref. [68]); this term
contributes to the rotational energy [vide infra Eq. (A9) be-
low] but does not split the A doublet. The third term, the
L-uncoupling operator

1
2uR?

= - (J*L™+J°LY), (A8)

mixes different rovibronic states with the same >, and S but

different A and hence different €). Since H" couples states
with AA=+1, A3 =0, and AQ==1, this operator is respon-
sible for splitting the A doublet.

In the Hund’s case (a) basis {|a,v,S,A,>,Q,J,M,)}, the
Born-Oppenheimer rovibrational energy measured from E
=0 at the ground rovibrational state of the lowest spin-orbit
level is [25,28,59,71,74]

1 1\? 1\2
€r0=A 0+, v+ - @\ v+ +B, J+5

1\2 1
- AZ] -DJAJ+1)« {Bi(]+ —) + ZAZAUQ(AU,“

2
12
—4B)| .

The first line of this equation is the sum of the spin-orbit
coupling constant A, ¢ [vide infra Eq. (Ala)] and the vibra-
tional energy, which contains the harmonic and anharmonic
frequencies w, and w,x,, respectively. The second and third
lines of Eq. (A9) give the rotational energy. [Note that the
rotational energy includes the displacement due to the spin-
uncoupling operator in the rotational Hamiltonian (A7b).]
For a regular spin-orbit multiplet (e.g., in NO) the plus and
minus signs in the rotational energy correspond to ||=3/2
and 1/2, respectively. (Gallagher et al. [25] give a useful
form of the rotational energy that is applicable if spin uncou-

(A9)
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pling is weak.) In the rotational energy, the rotational con-
stants B, and D, corrected to incorporate the rotation-
vibration interaction in vibrational state v, are [74]

1
BUEBe—ae<v+§), (A10a)
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1
DUED€+,86<U+§>, (A10Db)
where B, and D, are the equilibrium rotational and centrifu-
gal distortion constants, and «, and 3, are vibration-rotation
interaction constants.
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