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It is well known that variational optimization of the energy using approximate density functionals can give
results below the true ground-state energy. This can be attributed to the fact that many approximate density
functionals are not N-representable. This paper presents a general method for deriving N-representability
conditions in density-functional theory and presents specific results for the kinetic energy, the electron-electron
interaction energy, the Hohenberg-Kohn functional, and the exchange-correlation energy functional. The
method can be extended to energy densities, and specific results are presented for two different choices of the
kinetic-energy density. Max-min variational principles for minimizing the energy subject to N-representability
constraints are presented. Some constraints on exchange-correlation density functionals are among our second-
ary findings. In particular, we construct an exact meta-generalized-gradient-approximation �meta-GGA� func-
tional using a Legendre transform and use this expression to show that �a� meta-GGAs should be convex
functionals of the kinetic-energy density and �b� the sum of the Coulomb energy and the meta-GGA exchange-
correlation energy should be a convex functional of the electron density.
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I. v- AND N-REPRESENTABILITY PROBLEMS IN
DENSITY-FUNCTIONAL THEORY

Density-functional theory is based on two fundamental
theorems �1–3�: �1� the electron density determines all the
properties of an electronic system and �2� the exact ground-
state electronic energy for N electrons bound in the external
potential v�r� can be determined by minimizing the energy
functional with respect to all N-electron electron densities,

Eg.s.�v;N� = min
���=N

Ev��� . �1�

The electron density �densities, if the ground state is degen-
erate� that achieves the minimum is the electron density of
the ground state,

�g.s.�v;N,r� = arg min
���=N

Ev��� . �2�

These remarkable results are usually called the first and
second Hohenberg-Kohn theorems, respectively �1�. The first
Hohenberg-Kohn theorem allows one to conceive of a
“density-functional theory,” in which the ground-state elec-
tron density replaces the electronic wave function as the fun-
damental descriptor of an electronic system �4–7�. How does
one determine the ground-state electron density? The second
Hohenberg-Kohn theorem is the variational principle that
provides the basis for numerical computation of the ground-
state electron density and the ground-state electronic energy.

At first density-functional theory seems too good to be
true: the daunting complexity of the N-electron wave func-
tion �which depends on 3N spatial coordinates and N di-
chotomic spin variables� has been replaced by the electron
density, a single three-dimensional function that is arguably
even simpler than an orbital �since the electron density is
never negative, while an orbital might be�. But density-
functional theory �DFT� is not as simple as it seems. First of
all, the Hohenberg-Kohn theorems are mathematically

subtle. The “naive” proof of the Hohenberg-Kohn theorems
holds only for electron densities that correspond to either �a�
a ground-state electron density for some external potential
�1� or �b� a weighted average of ground-state electron densi-
ties corresponding to that potential �3,8,9�. Such electron
densities are said to be �a� pure-state v-representable or �b�
ensemble v-representable. This would be fine if every elec-
tron density was ensemble v-representable; however, there is
a dense subset of electron densities that is not v- represent-
able at all �9�. �For example, every electron density that is
zero in a finite volume of space is non-v-representable
�9–13�.� In order to use the variational principle, the energy
functional Ev��� needs to be defined for every nonnegative
electron density that is appropriately normalized; this is
called the v-representability problem.

Resolving the v-representability problem required the ef-
forts of an assortment of excellent mathematicians and math-
ematically inclined scientists �2,3,10,11,13,14�. At this stage
the authors view the problem as solved, albeit perhaps not
completely understood. At a purely mathematical level, the
energy functional can be constructed in any of three different
ways. The first, and most common, way is to reformulate
density-functional theory in a way that does not require
v-representability. Examples of this approach include the
wave-function constrained search of Levy �2,15�, the
density-matrix constrained search of Valone �14�, and the
Legendre transform formulation of Lieb �3,16�. The second
way avoids treating non-v-representable densities altogether
by using the dual formulation of density-functional theory to
rewrite the variational principle as an optimization with re-
spect to external potentials �17�. The third way attacks the
v-representability problem head on and seeks to extend the
domain of the energy functional to non-v-representable den-
sities by imposing constraints on the form of the functional
�e.g., that the functional should be size consistent �18� and
satisfy the variational principle� �13�.
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Unfortunately, none of these approaches to the energy
functional is computationally practical, since the expense of
computational schemes based on the exact energy functional
is typically several times greater than solving the
Schrödinger equation directly �19�. Practical applications of
density-functional theory require approximating the density
functional for the energy.

Given an approximate energy functional Ẽv���, the varia-
tional principle is no longer valid. That is, minimizing an
approximate energy functional can sometimes give results
below the true energy. �There are a few approximate energy
functionals that are rigorous upper bounds to the true energy;
unfortunately these functionals do not seem to be very accu-
rate �3,20�.� The fact that most approximate energy function-
als sometimes give results below the true ground-state en-
ergy is called the N-representability problem in density-
functional theory �21–26�.

The N-representability problem seems to be a feature of
any method that uses a reduced description of an electronic
system, instead of the full N-electron wave function. The
N-representability problem was first noticed in the context of
the theory of reduced density matrices; naive minimization
of the energy with respect to the two-electron reduced den-
sity matrix

Ev��2� =� � � � ���r1 − r1����r2 − r2��

�	− �1
2 + − �2

2

2�N − 1�
+

v�r1� + v�r2�
N − 1

1


r1 − r2

�

��2�r1,r2;r1�,r2���dr1dr2dr1�dr2� �3�

gives a result far below the true ground-state energy. The
reason is that one must restrict the variational principle to the
subset of reduced density matrices that correspond to
N-electron systems. That is, the domain of the variational
principle is restricted to �2, which can be written in the fol-
lowing form:

�2�r1,r2;r1�,r2�� =
N�N − 1�

2 

i

pi��i�r1�,r2�,r3, . . . ,rN�

�
�i�r1,r2, . . . ,rN��3,. . .,N �4�

where the �i are appropriately antisymmetric fermionic
wave functions and the pi represent the probability of observ-
ing each wave function in the ensemble. Though there has
been a lot of recent work on the approach based on the two-
electron density matrix �27–35�, progress is hampered by the
lack of efficient algorithms and the fact that it is practically
impossible to exactly enforce the exact N-representability
constraints.

In order to draw the link to density-functional theory, it is
helpful to consider an alternative to the usual variational
principle in terms of the two-electron density matrix. Instead
of minimizing the energy functional in Eq. �3� on the domain
of N-representable �2, one designs a new functional
Ev

�N-rep���2� that can be minimized over all �2, without re-

striction �36,37�. As for the functionals in density-functional
theory, there is no practical way to construct Ev

�N-rep���2�.
Energy minimization of approximations to this functional
will sometimes produce energies that are below the true en-
ergy. In this way the N-representability problem for �2 is
equivalent to an N-representability problem for the energy
functional.

People sometimes erroneously state that there is no
N-representability problem in density-functional theory. It is
true that there is no N-representability problem for the elec-
tron density: every nonnegative function that is normalized
to the number of electrons, N, is an N-representable electron
density �38–40�, so it is easy to restrict the variational prin-
ciple for the energy to N-representable electron densities. It
is much harder to design approximate energy functionals that
are accurate upper bounds to the true ground-state energy. It
can be said, then, that the N-representability problem in
density-functional theory is not related to N-representability
of the electron density but, instead, to the N-representability
of the approximate functionals that are used to evaluate the
energy �21–25�.

One can envision treating the electronic structure problem
using variables that are intermediate in complexity between
the electron density �simple N-representability constraints;
difficult approximation problem for the energy functional�
and the two-electron reduced density matrix �difficult
N-representability constraints; simple and explicit energy
functional�. For example, there has been a lot of recent in-
terest in using the electron pair distribution function, or
2-density, as the fundamental descriptor for Coulomb sys-
tems �37,41–53�. �For the 2-density, presumably both the
functional-approximation problem and the N-representability
problem are of “medium” difficulty.� While studying the
N-representability problem for the 2-density �54�, We real-
ized that the same techniques might be useful in density-
functional theory. This paper is the result of those investiga-
tions.

In the next section of this paper, necessary and sufficient
conditions for the N-representability of the Hohenberg-Kohn
functional, the kinetic-energy functional, the electron-
electron interaction energy functional, and the exchange-
correlation energy functional are presented. Section III
shows how N-representability constraints can inform the
construction of energy densities, especially the kinetic-
energy density. We conclude with a brief summary of our
main results.

II. N-REPRESENTABILITY OF DENSITY FUNCTIONALS

A. The Hohenberg-Kohn functional

It is useful to partition the energy in density-functional
theory into the term that can be explicitly computed, ��v�,
and the term that must be approximated, F���,

Ev��� = F��� +� ��r�v�r�dr . �5�

F��� is called the Hohenberg-Kohn functional; the
Hohenberg-Kohn functional is equal to the sum of the kinetic
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energy T��� and the electron-electron repulsion energy
Vee���.

The N-representability problem arises when one wishes to
approximate F���. For every electron density that is nonne-
gative and normalized to the number of electrons, N, there
are an infinite number of possible N-electron precursor
states,

��r1� = N

i

pi��i�r1,r2,r3, . . . ,rN�
�i�r1,r2, . . . ,rN��2,. . .,N.

�6�

Each of these states is associated with a possible choice of
F���,

F��pi,�i�� = 

i

pi��i
T̂ + Vee
�i� . �7�

Definition of N-representable functionals �22�. An ap-

proximate functional F̃��� is said to be N-representable if
and only if for every electron density �̃�r� there exists some

N-electron state �p̃i ,�̃i� that �i� is associated with this elec-
tron density via Eq. �6� and �ii� is associated with the value

of the functional F̃��̃�=F��p̃i ,�̃i�� via Eq. �7�.
The meaning of this definition is elucidated in Fig. 1. Any

reasonable electron density will correspond to a huge num-

ber of possible N-fermion states �p̃i ,�̃i�. The value of F̃��̃�
should also correspond to one of these states. Otherwise the
definition of the functional would not be physically reason-
able because there would not exist any N-fermion state that

has the density �̃�r� and the expectation value F̃��̃�.
Note that an approximate functional could be

N-representable and still be extremely inaccurate.
N-representability conditions are necessary conditions for ac-
curate functionals because N-representable functionals will
never give energies below the true ground-state energy.
However, it is possible for a functional to be N-representable
and still give energies far above the true ground-state energy.
The N-representability of a functional is not sufficient to en-
sure its accuracy. In fact, it follows from the constrained

search procedure that the exact Hohenberg-Kohn functional
is the smallest N-representable functional �13,14,36�,

F��� = min
�pi,�i�→��r�

F��pi,�i�� . �8�

The N-representability constraints for the Hohenberg-
Kohn functional can be derived by considering the energy to
be a bifunctional of F and ��r�,

Ev��;F� = F +� ��r�v�r�dr . �9�

The energy is a linear function of F and a linear functional of
��r�.

The set of N-representable choices for F and ��r� is
closed and convex. That is, if F�a� and ��a��r� are
N-representable and F�b� and ��b��r� are also N-representable,
then any weighted average of these quantities is also
N-representable. This is established by using the N-fermion
state that corresponds to F�a� and ��a��r� and the N-fermion
state that corresponds to F�b� and ��b��r� to construct a suit-
able representation for their weighted average. That is, for
any 0� t�1,

tF�a� + �1 − t�F�b� = 

i

�t�pi
�a���i

�a�
T̂ + Vee
�i
�a���

+ �1 − t��pi
�b���i

�b�
T̂ + Vee
�i
�b���� .

�10�

t��a��r1� + �1 − t���b��r1� = N

i

�t�pi
�a���i

�a�
�i
�a��2,3,. . .,N�

+ �1 − t��pi
�b���i

�b�
�i
�b��2,3,. . .,N�� .

�11�

All of the key results on N-representability are simple
consequences of the convexity of the N-representable set and
the linearity of the energy functional. In particular, we have
the following theorems.

Theorem 1: Necessary and sufficient conditions for

N-representable F���. An approximate functional F̃��� is
N-representable if and only if

F̃��� +� ��r�w�r�dr � Eg.s.�w;N� �12�

for every electron density ��r� and every external potential
w�r�.

Theorem 2: Max-Min variational principle for the ground-
state energy. The exact N-electron ground-state energy can
be determined by the max-min principle,

Eg.s.�v;N� = max
w�r�

min
�F̃,�̃
F̃+��̃w��Eg.s.�w;N��

F̃ +� �̃�r�v�r�dr

�13�

Proofs. The ground-state energy can be determined by
minimizing the energy expression over all N-fermion states,
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FIG. 1. A pictorial depiction of the N-representability problem
for functionals. Any given electron density corresponds to a large
number of potential N-fermion states, as shown in the first two
columns. These N-fermion states, in turn, map onto the
N-representable values for the functional. In this schematic repre-
sentation, any value of F that does not appear in the third column is
not N-representable.
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Eg.s.�w;N� = min
�pi,�i�



i

pi��i
T̂ + Vee + 

i

w�ri�
�i� . �14�

Consequently, if F̃+ ��w� is smaller than Eg.s.�w ;N�, then it

must be that F̃��� is not N-representable. This proves the
“only if” part of Theorem 1 and establishes Eq. �12� as a
necessary condition for N-representability.

Suppose that F̃��� is not N-representable. Then there ex-

ists some electron density �̃�r� for which F̃��̃� does not cor-
respond to any N-fermion state. This means that the pair

(F̃ , �̃�r�) is outside the set of N-representable choices for F
and ��r�. Because the set of N-representable (F ,��r�) is con-
vex, there must be a hyperplane so that the set of
N-representable (F ,��r�) is on one side of the hyperplane

and the non-N- representable (F̃ , �̃�r�) is on the other side of
the hyperplane �55,56�. That is, there exists an element of the
dual space (k ,w�r�) such that

kF +� ��r�w�r�dr � kF̃ +� �̃�r�w�r�dr �15�

for all N-representable (F ,��r�). The tightest inequality is
obtained by selecting the N-representable (F ,��r�) that mini-
mizes the left-hand side of Eq. �15�. This can be found using
the variational principle:

min
N-representable „F,��r�…

	kF +� ��r�w�r�dr�
� min

�pi,�i�



i

pi��i
k�T̂ + Vee� + 

i

w�ri�
�i�

� kF̃ +� �̃�r�w�r�dr . �16�

Equation �15� is only meaningful if the left-hand side is
greater than minus infinity, so it must be that k�0. Dividing
both sides of the equation by k gives

min
�pi,�i�



i

pi��i
�T̂ + Vee� + 

i
	1

k
w�ri��
�i�

= Eg.s.�1

k
w;N� � F̃ +� �̃�r�	1

k
w�r��dr . �17�

Thus, if F̃��� is not N-representable, then there always exists
some system �e.g., the N-electron system with v�r�
= �1/k�w�r�� for which F̃��̃�+ ��̃v�r�� is less than the true
N-electron ground-state energy. This establishes the “if” part
of Theorem 1. Forcing Eq. �12� for every choice of w�r� is
sufficient for N-representability.

For any potential w�r�, Eq. �12� provides a necessary con-
dition for N-representability. Minimizing the energy subject
to this necessary condition gives a lower bound on the true
energy,

Eg.s.�v;N� � min
�F̃,�̃
F̃+��̃w��Eg.s.�w;N��

F̃ +� �̃�r�v�r�dr . �18�

It is desirable for this bound to be as tight as possible; this is
achieved by maximizing with respect to the constraint poten-
tial, as in Eq. �13�. The resulting max-min principle always
gives the correct ground-state energy because if w�r� is
chosen to be equal to v�r�, the exact ground-state energy is
attained. �

This proof �cf. Eq. �15�� relies on the dual space to the
space, (F ,��r�), where F is a real number and ��r� is an
electron density. The dual space to (F ,��r�) is the set of
bounded linear functionals on (F ,��r�) �55�; that is, the dual
space is defined as the set of all (k ,w�r�) such that

�kF +� ��r�w�r�dr� 	 
 . �19�

In this case, k can be any real number. The dual space to the
space of possible electron densities is the space of external
potentials w�r� �3,17�. The space of external potentials al-
ways includes the space of essentially bounded functions
L
�R3�. However, depending on the amount of smoothness
one requires from the electron density �which must be nor-
malized, but one can impose additional constraints on its
asymptotic decay or its differentiability�, the space of exter-
nal potentials may expand to include additional functions
�like the potentials due to point charges� also �3,12�.

B. The kinetic and electron-electron repulsion energy
functionals

Establishing the N-representability of the Hohenberg-
Kohn functional is extremely difficult, since it requires solv-
ing for the N-electron ground-state energy. However, the
Hohenberg-Kohn functional is rarely modeled directly. In-
stead, one models the kinetic-energy and electron-electron
repulsion energy functionals separately and adds the func-
tionals together to construct the Hohenberg-Kohn functional,

F��� = T��� + Vee��� . �20�

The N-representability conditions for these component func-
tionals can also be deduced. The next two theorems are
analogous to Theorem 1.

Theorem 3: Necessary and sufficient conditions for
N-representable Vee���. An approximate electron-electron re-

pulsion energy functional Ṽee��� is N-representable if and
only if

Ṽee��� +� ��r�w�r�dr � Ecl�w;N� �21�

for every electron density ��r� and every external potential
w�r�. Here Ecl�w ;N� is the ground-state energy of the classi-
cal electronic structure problem,
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Ecl�w;N� = min
�pi,�i�



i

pi��i�

i

�ri� + Vee��i�
= min

ri



i
	w�ri� + 


j�i

1


ri − r j

� . �22�

Theorem 4: Necessary and sufficient conditions for

N-representable T���. An approximate functional T̃��� is
N-representable if and only if

T̃��� +� ��r�w�r�dr � Es�w;N� �23�

for every electron density and every external potential w�r�.
Here Es�w ;N� is the ground-state energy of the noninteract-
ing reference system,

Es�w;N� = min
�pi,�i�



i

pi��i�T̂ + 

i

w�ri���i� . �24�

Proofs. The proofs of Theorems 3 and 4 are very similar
to each other and also to that of Theorem 1. Since the proof
of Theorem 3 is especially similar to the proofs in Ref. �54�,
only the proof of Theorem 4 will be presented here.

The “only if” part of Theorem 4 follows directly the defi-
nition of the energy of the noninteracting system in Eq. �24�.

Suppose that T̃��� is not N-representable. Then for some
electron density �̃�r� there exists no N-fermion system that

has the electron density �̃�r� and the kinetic energy T̃��̃�.
That is, if the functional T̃��� is not N-representable, then

there must be some (T̃ , �̃�r�) that is not N-representable. Re-
peating the argument in Eqs. �10� and �11�, the set of
N-representable choices for T and ��r� is a convex set. This
means that there exists a hyperplane that separates the
N-representable choices for (T ,��r�) from the non-

N-representable (T̃ , �̃�r�). Thus there exists a choice of
(k ,w�r�) such that the inequality

kT +� ��r�w�r�dr � kT̃ +� �̃�r�w�r�dr �25�

is satisfied for every possible N-representable (T ,��r�). The
tightest bound on the N-representable set is achieved by
minimizing over the set of N-representable (T ,��r�), giving

min
�pi,�i�



i

pi��i�kT̂ + 

i

w�ri���i� � kT̃ +� �̃�r�w�r�dr .

�26�

Since k must be positive �otherwise the left-hand side is mi-
nus infinity�, dividing both sides by k gives

Es�1

k
w;N� � T̃ +� �̃�r�	1

k
w�r��dr . �27�

This establishes that if T̃��� is not N-representable, there will
always exist a noninteracting system �specifically, the system
with N electrons bound by the external potential �1/k�w�r��
for which the approximate ground-state energy is less than
the true ground-state energy. �

Theorems 3 and 4 have an interesting interpretation.
Theorem 4 indicates that the N-representable kinetic-energy
functionals are always be greater than or equal to the nonin-
teracting kinetic-energy functional,

Ts��� = sup
w�r�

	Es�w;N� −� ��r�w�r�dr� . �28�

The kinetic energy of a system of interacting electrons is
typically less than �and not equal to� the noninteracting ki-
netic energy, and so a correction for electron correlation is
necessary,

Tc��� = Texact��� − Ts��� � 0. �29�

This correction arises in a subtle way. The variational
principle can be written in terms of the kinetic-energy func-
tional and the electron-electron repulsion energy functional,

min
���=N

	T��� + Vee��� +� ��r�v�r�dr� . �30�

If T��� and Vee��� are N-representable, then there exist
N-fermion systems that are consistent with these functionals.
However, it might be impossible to choose an N-fermion
system that is consistent with both functionals at the same
time. It is not enough to merely require that the functionals
are N-representable; one can obtain energies below the true
ground-state energy even if T��� and Vee��� are both
N-representable. One is guaranteed to have an upper bound
on the total energy only if T��� and Vee��� are mutually
N-representable. That is, in order to guarantee that the result
of the variational procedure Eq. �30� is greater than or equal
to the true ground-state energy, one needs for T��� and Vee���
to be representable by the same ensemble average of
N-electron states.

Nonetheless, the N-representability constraints provide
rigorous lower bounds to the true functionals. Since one can
obtain energies below the true ground-state energy even with
N-representable functionals, it would seem to be very pru-
dent to impose the N-representability conditions:
N-representability conditions will at least keep the results
from getting “too bad.” This is probably one reason why the
Kohn-Sham approach to density-functional theory is so ef-
fective: the Kohn-Sham approach effectively forces the
kinetic-energy functional to be N-representable and helps
prevent the “variational catastrophe” that often afflicts
orbital-free implementations of density-functional theory.

Analogous to the max-min principle in Theorem 2, there
are max-min variational principles for the ground-state en-
ergy in terms of the kinetic energy and the electron-electron
repulsion energy. An example is Theorem 5.

Theorem 5: Max-min variational principle for the ground-
state energy. The exact N-electron ground-state energy can
be determined by the max-min principle,

Eg.s.�v;N� = max
w�r�

min
�T̃,�̃
T̃+��̃w��Es�w;N��

	T̃ +� �̃�r�v�r�dr + Tc��̃�

+ Vee��̃�� , �31�
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Eg.s.�v;N� = max
w�r�

min
�T̃,�̃
T̃+��̃w��Es�w;N��

	T̃ +� �̃�r�v�r�dr + J��̃�

+ Exc��̃�� . �32�

Here it is understood that Tc��� and Vee��� are the exact
functionals for the correlation kinetic energy �cf. �29�� and
the electron-electron repulsion energy. The second equation
rewrites this variational principle using the Coulomb energy
�J���� and the exchange-correlation energy �Exc����. It is as-
sumed that Tc���+Vee���=J���+Exc��� is a convex func-
tional. �If this is not true, the max-min procedure gives a
lower bound on the ground-state energy.�

Proof. Requiring that Eq. �23� hold is a necessary condi-
tion for N-representability; this means that a lower bound to
the ground-state energy is attained using just the inner
minimization:

Eg.s.�v;N� � min
�T̃,�̃
T̃+��̃w��Es�w;N��

	T̃ +� �̃�r�v�r�dr + J��̃�

+ Exc��̃�� . �33�

Clearly the tightest possible lower bound will be achieved by
maximizing over all values of the constraint potential w�r�,
so

Eg.s.�v;N� � sup
w�r�

min
�T̃,�̃
T̃+��̃w��Es�w;N��

	T̃ +� �̃�r�v�r�dr + J��̃�

+ Exc��̃�� . �34�

It is less obvious that there exists a choice of constraining
potential for which the equality is attained. The existence of
such a value can be proved using the methods in Ref. �54�.
Because J���+Exc��� is convex by assumption, the energy
expression

Ev��;T� = T +� ��r�v�r�dr +
1

2
� � ��r���r��


r − r�

dr dr�

+ Exc��� �35�

is also a convex functional of ��r�. This implies that the set
of possible kinetic energies and electron densities for which
the energy is less than the true ground-state energy is a
convex set,

L�v;N� = �T,�
Ev��;T� 	 Eg.s.�v;N�� .

This convex set is a subset of the set of non-N-representable
(T ,��r�). However, the non-N-representable (T ,��r�) that are
not in L�v ;N� have energies greater than or equal to the true
ground-state energy, so they can be included in the varia-
tional procedure. Thus, if we could somehow construct a
variational procedure that would never include any element
of L�v ;N�, then we would could find the ground-state
energy,

Eg.s.�v;N� � min
�T̃,�̃
�T̃,�̃��L�v;N��

�Ev��̃;T̃�� . �36�

The set of N-representable (T ,��r�) is also a convex set,
N�N�. Since every N-representable choice for the value of
the kinetic energy gives an energy greater than or equal to
the true ground-state energy, the sets N�N� and L�v ;N� do
not intersect. When two convex sets do not intersect, there is
always a hyperplane that separates them. Thus, there exists a
choice of k�0 and w�r� such that

kT +� ��r�w�r�dr � �, �T,��r�� � N�N� , �37�

for every N-representable �T ,��r�� and

� � kT̃ +� �̃�r�w�r�dr, �T̃, �̃�r�� � L�v;N� , �38�

for every �T̃ , �̃�r�� that gives an energy less than the true
ground-state energy. This proves that there exists a potential
that can “separate off” the problematic choices for (T ,��r�),
which suffices to establish the existence of the maximum and
its exactness. �

The variational principle in Theorem 5 provides a way to
compute the Kohn-Sham energy without using an orbital-
dependent kinetic-energy functional, as is common in the
Kohn-Sham procedure. The cost of such a method, of course,
resembles the Kohn-Sham procedure instead of a typical
orbital-free methodology.

The max-min principle may have importance in formal
theory, however. Ref. �54� shows that the separating hyper-
plane, �37�, is proportional to the functional derivative of the
energy expression with respect to its arguments, evaluated at
the minimizing �ground-state� values. This means that the
hyperplane has the form

	 �Ev��g.s. ;Tg.s.�
�T

�
�g.s.�r�

T +� 	�Ev��g.s.,Tg.s.�
��r�

�
Tg.s.

��r� � � .

�39�

Evaluating the functional derivative and choosing the pro-
portionality constant to be

�	 �Ev��g.s. ;Tg.s.�
�T

�
�g.s.�r�

�−1

,

the equation for the hyperplane is

T +� ��r�vKS�r�dr � Es�vKS;N� , �40�

where the Kohn-Sham potential, the Coulomb potential, and
the exchange-correlation potentials have been defined in the
usual ways,

vKS��g.s. ;r� = v�r� + vJ��g.s. ;r� + vxc��g.s. ;r� , �41�

vJ��g.s. ;r� =� �g.s.�r��

r − r�


dr�, �42�
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vxc��g.s. ;r� =
�Exc��g.s.�

���r�
. �43�

Inserting this result into Eq. �33�,

Eg.s.�v;N� = min
�T̃,�̃
T̃+��̃vKS��Es�vKS;N��

	T̃ +� �̃�r�v�r�dr + J��̃�

+ Exc��̃�� . �44�

Equation �44� has a simple and important interpretation.
Theorem 6: Upper bounds from the Kohn-Sham energy.

Suppose that Tc���+Vee���=J���+Exc��� is a convex func-
tional. If the choice of electron density and the choice of
kinetic-energy functional provide an upper bound to the
ground-state energy of the noninteracting system,

Es�vKS;N� � T̃��̃� +� �̃�r�vKS�r�dr , �45�

then they also provide an upper bound to the ground-state
energy of the interacting system,

Eg.s.�v;N� � T̃��̃� +� �̃�r�v�r�dr + J��̃� + Exc��̃� . �46�

This result does not seem to be known, perhaps because it
requires assuming that J���+Exc��� is convex. It is not
known whether this assumption is valid. However, in Sec. III
it will be argued that if one uses meta-GGAs �57–69�, then
J���+Exc�� ; t� should be convex with respect to both the
electron density ��r� and the kinetic energy density t�r�. For
conventional density-only functionals, one might expect that
because J��� is convex and the Coulomb energy is much
larger than the exchange-correlation energy in many-electron
systems, that J���+Exc��� is convex. No rigorous mathemati-
cal argument for this is known, however, and many approxi-
mate functionals �e.g., the local density approximation� fail
to satisfy this constraint �70�.

C. Practical N-representability conditions for the kinetic
energy functional

Theorem 4 is our most practical result. It indicates that
kinetic-energy functionals should satisfy the constraint

T̃s��� +� ��r�vs�r�dr � Es�vs;N� �47�

for every choice of electron density and every choice of non-
interacting potential. This is a very stringent constraint.
Equation �47� will only be true if the “orbital-free” ground-
state energy of this noninteracting system is above the true
ground-state energy. This means that a necessary condition
for the N-representability of the approximate kinetic energy

functional T̃s��� is that

min
���=N

��r��0

T̃s��� +� ��r�vs�r�dr � Es�vs;N� �48�

for every vs�r�.

In its most general form, this constraint is not very prac-
tical because it requires determining the ground state of ref-
erence systems of noninteracting electrons. �This, of course,
is exactly what we wish to avoid doing by using orbital-free
DFT methods.� However, there are some systems of nonin-
teracting electrons for which analytic results for the
N-electron energy are known, including �a� electrons con-
fined in a rectangular box; �b� electrons confined in a har-
monic oscillator; �c� electrons confined in an atomic �vs�r�
=−Z /r� potential; �d� electrons confined in a spherical box;
and �e� electrons confined in a diatomic potential �using
results known for H2

+ and its higher-atomic-number
congeners�.

In general, any potential for which the first N /2 one-
electron eigenvalues can be determined exactly is a possible
reference state. For example, if we wanted to construct an

approximate kinetic-energy functional T̃s��� for the xenon
atom �N=54�, we might seek to satisfy the following
constraints.

�a�

min
L�0

�����r��0;���=54

��r�=0 if r��0,L�3 �
T̃s��� + 54 −

732�2

2L2 � 0.

�In this optimization, the electron density is forced to be zero
outside the cubical box.�

�b�

min

�0

��
��r��0;���=54�

T̃s��� +� 
2r2

2
��r�dr − 227
 � 0.

�c�

min
Z�0

��
��r��0;���=54�

T̃s��� −� Z��r�
r

dr +
61

16
Z2 � 0.

Since the inequalities in the form �48� must hold for every
electron density and every possible choice of the parameters
that define the potential, optimizing the inequality with re-
spect to the parameters that define the potential is desirable.
There are, of course, many possible potentials beyond those
considered here. In order to enforce constraints based on
those potentials, a small calculation �to determine the refer-
ence energy� would have to be done at the very beginning of
the procedure.

Necessary conditions like the ones listed here might be
very useful in orbital-free DFT. If one is given a kinetic
energy functional that depends on some parameters, these
parameters could be selected so that conditions like �a�, �b�,
and �c� are satisfied as accurately as possible. For example, if
one is planning to use Thomas-Fermi-like theory to describe
a quantum dot of electrons confined to a box or a harmonic
well, it will be sensible to parametrize the kinetic-energy
functional so that it satisfies the constraints for noninteract-
ing electrons confined by similar wells �71,72�. If one wishes
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to design kinetic-energy functionals for atomic systems, it
will be especially important to ensure that the constraints
pertaining to atomic potentials are satisfied. According to
Theorem 6, if you use the Kohn-Sham potential to define the
constraint, then kinetic-energy functionals that satisfy the
constraints will give energies above the true ground-state en-
ergy. This is not a practical way to proceed, but it demon-
strates that the “criterion for goodness” in Eq. �48� is that the
constraining potential�s� resembles the Kohn-Sham potential
as much as possible.

It should be noted that all of the most common explicit
kinetic-energy functionals are non-N-representable. For ex-
ample, the Weizsacker kinetic energy is N-representable for
one- and two-electron systems, but not for systems with
three or more electrons. �The Weizsacker kinetic-energy is a
rigorous lower bound to the Kohn-Sham kinetic energy for
N�3.� The Thomas-Fermi kinetic-energy functional is not
N-representable either. �Even for one-electron systems, if the
electron density is highly oscillatory but the electron density
is always small, then the Thomas-Fermi kinetic energy will
be far below the true kinetic energy.� Commonly one at-
tempts to correct the Thomas-Fermi kinetic energy by adding
� times the Weisacker form to it, giving the TF+�W kinetic
energy functional. �Typical choices are �= 1

9 and 1
5 .� For �

	1, this kinetic-energy functional is not N-representable for
the same reason that the ordinary Thomas-Fermi kinetic-
energy functional is not N-representable �i.e., TF+�W fails
for systems with highly oscillatory electron densities�. The
reader will not be surprised to learn, then, that if one uses
these functionals to evaluate the kinetic energy for the
ground-state electron density of the xenon atom, one gets
results that are far below the true answer: TW=2932Eh, TTF
=6858Eh, TTF+W/9=7083Eh, Taccurate=7232Eh. The failures of
the conventional functionals serve to emphasize how impor-
tant it is to consider N-representability constraints when de-
veloping new types of kinetic-energy functionals.

N-representability conditions on the kinetic-energy func-
tionals offer new prospects for orbital-free �also called
“density-only”� approaches to DFT, where the kinetic energy
is written as an explicit functional of the electron density.
The allure of such approaches is clear: because the spatial
extent of the electron density directly reflects the size of the
molecule, approaches that compute the energy directly from
the electron density achieve linear scaling in a straightfor-
ward and extremely computationally efficient way. Because
orbital-free density-functional theory �OFDFT� approaches
need not deal with orbitals �the mainstay of “divide-and-
conquer” approaches �73�� or density matrices �the nearsight-
edness of which is exploited by direct minimization tech-
niques �74,75��, they are much more efficient. In fact, the
computational cost of OFDFT calculations scales linearly
with the volume of the system, rather than with the number
of electrons. Thus the cost of all-electron calculations for
lithium metal clusters �three electrons/atom� and rubidium
metal clusters �37 electrons/atom� would be similar in
OFDFT. This is “too good to be true” and, using existing
functionals, the latter calculation would be extremely inac-
curate. In practice, OFDFT calculations subsume almost all
of the electrons into a pseudopotential �76�, reducing the
electron density so that the approximate kinetic-energy func-

tionals act as if “more N-representable.” At this point, of
course, the cost benefit of orbital-free calculations over
linear-scaling Kohn-Sham approaches is diminished. It is
hoped that, by using the N-representability conditions, reli-
able orbital-free kinetic energy functionals for many-electron
systems can be developed. Since the N-representability con-
straints become increasing stringent as the number of elec-
trons increases �51,77�, however many-electron systems will
probably be significantly more difficult to model than
few-electron systems of the same size.

D. N-representability constraints for the exchange-correlation
energy

The most severe N-representability problem for density-
functional theory is the kinetic-energy functional. It seems
very difficult to develop a kinetic-energy density functional
that incorporates the increasing complexity of electronic
structure with increasing N. This motivates the Kohn-Sham
approach to density-functional theory �78� and also Ludeña’s
work on using the local scaling transformation method to
construct N-representable kinetic-energy functionals
�25,79,80�.

In the Kohn-Sham approach, the kinetic energy is ap-
proximated using the noninteracting reference system. One
then defines the exchange-correlation energy to be the “un-
known” part of the kinetic energy plus the unknown part of
the Coulomb energy,

Exc��� = Tc��� + Vee��� − J��� , �49�

where the correlation kinetic energy is defined by Eq. �29�
and

J��� =
1

2
� � ��r���r��


r − r�

dr dr�. �50�

In the Kohn-Sham approach, the only part of the energy
functional that is approximated is Exc���. One might expect
that, since the exchange-correlation energy is much smaller
than the kinetic energy, the N-representability of the
exchange-correlation functional is not very important. While
this is the conventional view �though it was never universally
accepted �21–23��, recent work suggests that non-
N-representable exchange-correlation functionals can have
qualitatively incorrect behavior, and generally describe mol-
ecule dissociation and symmetry breaking in unsatisfactory
ways. In particular, non-N-representable exchange-
correlation functionals are associated with many-electron
self-interaction error �24�.

The necessary and sufficient conditions for Exc��� to be
N-representable follow directly from necessary and sufficient
conditions on the Hohenberg-Kohn functional F���.

Theorem 7: Necessary and sufficient conditions for

N-representable Exc���. An approximate functional Ẽxc��� is
N-representable if and only if
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Ẽxc��� � Eg.s.�w;N� −� ��r�w�r�dr − J��� − Ts���

�51�

for every electron density ��r� and every external potential
w�r�.

Note that the density functionals on the right-hand side of
Eq. �51� can be evaluated exactly for any given electron
density. In particular, the Kohn-Sham kinetic energy can be
evaluated using the Zhao-Morrison-Parr method �81,82� or
the Legendre transform technique in Eq. �28� �19,83�.

A direct corollary of Theorem 7 is that an approximate

exchange-correlation Ẽxc��� is N-representable if and only if
the energy computed via the Kohn-Sham method

Ẽv��� = Ts��� + J��� + Ẽxc��� +� ��r�w�r�dr � Eg.s.�w;N�

�52�

is always greater than the true ground-state energy for any
choice of external potential. Based on this criterion, it seems
that none of the commonly employed density functionals are
N-representable.

III. EXTENSION TO ENERGY DENSITIES

A. Density functionals for the kinetic-energy density

Most density functionals are expressed as integrals over
energy densities. This can be somewhat problematic: there
are many possible definitions for the energy density, all of
which will integrate to the correct total energy �or a compo-
nent thereof�. Nonetheless, as long as one defines exactly
what one means by an energy density, then one can derive
N-representability constraints for this quantity.

As an example of the general strategy that one uses to
derive N-representability constraints on energy densities, we

will present results for two different choices for the kinetic
energy density, the conventional choice �84–89�

ts
�a��r1� = N


i

pi

2
��i
− �1

2
�i�2,3,. . .,N �53�

and a positive-definite kinetic-energy density �88–90�

ts
�b��r1� = N


i

pi

2
��1�i
− �1�i�2,3,. . .,N = ts

�a��r1� − 1
4�2��r� .

�54�

Here the notation �2,3,. . .,N indicates integration with respect
to the second, third, . . . ,Nth electronic coordinates; the first
electronic coordinate is not integrated over, and so

Ts =� ts
�a��r1�dr1 =� ts

�b��r1�dr1. �55�

The reader is referred to Ref. �90� for a review of these and
other forms for the local kinetic energy.

The necessary and sufficient conditions for the
N-representability of the local kinetic energy depend on the
particular form one chooses.

Theorem 8. A given choice for the noninteracting kinetic
energy density and the electron density are mutually
N-representable if and only if

� ��r�ts
�a��r�dr � Es

�a��vs,�;N� −� ��r�vs�r�dr , �56�

� ��r�ts
�b��r�dr � Es

�b��vs,�;N� −� ��r�vs�r�dr �57�

for every potential vs�r� and every “local weighting” ��r� of
the kinetic energy. Here, the noninteracting energy bifunc-
tionals are defined as

Es
�a��vs,�;N� = min

pi,�i
�


i

pi��i


j=1

N ���r�	−
� j

2

2
� + vs�r j��
�i�� , �58�

Es
�b��vs,�;N� = min

pi,�i

�

i

pi���i


j=1

N ���r�	−
� j

2

2
� + vs�r j��
�i� +�


j=1

N ���r�	−
� j

2

4
�
�i
2���� . �59�

The proof of this theorem is analogous to the proof of
Theorem 5.

The necessary conditions on the kinetic energy that were
presented in Sec. II C are also necessary conditions for the
kinetic-energy density. However, those conditions are rather
weak, since they depend only on the integral of the kinetic-
energy density, and not the local value. �Unlike the necessary
and sufficient conditions, Eqs. �58� and �59�, the conditions
in Sec. II C do not depend on the particular form of the

kinetic-energy density.� There is a growing literature on find-
ing the eigenvalues and eigenvectors of Hamiltonians with
the form of Eq. �58�; such Hamiltonians are said to have a
position-dependent effective mass �91–102�. The results of
those computations could be used to develop necessary con-
ditions for the N-representability of ts

�a��� ;r� that are analo-
gous to the constraints in Sec. II C. The authors are not
aware of any results that would provide constraints on the
positive-definite kinetic-energy density ts

�b��r�.
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B. Constraints on meta-GGAs

It is important to be able to model the kinetic-energy den-
sity because most orbital-free kinetic-energy functionals are
based on modeling the kinetic-energy density. However,
models for the kinetic-energy density are also important in
Kohn-Sham DFT, because the kinetic-energy density is the
essential ingredient of the meta-generalized-gradient-
approximation �meta-GGA� family of density functionals.
Accurate orbital-free models for the kinetic-energy density
would permit meta-GGAs to be rewritten as simpler �and
computationally faster� GGAs. �This sort of transformation
plays an essential role in the derivation of the Lee-Yang-Parr
functional �60�, for example.�

Our construction also has direct implications for the prop-
erties of meta-GGA functionals, and thus provides con-
straints that can guide the construction of new and improved
meta-GGAs. If the energy is written as a bifunctional of the
kinetic energy density and the electron density, then the
variational principle can be restated as

� t�r�dr +� ��r�v�r�dr + J��� + Exc��,t� � Eg.s.�v;N� .

�60�

For any N-representable (t�r� ,��r�), the necessary and suffi-
cient condition for the N-representability of a meta-GGA
functional is that the equality must be satisfied for every
external potential. Equivalently,

J��� + Exc��,t� � Eg.s.�v;N� −� t�r�dr −� ��r�v�r�dr .

�61�

Equation �61� must be true for every external potential and
every N-representable (t�r� ,��r�).

Taking the supremum of the right-hand side with respect
to the free variable gives an exact construction for a meta-
GGA, namely,

J��� + Exc��,t� � sup
v�r�

	Eg.s.�v;N� −� t�r�dr −� ��r�v�r�dr�
�62�

or

Exc��;t� � �sup
v�r�

	Eg.s.�v;N� −� t�r�dr −� ��r�v�r�dr��
− J��� . �63�

The preceding formula is a sort of “restricted” Legendre
transformation �36�. Equation �63� is the exact meta-GGA
functional for normal electronic systems. �Equation �63� is
not exact for Hamiltonians with a position-dependent effec-
tive mass, though the equation is easily adapted to such sys-
tems by incorporating the appropriate dependence on ��r�.�

Because �a� the argument of the supremum is a linear
functional of t�r� and ��r� and �b� the supremum of a sum is
less than the sum of the suprema, Eq. �62� implies that �i�
Exc�� , t� is a convex functional of the kinetic-energy density

and �ii� J���+Exc�� ; t� is a convex functional of the electron
density. For approximate functionals that are differentiable,
statements �i� and �ii� require that the second derivative with
respect to the local kinetic energy and the electron density be
positive. That is,

�Exc��,t�
�t�r��t�r��

� 0, �64�

�Exc��,t�
���r����r��

� −
1


r − r�

. �65�

These statements not only provide constraints for the con-
struction of meta-GGAs, they offer a rationale for the con-
vexity assumption in Theorem 5. Specifically, in Eq. �32�,
replace Exc��� with a properly constructed meta-GGA func-
tional Exc�� , t�. Then J���+Exc�� , t� will be convex with re-
spect to both ��r� and t�r�, and the hypotheses of Theorem 5
will be automatically satisfied. By analogy, it is reasonable—
but not certain—to expect that J���+Exc��� is a convex func-
tional even when a pure density functional, and not a meta-
GGA, is used in Eq. �32�.

IV. SUMMARY

This paper seeks to clarify the nature of the
N-representability problem for density functionals. Neces-
sary and sufficient conditions are presented for the
N-representability of the Hohenberg-Kohn function F���
=T���+Vee��� �Theorem 1�; the electron-electron repulsion
energy function Vee��� �Theorem 3�; the kinetic-energy func-
tional T��� �Theorem 4�; the exchange-correlation energy
functional Exc��� �Theorem 7�; the local kinetic-energy den-
sity t�r� �Theorem 8�; and meta-GGA-type functionals
�see Sec. III B�.

In addition to these results, Sec. II C provides some ex-
plicit necessary �but not sufficient� conditions for the
N-representability of the kinetic-energy functional. These
constraints should be useful for constructing and testing new
kinetic-energy density functionals. It is also potentially use-
ful to know that if a kinetic-energy functional that provides
an upper bound to the energy of the noninteracting system
with a given potential w�r�, then that kinetic-energy func-
tional also provides an upper bound to the interacting system
whose Kohn-Sham potential is equal to w�r� �see Theorem
6.�

In addition to these explicit results on N-representability,
we derived an alternative to the usual Kohn-Sham method,
which proceeds without using an orbital-dependent represen-
tation of the kinetic energy �Theorem 5�.

The most severe N-representability problem in density-
functional theory is certainly related to the kinetic energy,
and for this reason the authors have focused on kinetic en-
ergy functionals and related quantities �Theorems 4–6 and
8�. Because the N-representability problem for kinetic-
energy functionals is so difficult, most practical density-
functional theory calculations use the Kohn-Sham procedure.
In the Kohn-Sham method, the kinetic energy is written as a
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composite functional of the electron density. �The kinetic
energy is an explicit function of the Kohn-Sham orbitals,
which are functionals of the Kohn-Sham potential, which is a
functional of the electron density.� This construction ensures
that the Kohn-Sham kinetic-energy functional is
N-representable. But this does not mean that there is no
N-representability problem in Kohn-Sham density-functional
theory. The problem, however, is confined to the exchange-
correlation energy functional. �In particular, the non-
N-representability of the exchange-correlation energy func-
tional is associated with the problem of self-interaction error
�24�.� In Sec. III B, we derived some specific constraints re-
lated to the N-representability of one particular class of
exchange-correlation functionals, the meta-GGAs. In par-
ticular, we showed that meta-GGAs should be chosen to be
convex functionals of the local kinetic-energy density. In
practice, this means that the second functional derivative of
meta-GGAs with respect to the kinetic-energy density should
be positive �cf. Eq. �64��. This constraint seems to be satis-

fied by the simplest meta-GGAs �57,103�. However, the cor-
responding constraint on the second functional derivative
with respect to the electron density, Eq. �65�, does not seem
to be satisfied.

Theorem 7 provides necessary and sufficient conditions
for the N-representability of the exchange-correlation energy
functional. It would be interesting to examine how well ex-
isting functionals satisfy these constraints. However, we can
say, with certainty, that any exchange-correlation functional
that ever gives an energy below the true ground-state energy
for any electronic system is not N-representable. Based on
this criterion, it seems that none of the popular exchange-
correlation energy functionals are N-representable.
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