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We have studied the classical and quantum dynamics of the Morse system driven by time-periodic external
field. Floquet energies and Husimi probability distributions of quasibound states of the driven system are
obtained using exterior complex scaling method and Floquet theory. As we increase the external field strength,
the number of quasibound states is decreased and the Husimi distribution of the quasibound state shows the
enhanced positive momentum distribution that appears to be supported by the classical homoclinic tangles that
develop on the positive momentum side of the phase space.
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I. INTRODUCTION

The interaction between electrons confined to atomic or
molecular potentials and laser radiation can give rise to un-
expected behavior such as stabilization of electron states
�1–3�. Stabilization involves decreasing probability of ion-
ization of an electron with increasing laser intensity. For lin-
early polarized incident radiation, simple one-dimensional
�1D� models of the atomic or molecular potential are often
sufficient to describe the dominant behavior of the irradiated
system �4–7�.

Two 1D potentials that have been used extensively to
study the dynamics of the laser-matter interaction are the
inverted Gaussian potential �8–14� and the Morse potential
�15–20,11�. Although the spatial variation of the potential
energy is very different for these two potentials, they have
the same energy spectrum. The inverted Gaussian potential
has symmetry under x→−x. The Morse potential has an in-
finitely high barrier as x→−�.

In the presence of laser radiation, bound states become
quasibound states, although the tightly bound states may
have such a long lifetime that they effectively remain bound
states. In addition, for the inverted Gaussian potential, the
laser radiation can create new quasibound states, some of
which have very long lifetimes �13�. Electron stabilization in
the presence of radiation means that the lifetimes of some
key field-induced quasibound states become longer with in-
creasing field intensity. Therefore the behavior of quasibound
states becomes the key to understanding electron stabiliza-
tion.

In both the inverted Gaussian potential and the Morse
potential, radiation induces chaos in the underlying classical
phase space. As the strength of the radiation field increases
the phase space becomes more and more dominated by cha-
otic orbits and heteroclinic tangles that can extend far out
into asymptotic regions of the classical phase space
�20,13,14�. There are several ways to obtain information
about quasi-bound states in the presence of monochromatic
radiation. All are based on the use of Floquet theory since the
Hamiltonian of such systems is time-periodic. One of the
most common methods is to use complex coordinate rotation
�21,22� which has the effect of rotating the continuum Flo-
quet eigenvalues in the complex plane but leaves the posi-
tions of the complex poles associated with quasibound states

unchanged. Timberlake and Reichl �12� used this method to
obtain Husimi plots of residues of quasibound states in the
inverted Gaussian potential and found that they appeared to
form “scars” on unstable periodic orbits in the classical
phase space. In Refs. �11,12� it is shown that complex Flo-
quet energies can undergo avoided crossings in the complex
energy plane. A second method for locating quasi-bound
states uses the more recently developed Floquet scattering
theory. Emmanouilidou and Reichl �13� used this method to
show the creation of a radiation induced quasibound state
with increasing field intensity for the driven inverted Gauss-
ian system. They also found that the external field created a
significant chaotic structure in the classical phase space of
the inverted Gaussian potential.

The driven Morse system has also been studied exten-
sively but the effect of chaos on quasibound states has not
been addressed. Ben-Tal et al. �11� studied the formation of
quasibound states in the driven Morse potential and unlike
the inverted Gaussian they show that creation of new quasi-
bound states with increasing driving field intensity does not
appear to occur in the driven Morse potential. However, they
do not study the influence of underlying classical dynamics
on the quasibound states of this system. Jung �20� has found
scattering chaos in the driven Morse system. He explained
this in terms of the heteroclinic structure of unstable periodic
orbits.

In this paper we use the complex coordinate rotation
method to show that heteroclinic tangles in the driven Morse
potential do appear to influence the spatial structure of qua-
sibound states. This is similar to work of Lee et al. �23�
showing that quasibound states can be stabilized by chaotic
tangles in electron waveguide structures. In Sec. II, we write
the Hamiltonian for the driven Morse system. The energy
eigenstates for the nondriven Morse system will form the
basis states for studying the driven case. Therefore, in Sec.
II, we also list the field-free Morse eigenstates for the bound
states and the continuum states. We will use Floquet theory
and complex scaling to obtain the energies and probability
distributions of quasibound states. In Sec. III, we explore the
classical dynamics of the driven Morse system in both the
low frequency and high frequency regimes. We find large
regions of the classical phase space; in the region of influ-
ence of the Morse potential, to be dominated by homoclinic
tangles and chaos. In Sec. IV, we use the Floquet theory and
the exterior complex scaling method to find quasibound
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states. The complex Floquet eigenvalues, Floquet eigen-
states, and the lifetime of the quasibound states are obtained.
We study the phase space distributions of the quasibound
states represented by Husimi distribution. Finally, in Sec. V
we make some concluding remarks.

II. THE DRIVEN MORSE SYSTEM

We consider an electron in a potential well, which we
model in terms of the Morse potential, driven by a time
periodic radiation field. We use the same parameters as in
Refs. �11,26� which model the dynamics of the valence elec-
tron in xenon. The Hamiltonian for the driven system, in
atomic units, is given by

Ĥ�t� =
1

2
�p̂ −

�0

�
sin��t��2

+ D�e−2�x̂ − 2e−�x̂� , �1�

where p̂ and x̂ are momentum and position operators, respec-
tively. We use atomic units throughout this paper �the re-
duced mass of the electron, �=1 a.u. and Planck constant
�=1 a.u.�. D=0.6643 a.u. is the “depth” of the Morse poten-
tial and the parameter �=0.417 a.u. controls the “width” of
the potential. The radiation field has strength �0 and fre-
quency �. These parameters allow us to reproduce the lowest
two energy states of the valence electron in xenon at E1=
−0.4457 a.u., E2=−0.1389 a.u. and a third weakly bound
state at E3=−0.0061 a.u.

A. Floquet theory [24]

The solutions, ���t��, to the Schrödinger equation

i
����t��

�t
= Ĥ�t����t�� �2�

can be expanded in Floquet eigenstates ����t�� so that

���t�� = 	
�

A�e−i	�t����t�� . �3�

The Floquet eigenstates are time-periodic ����t��= ����t
+T��, where T is the period of the Hamiltonian Eq. �1�. They
satisfy the eigenvalue equation

�H�t� − i
�

�t
�����t�� = 	�����t�� �4�

where 	� is the �th Floquet eigenphase. The Floquet eigen-
states ����t�� form a complete orthogonal-normal set.

At the time t=T, the solution to the Schrödinger equation
can be written

���T�� = 	
�

e−i	�T����0��
���0����0�� . �5�

From Eq. �5�, the Floquet evolution operator at time t=T is
defined as

Û�T� = 	
�

e−i	�T0����0��
���0�� . �6�

The eigenvalues and eigenstates of the Floquet evolution op-

erator Û�T� can be computed numerically by evaluating Û�T�

using as a basis the energy eigenstates, �
m�, of the unper-
turbed Morse system

Un,m�T� = 	
�

e−i	�T

n����0��
���0��
m� . �7�

If we diagonalize the Floquet matrix in Eq. �7�, we obtain the

eigenvalues e−i	�T and eigenstates of Û�T� in terms of the
Morse energy eigenstates such that

����T�� = ����0�� = 	
n

cn�
n� . �8�

The Floquet matrix in Eq. �7� is computed by writing the
Schrödinger equation in terms of a basis set composed of the
Morse energy eigenstates. We then integrate the Schrödinger
equation for one period of time using one of the Morse en-
ergy eigenstates as an initial condition. This gives one col-
umn of the Floquet time evolution matrix. This process is
repeated for each energy eigenstate until the full Floquet ma-
trix is constructed.

B. Energy eigenstates for the unperturbed morse system

The eigenvalue equation for energy eigenstates of the un-
perturbed Morse system can be written

En
n�x� = −
1

2

�2
n�x�
�x2 + D�e−2�x − 2e−�x�
n�x� , �9�

where En is the nth energy eigenvalue and 
n�x� is the nth
energy eigenfunction. This system contains both bound states
and continuum states and below we discuss them separately.

Bound state solutions. The bound state eigenfunctions can
be written �27�


n�x� = Nne−z/2zbnLn
bn�z� , �10�

where Ln
bn�z� is the Laguerre polynomial, z=2ae−�x, a

=�2D /�, bn=�−2En /�, and the normalization constant is

Nn=���2a−1−2n�n!

��2a−n� ,where ��x� is the � function. The energy

eigenvalues are given by

En = − D − 2��D/2�n +
1

2
 − ��2/2��n +

1

2
2

. �11�

The Morse potential for D=0.6643 a.u. and �=0.417 a.u. is
shown in Fig. 1. For these parameters, the Morse potential
has three bound states. The probability distributions of these
three bound states are also shown in Fig. 1.

It is useful also to look at Husimi plots of these energy
eigenstates. The Husimi function for the energy eigenstate

n�x� can be written �25�

G�q,p� =
1

2�
�� 1

2�21/4�
−�

�

e�x� − x�2/22−ipx�
n�x��dx��2

,

�12�

where  is a coarse-graining parameter that determines the
width of the Gaussian in the x and p directions. By calculat-
ing these Husimi distributions we can visualize how the
probability distribution associated with a given quantum
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state is distributed in phase space. These phase space struc-
tures can then be compared with structures in a strobe plot of
the classical phase space. Husimi plots of the three bound
states of the Morse system we are considering are shown in
Fig. 2 for =0.9.

Continuum eigenstates. The continuum energy eigenstates
for the Morse system in Eq. �9� are �27�


��x� = C�e−z/2�A���zi�F�− s + i�,2i� + 1;z�

+ A*���z−i�F�− s − i�,− 2i� + 1;z�� , �13�

where F�−s+ i� ,2i�+1;z� is the confluent hypergeometric
function of the first kind, 2s=2a−1, and A���=��−2i�� /
��−s− i��. The normalization constant is C�=

��
�2��A���� , where

the energy E of the continuum states is related to � as �
=�2E /�=k /�. A*��� is a complex conjugate of A��� and k is
the wave number. The orthonormality of the eigenfunctions

n�x� in Eq. �10� and 
��x� in Eq. �13� is established in Ref.
�27�.

C. Complex coordinate scaling

For the Morse system, which allows ionization, the exter-
nal field will turn the bound states into quasi-bound states
with finite life time and complex energy

Eres = ER − i�/2, �14�

where ER and � are real, ��0 and �=1/� is the lifetime of
the state. Complex quasibound state energies occur as poles
in the complex energy plane of the Green’s function of the
system. True bound states occur as poles on the real energy
axis. Continuum states form a cut along the real energy axis.
The bound state poles have residues which are composed of
the energy eigenstates associated with the bound states.
These functions are bounded in space. The quasibound states
have residues which are unbounded in space. The complex
scaling technique rotates the cut associated with the con-
tinuum states into the complex energy plane in the lower half
complex plane by the factor e−2i� but does not change the
position of the quasibound state poles.

The complex coordinate scaling technique has been
widely used in open quantum systems to determine the life-
time of quasibound states �21,22�. There are two approaches
to complex scaling. One approach, the standard complex co-
ordinate scaling �CCS� method involves rotation of the coor-
dinate along the entire x axis so that x→xei�. The other
approach, the exterior complex coordinate scaling �ECCS�
method rotates the coordinate x, but only in the region out-
side the influence of the potential. We shall use ECCS in our
analysis of the driven Morse system.

The basic idea of ECCS is to scale the x coordinate by the
factor ei�, but only in the region �x��xs where the potential is
zero. The discontinuity at x= ±xs is avoided by using a
smooth scaling relation x→ x̃, where

x → x̃ = x + �ei� − 1��x +
1

2�
ln� cosh���x − xs��

cosh���x + xs��
� .

�15�

In this paper, we use �=5 and xs=35 a.u. The scaled coor-
dinate x̃→x for �x��xs, and x̃→xei� for x→�.

Under this transformation the Hamiltonian for the exterior
complex scaled undriven Morse system is given by

H̃0�x� = H0�x� + VCAP�x� , �16�

where H0�x� is the time-independent unscaled Hamiltonian
of the Morse system for which we already have the analytic
expressions for the bound and continuum eigenvalues:

VCAP�x� = V0�x� + V1�x�
�

�x
+ V2�x�

�2

�x2 , �17�

V0�x� =
f−3

4

�2f

�x2 −
5

8
f−4� �f

�x
2

, �18�
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FIG. 1. The Morse potential for parameters D=0.6643 a.u. and
�=0.417 a.u. �the solid line�. The probability distribution of the
three bound states corresponding to the energies �a� E1=
−0.4457 a.u., �b� E2=−0.1389 a.u. and the third weakly bound state
energy �c� E3=−0.0061 a.u.
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FIG. 2. �Color online� Husimi distributions of the three bound
states of the unperturbed Morse system at energies �a� E1=
−0.4457 a.u., �b� E2=−0.1389 a.u. and �c� E3=−0.0061 a.u. These
states were calculated using �=0.417 a.u., D=0.6643 a.u., and 
=0.9. The small filled circles along the p=0 axis are period-1 peri-
odic orbits in the classical phase space.
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V1�x� = f−3�x�
�f�x�

�x
, �19�

and

V2�x� =
1

2
�1 − f−2�x�� . �20�

In all these expressions f�x�=�x̃ /�x.

III. CLASSICAL DYNAMICS OF THE DRIVEN MORSE
SYSTEM

The unperturbed Morse system is integrable. However,
when the external field was turned on, the system can un-
dergo a transition to chaos in some regions of the phase
space. We can represent the dynamics of the driven system
by strobe plots �Poincaré surface of section plots� �24�. Since
our time-dependent Hamiltonian H�x , p , t� is periodic in
time, H�x , p , t�=H�x , p , t+T�, where T is the period of the
driving field, the strobe plot can be obtain by plotting p and
x at each period T of the external field �24�. We solve Hamil-
ton’s equations of motion to get p�nT� and x�nT�, where n
=1,2 ,3 , . . ..

In our study of the driven system, we will use the Hamil-
tonian in Eq. �1� with the field strengths �=0.01, 0.038, and
0.065 a.u. Figure 3 shows strobe plots of the classical dy-
namics for these three field strengths and frequency �
=0.0925 a.u. In each plot, several lines of initial conditions
with constant momentum and a range of values of x in the
asymptotic region are used such that the energies of these

lines of initial conditions differ by photon energy �� �in
atomic units�. Since the Morse potential has an high potential
wall for x�0 all initial conditions have negative momentum
and the trajectories emerge with positive momentum. In ad-
dition to the initial conditions in the asymptotic region, some
initial conditions are taken for p=0 in the neighborhood of
x=0 and show remaining Kolmogorov-Arnold-Moser
�KAM� orbits from the interior of the Morse potential. In
Fig. 4, we show the same plots but only using the lines of
initial conditions in the asymptotic region and we show the
orbits for a greater range of values of p and x. What is
interesting about these plots is that there is a very large het-
eroclinic tangle that extends far into the asymptotic regions
and only for positive momentum.

It is interesting to look at larger values of frequency and
field intensity. In Fig. 5 we show strobe plots for �
=2.0 a.u. and field strengths �=20 a.u. and �=30 a.u. The
central trapping region of the Morse potential still shows a
stable periodic orbit surrounded by an island of stable KAM
tori, but this stable trapping region has moved far out along
the x axis. Also the structure of the heteroclinic tangles is
more complex. These figures show fans of tangles coming
off the central trapping region. In Fig. 5�a� the left-most
tangle ends at about �p=10, x=23�. In Fig. 5�b� the left-most
tangle ends at about �p=12, x=30�.

IV. QUANTUM DYNAMICS OF THE DRIVEN
MORSE SYSTEM

Let us now use Floquet theory and the exterior complex
coordinate scaling method �ECCS� to find the quasibound
states in the driven Morse system. To observe the phase
space structure of those quasibound states, we will examine
their Husimi distributions. The ECCS method rotates the co-
ordinate only when x�xs, where xs=35 a.u. in all our calcu-
lations. There will be no complex coordinate scaling in the
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FIG. 3. �Color online� Strobe plots of the driven Morse system
for �=0.0925 a.u. with �a� �=0.01 a.u., �b� �=0.038 a.u., and �c�
�=0.065 a.u. Lines of initial conditions with p�0 constant �and
differing in energy by integer units of ��� and x in the asymptotic
region and in the neighborhood of x=0 are used to generate this
plot.
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FIG. 4. �Color online� Strobe plots of the driven Morse system
for �=0.0925 a.u. with �a� �=0.01 a.u., �b� �=0.038 a.u., and �c�
�=0.065 a.u. Only lines of initial conditions with p�0 constant
and x in the asymptotic region are used. These lines of initial con-
ditions differ in energy by integer units of ��.
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region around the potential. This allows us to see the Husimi
distribution of the quasibound states without distortion re-
sulting from scaling for x�xs.

Following the ECCS method we introduced in Sec. II, the
scaled Hamiltonian of the Morse system interacting with an
external monochromatic field becomes

H̃�x,t� = H̃0�x� −
�0

�
p̃ sin��t� +

�0
2

2�2 sin2��t� , �21�

where

H̃0�x� = H0�x� + VCAP�x� �22�

with VCAP�x� given in Eq. �17�.
The scaled time-independent eigenstates ��n� of the unper-

turbed scaled Morse system H̃0�x� can be used as a basis to
compute the Floquet evolution matrix U�T� for the driven
system. The time-dependent scaled Schrödinger equation for
the driven Morse system is

i
�

�t
���t�� = H̃0���t�� −

�0

�
p̃ sin��t����t�� +

�0
2

2�2 sin2��t�

����t�� . �23�

We can expand the state ���t�� in terms of the unperturbed
basis

���t�� = 	
j=1

N

aj�t��� j� , �24�

where aj�t�= 
� j ���t�� is the probability amplitude to find the
system in the jth energy level of the scaled system at time t.

From Eq. �24�, we can rewrite the time-dependent
Schrödinger equation in the form

i
�

�t
aj�t� = Ẽjaj�t� −

�0

�
sin��t�	

i=1
p̃j,iai�t� +

�0
2

2�2 sin2��t�aj�t� ,

�25�

where Ẽj is the jth eigenvalue of H̃0 and p̃j,i is the dipole
matrix element in the scaled energy basis defined by

p̃j,i = 
� j�p̃��i� = 	
m=1

N

	
n=1

N

cm,icn,j

m�p̃�
n� , �26�

where we use the fact that ��i� is expanded in terms of the
unscaled time-independent Morse eigenstates �
n�, as ��i�
=	n=1

N cn�
n� and 
�i�=	n=1
N cn

n� with the bilinear normaliza-

tion condition 	n=1
N cn

2=1. This normalization results from the
fact that the scaled unperturbed Morse Hamiltonian is not
Hermitian. Using the expression for the scaled momentum
operator p̃ and the function f�x� which is given in Sec. II C,
we obtain


� j�p̃��i� = − i� 
� j�x�f−1
x��i��dx +
i

2
� 
� j�x�f−2 df

dx

x��i�dx ,

�27�

where the prime indicates differentiation. The matrix element

� j�p̃��i� can be obtained by numerical integration of the
above expression.

We can obtain the Floquet eigenstates, eigenvalues e−i	�T,
and eigenphases 	� by constructing the Floquet evolution
matrix and diagonalizing it. The Floquet evolution matrix is
constructed by integrating the Schrödinger equation in Eq.
�25� N times from t=0 to t=T=2� /� with the initial condi-
tions ����0��=��,j�� j� �j=1, . . . ,N�, where the index � runs
from 1 to N. We obtain ����T�� which is expanded in terms
of unperturbed states as ����T��=	 ja�,j�T��� j� by diagonal-
izing the Floquet evolution matrix.

The Floquet eigenvalues of the scaled driven Morse sys-
tem are obtained by performing the numerical calculations as
describe above. Let us examine the scaled Floquet eigen-

value plots. Because the scaled Hamiltonian H̃0 is not Her-
mitian, the time evolution matrix is not unitary. Therefore the
Floquet eigenvalues do not have unit modulus except for the
bound states. The lifetime of the complex quasi-bound states
can be evaluated by writing the quasienergy 	�=q�− i�� /2,
where ��=1/�� is the lifetime of state �q��. Figure 6 shows
the scaled Floquet eigenvalues of the driven Morse potential
for an external field strength �=0.038 a.u., and the frequency
�=0.0925 a.u. They are calculated for different rotated
angles �=0.2 and �=0.3 with xs=25 a.u. We can see that the
rotated continuum energies form the spirals from the origin
out to the edge of the unit circle. The continuum energies are
indicated by open circles. The spirals of continuum energies
are not well defined near the origin due to numerical error.
The filled circles indicate the quasibound states and their
locations are invariant as the values of � change. The quasi-
bound state eigenvalues are independent of the scaling
angles � while the continuum eigenvalues rotate around the
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FIG. 5. Strobe plots of the driven Morse system for �
=2.0 a.u. with �a� �=20.0 a.u. and �b� �=30.0 a.u. Lines of initial
conditions with p�0 constant �and differing in energy by integer
units of ��� and x in the asymptotic region are used to generate this
plot.
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origin as � is changed. It is important to note that in the
numerical calculations, finite basis in the continuum are used
by setting a hard wall at a location far from the origin of the
potential. The calculation in Fig. 6 used 153 Morse basis
states with the wall at x=141.60 a.u., and gives the quasie-
igenvalues ��=0.2=−0.205−0.759i and 0.630−0.776i, and
��=0.3=−0.206−0.755i and 0.629−0.773i. The quasibound
state energies depend weakly on the scaling angles and the
position of the wall due to the fact that we use a discrete
basis to represent the continuum.

Let us now consider the behavior of the quasibound states
as the field increases. Figure 7 shows the Floquet eigenval-
ues for the field frequency �=0.0925 a.u. with four different
field strengths �=0.01 a.u., �=0.038 a.u., �=0.065 a.u., and
�=0.085 a.u. These were obtained by using ECCS with �
=0.3 and xs=35 a.u. The quasibound state eigenvalues are
indicated by the filled circles. At the lowest field strength �
=0.01 a.u., there are three quasibound states which corre-
spond to destabilized bound states of the unperturbed Hamil-
tonian. As we increase the external field intensity, the num-
ber of quasibound states decreases to 2. This result is
consistent with Ben-Tal et al. �11� who studied the Morse
system interacting with a field. They explained this by using
the dressed potential approach and showed that the dressed
Morse potential could support less bound states as the field
strength is increased.

Husimi distributions of the quasibound states at the fre-
quencies and field strengths corresponding to the Figs.
7�a�–7�c� are shown in Figs. 8–10. Lifetimes for each state
are given in the units of the driving field period T=2� /�.
The locations of period-1 periodic orbits in the underlying
classical phase space are indicated by filled circles. The
period-1 periodic orbits are the orbits that return to their
starting points in phase space after one period of the field.
They were obtained by integrating the equations of motion
ẋ=�H /�p and ṗ=−�H /�x up to t=T, and use the root finding
method along the x axis �p=0� to find the fixed points which
satisfy the conditions x�T�=x�0� and p�T�= p�0�=0. We note
that these period-1 periodic fixed points are also the solutions
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FIG. 6. �Color online� The Floquet eigenvalues for �
=0.0925 a.u., �=0.038 a.u. The eigenvalues are calculated by using
ECCS with two different rotation angles �=0.2 and �=0.3 with xs

=35 a.u. The rotated continuum energies are indicated by open
circles. The filled circles indicate the quasibound states which do
not sit on the spiral of the continuum and their locations are invari-
ant as the values of � change.

FIG. 7. �Color online� The Floquet eigenvalues for �
=0.0925 a.u. with four different field strengths �a� �=0.01 a.u., �b�
�=0.038 a.u., �c� �=0.065 a.u., and �d� �=0.085 a.u. The eigenval-
ues are calculated by using ECCS with �=0.3 and xs=35 a.u. The
quasibound state eigenvalues are indicated by the filled circles. The
rotated continuum energies are indicated by the open circles. At the
field strength �=0.01 a.u., there exist three quasibound states. As
the field strength increases, the number of the quasibound states
decreases from 3 to 2.
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FIG. 8. �Color online� Husimi distribution of the three quasi-
bound states for �=0.0925 a.u. and �=0.01 a.u. For this weak field,
the quasibound states almost resemble the bound states of the un-
perturbed Hamiltonian. The longest lifetime distribution still indi-
cate the ground state. The second, and the third quasibound states
remain the distributions of the first and second excited which couple
with the continuum. Lifetimes for each stat are given in the unite of
the driving field period T=2� /�. The locations of the period-1
periodic orbits are indicated by filled circles.
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to x�nT�=x�0�, and p�nT�= p�0� for any integer n. This
means that the orbits will also come back to their starting
points after each n periods of the driving field. At the low
value of field strength �=0.01 a.u. �Fig. 8�, the Husimi dis-
tributions of the quasibound states look similar with the three
bound state Husimi distributions except that the second and
third quasibound states have developed elongated distribu-
tions due to their coupling to the continuum. The quasibound
state originating from the ground state has a very long life-

time �=6455.31T. For the field strength �=0.038 a.u. �Fig.
9�, the longest living state still resembles the ground state.
However, for the shorter living state, the probability begins
to shift to larger values of x and to positive values of mo-
mentum. It also occupies the neighborhood of the outermost
period-1 unstable periodic orbit in the underlying classical
phase space. This unstable periodic orbit was pushed out
toward the larger values of x with the stronger field. As we
increase the field strength to �=0.065 a.u. �Fig. 10�, both
quasibound states are shifted to positive momentum. This
appears to be a clear indication that the heteroclinic tangle
shown in Fig. 4 is strongly influencing the behavior of the
quasibound states. The lifetimes of the quasibound state de-
crease with increasing values of the external field strength.

In order to show this shift of probability to positive mo-
mentum more clearly, in Fig. 11 we separately plot the the
probability distributions in configuration space and momen-
tum space of the two quasibound states for �=0.065 a.u.
Thus, it appears that the heteroclinic tangles for the driven
Morse system do influence and give support to quasibound
state structures in open space. This is consistent with similar
results for waveguide structures in Ref. �23�.

V. CONCLUSIONS

We have studied the dynamics of the driven Morse system
in a strong time-periodic field. We use Floquet theory and the
exterior complex scaling method to find the quasibound
states of the system. The quasibound state eigenvalues are
independent of the scaling angle and their behavior under
complex coordinate rotation is different from the behavior of
the continuum Floquet eigenenergies. The invariance of the
quasibound states is shown as the scaling angle is varied. We
found that as the external field strength is increased from �
=0.01 to 0.085 a.u., the number of the quasibound states
decreases from three to two and the quasibound states be-
come less stable. This result is different from the inverted
Gaussian potential system, which shows the increased num-
ber of quasibound states and increased stability of at least
one quasibound state as the strength of the external field
increases �11�.
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FIG. 9. �Color online� Husimi distribution of the three quasi-
bound states for �=0.0925 a.u. and �=0.038 a.u. Lifetimes for
each stat are given in the units of the driving field period T
=2� /�. The locations of the period-1 periodic orbits are indicated
by filled circles.
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FIG. 10. �Color online� Husimi distribution of the three quasi-
bound states for �=0.0925 a.u. and �=0.065 a.u. Lifetimes for
each stat are given in the unite of the driving field T=2� /�. The
locations of the periodic orbits are indicated by filled circles.
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FIG. 11. �Color online� Plots �a� and �b� give the probability
distributions in configuration space, and plots �c� and �d� give the
probability distributions in momentum space of the two quasibound
states for the system with �=0.065 a.u.
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The classical phase-space plots show that the outer un-
stable periodic fixed point was pushed outward while the
next inner unstable periodic fixed point was pushed slightly
inward to smaller values of x as the field increases. We found
that most of the probability in Husimi distributions of quasi-
bound states lies between the two outermost period-1 un-
stable periodic orbits and is shifted to positive momentum,
which is consistent with having support on the heteroclinic
tangles of this system.
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