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The general expectation that, in principle, the time-dependent density-functional theory �TDDFT� is an exact
formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demon-
strated that the previous TDDFT foundation, resting on four theorems by Runge and Gross �RG� �Phys. Rev.
Lett. 52, 997 �1984��, is invalid because undefined phase factors corrupt the RG action integral functionals.
Our finding confirms much of a previous analysis by van Leeuwen �Int. J. Mod. Phys. B 15, 1969 �2001��. To
analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham �KS�
concept has been introduced, in which the ground-state density is obtained from a single KS equation for one
spatial �spinless� orbital. The time-dependent �TD� form of this radical Kohn-Sham �rKS� scheme, which has
the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS
concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is
just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the
interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the
static and time-dependent KS linear response equations neglect the particle-particle �p-p� and hole-hole �h-h�
matrix elements of the perturbing operator. For a local �multiplicative� operator this does not lead to a loss of
information due to a remarkable general property of local operators. Accordingly, no logical inconsistency
arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal
operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion.
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I. INTRODUCTION

Over the last decade, time-dependent density-functional
theory �TDDFT� has become an extremely popular method
to compute electronic excitation energies and response prop-
erties of ever bigger molecules and clusters �see, for ex-
ample, Refs. �1–3��. The method and its foundations were
already worked out in the 1980s, primarily in papers by
Zangwill and Soven �4�, Runge and Gross �5�, and Gross and
Kohn �6�. More recently, various efficient computer codes
have been developed �7–12� and made available as parts of
major quantum chemistry program packages. At present, one
witnesses intense activities worldwide aiming at both the fur-
ther development of methodological aspects and the compu-
tational efficiency of the codes.

Besides the relatively modest computational expense, a
major boost for the advancement of the method has been the
assurance that TDDFT is a formally exact theory �13–15�,
that is, the TDDFT results would become exact if the exact
time-dependent exchange-correlation �xc� potentials were
available. In practice, of course, one always has to use ap-
proximate xc potentials, and therefore one has to be prepared
for smaller or larger errors in the computational results.
There is a widely held confidence that any problems encoun-
tered with the TDDFT method are only caused by imperfec-
tions of the underlying xc potentials, a belief prevailing even
as some more severe problems became apparent, such as in
the description of Rydberg excitations �10,16�, the treatment
of extended � systems �17�, the absence of double �and

higher� excitations �18,19�, and the 1/R dependence of
charge-transfer �CT� excitation energies �20–23�. These fail-
ures have triggered efforts to modify the xc potentials ac-
cordingly and thereby remedy the respective problems. Most
of this work has been confined to the so-called adiabatic
approximation, in which the time dependence enters the xc
functionals only via the time-dependent �TD� density func-
tions. But also the development of time- or energy-dependent
xc functionals beyond the adiabatic approximation
�19,24,25� has been envisaged.

On the other hand, TDDFT has never obtained a similarly
accepted status of uncontested validity as the original �time-
independent� density-functional theory �DFT� developed by
Hohenberg and Kohn �HK� �26� and by Kohn and Sham
�KS� �27�. The foundations of TDDFT, as formulated by
Runge and Gross �RG� in Ref. �5�, have been constructed
largely in terms analogous to the HK and KS concepts of
DFT. However, elusive notions such as TD v-representability
and noninteracting v-representability were clearly in need of
further mathematical clarification �28–30�. More recently,
the RG foundations of TDDFT were challenged by Rajago-
pal �31�, van Leeuwen �32�, and Harbola and Banerjee �33�,
after it was realized that the kernel of the xc functional in the
RG formulation violates causality �34,35�. A critical review
of the RG action integral functionals by van Leeuwen
�32,36� revealed basic deficiencies. Presently, an alternative
formulation of TDDFT, being essentially a KS-type approach
without implying a variational principle of the HK type, is
viewed as a valid foundation �34,36–38�.
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In this paper we will take a new look at the foundations of
TDDFT. For our review we use a simple analytical device,
referred to as radical Kohn-Sham �rKS� formulation, which
is as legitimate as the usual N-electron KS theory. Not ob-
scured by intricacies such as TD v-representability etc., the
rKS concept allows us to analyze both the static DFT and
TDDFT in an utterly transparent way. What we find confirms
van Leeuwen’s criticism of the RG foundation of TDDFT,
but also proves the nonvariational form of TDDFT illusory.

An outline of the paper is as follows. The starting point of
our study �Sec. II� is the observation that the TDDFT equa-
tions, more specifically, the time-dependent Kohn-Sham
�KS� linear response �LR� equations, neglect matrix elements
of the perturbing �external� potential of the h-h or p-p type,
where h and p refer to occupied �hole� and unocccupied
�particle� KS orbitals, respectively. Because the exact linear
response depends on all matrix elements, the TDDFT results
appear to be deficient irrespective of the choice of the xc
potential. The same situation arises in the case of a static
�time-independent� perturbation, as is analyzed in Sec. III.
Here the problem would even challenge the well-founded
�time-independent� DFT. The resolution of that puzzle in
Sec. III is a very instructive confirmation of the logical con-
sistency of DFT. In Sec. IV we introduce the rKS concept, in
which the ground-state �GS� density is not determined from
the density of N noninteracting electrons, but from a single
KS equation for one �spinless� particle. In Sec. V the rKS
formulation is used to analyze the RG theorems and other
aspects of TDDFT. A reader primarily interested in the issue
of the validity of TDDFT might skip Secs. II and III and leap
directly to Sec. IV. A summary of our results and some con-
clusions are given in the final Sec. VI.

II. COMPARISON OF EXACT AND KOHN-SHAM LINEAR
RESPONSE

The TDDFT formalism has been presented in various
ways in previous work �8,12,13,15,39� to which the reader is
referred for an overview and further details. Because TDDFT
�in linear response form� is similar to the time-dependent
Hartree-Fock �TDHF� or random-phase approximation
�RPA� �40–42�, it is rewarding to consult also previous
TDHF derivations �see, for example, Ring and Schuck �43��.
A few basic notions pertinent to the ensuing discussion will
be given in the following.

For an N-electron system �atom or molecule� having a
nondegenerate ground state ��0� the �exact� ground state
density matrix � is given by

�pq = ��0�cq
†cp��0� . �1�

Here the second-quantized operators cp
† �cp� are associated

with one-particle states �spin orbitals� �p. As a particular
choice, we will consider the KS orbitals arising from the KS
one-particle equations associated with the ground state of the
system under consideration,

hKS�i�r,s� = �− 1
2�2 + v�r� + J����r� + vxc����r�	�i�r,s�

= �i�i�r,s� . �2�

Here r and s denote spatial and spin variables, respectively,

v�r� is the one-particle operator for the electron-nuclei inter-
action, J����r� is the Coulomb operator, and vxc����r� is the
KS exchange-correlation potential. The exact GS density
function ��r� is obtained from the density matrix elements
�1� according to

��r� = 

p,q



s

�qp�p
*�r,s��q�r,s� . �3�

By contrast to the exact density matrix, the KS density ma-
trix � is derived from the KS determinant

��0
KS� = ��1 ¯ �N� �4�

according to

�pq = ��0
KS�cq

†cp��0
KS� . �5�

In the KS orbital representation assumed here the KS density
matrix assumes the simple diagonal form

�pq = �pqnp �6�

where np=0,1 denote KS occupation numbers. The KS den-
sity function

��r� = 

p,q



s

�qp�p
*�r,s��q�r,s� = 


k



s

��k�r,s��2nk �7�

is devised to reproduce the exact density function, that is,
��r����r�, provided the correct exchange-correlation poten-
tial is used in Eq. �2�. Whereas, at least in principle, the exact
and KS density functions are identical, the density matrices
necessarily must differ. As is well recognized �see, for ex-
ample, �13,15��, the two entities differ with respect to a basic
property: the KS density matrix, deriving from a single de-
terminantal wave function, is idempotent, that is, �2=�,
whereas the exact density matrix is not, �2��.

To discuss the linear response theory let us consider an
additional time-dependent external �“driving”� potential of
the form

û = d̂ f�t� �8�

where d̂=d�r� is a local �multiplicative� operator and f�t� is a
scalar time-dependent function �vanishing for t	0�. In the
notation of second quantization, the corresponding

N-electron operator D̂=
i
Nd̂�i� can be written as

D̂ = 

r,s

drscr
†cs �9�

where drs= ��r � d̂ ��s� denote the one-particle matrix ele-

ments of d̂. Now let us distinguish particle-hole �p-h� and
h-p matrix elements, dak ,dka, from p-p and h-h elements,
dab ,dkl. Here and in the following we use the notation in
which the subscripts a ,b ,c , . . . and i , j ,k , . . . denote unoccu-
pied �virtual� and occupied KS orbitals, respectively, while
the subscripts p ,q ,r , . . . refer to the general case. As will be
discussed below, the KS linear response contribution to the
density depends only on the p-h �and h-p� matrix elements of
the driving potential, whereas the exact linear response con-
tribution is a linear function of all matrix elements.
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Let us first inspect the exact case. Upon Fourier transfor-
mation the linear response of the exact density matrix can be
written as �see, for example, �44��

��pq�
� = 

n�0

��0�cq
†cp��n���n�D̂��0�


 − En + E0 + i�

−
��0�D̂��n���n�cq

†cp��0�

 + En − E0 + i�

. �10�

Here ��n� and En denote excited energy eigenstates and ei-

genvalues of the original �undisturbed� Hamiltonian Ĥ; the
complex infinitesimal i� is required for the definiteness of
the Fourier transforms between the time and energy domain.

For the special operator D̂ considered here, the transition
moments appearing in the numerators on the right-hand side
of Eq. �10� take on the form

��n�D̂��0� = 

p,q

dpq��n�cp
†cq��0� �11�

and it is obvious that the p-p and h-h contributions,
��n�ca

†cb��0� and ��n�ck
†cl��0�, need not vanish. Using

many-body perturbation theory for ��0� and ��n� based on

the familiar Møller-Plesset decomposition of Ĥ �and adopt-
ing for a moment Hartree-Fock one-particle states� one may
readily establish that nonvanishing contributions appear for
the first time in second order. For example, one finds

��n�ca
†cb��0� = O�2� �12�

for single excitations deriving from the HF configurations
ca

†cj ��0
HF�. An analogous result is found in the case of the h-

h amplitudes. Moreover, the exact response comprises con-
tributions arising from double �and higher� excitations, the
corresponding p-p and h-h amplitudes being here even of
first order.

Now let us turn to the KS response theory. In the formu-
lation given by Gross and Kohn �6� �adopting here a slightly
deviating notation� the linear response to the KS density
function is given by

���r,
� =� ��r,r�;
�v1
ef f�r�,
�dr�. �13�

Here

��r,r�;
� = 

pq



s,s�

�np − nq�
�p

*�r,s��q�r,s��q
*�r�,s���p�r�,s��


 − �q + �p + i�

�14�

is referred to as the KS density-density response function and

v1
ef f�r,
� = u�r,
� + J�����r� + �vxc�r,
� �15�

is the first-order effective potential comprising the �Fourier-
transformed� external perturbation of Eq. �8�, the �first-order�
change of the Coulomb potential J�����r� and of the xc po-
tential �vxc�r ,
�, the latter two contributions being linear
expressions in ���r ,
�.

Inserting the first part of v1
ef f�r ,
�, that is, the “driving”

potential u�r ,
� in the right-hand side �rhs� of Eq. �13�
yields

� ��r,r�;
�u�r�,
�dr� = 

a,k



s

 �k

*�r,s��a�r,s�

 − �a + �k + i�

dak

−
�a

*�r,s��k�r,s�

 + �a − �k + i�

dka� f�
� .

�16�

Obviously, here the p-p and h-h matrix elements of d̂ have
been projected out and only p-h �and h-p� matrix elements
dak enter �as inhomogeneities� the linear KS response equa-
tions. As we have seen, the exact linear response to the den-
sity function ���r ,
�, which may be written in a form analo-
gous to Eq. �13�,

���r,
� =� ��r,r�;
�u�r�,
�dr�, �17�

is a linear function of all matrix elements dpq of the perturb-
ing potential. Here the exact density-density response func-
tion �6� ��r ,r� ;
�, is related to �� of Eq. �10� according to

� ��r,r�;
�d�r��dr� = 

p,q



s

��pq�
��q
*�r,s��p�r,s� .

�18�

This result evokes the question if equating ���r ,
� and
���r ,
� is permitted at all. It seems that in the KS linear
response equations the information associated with the p-p
and h-h matrix elements of the external �driving� potential is
lost and, thus, these equations have to be viewed as an ap-
proximation even in the case of an exact exchange correla-
tion potential.

Let us inspect the situation in the more general and trans-
parent matrix formulation of TDDFT �see, for example,
�12,15��. Here the KS response equations are written in the
form of a matrix commutator relation,


�� = �h,��� + ��h,�� + �d,�� �19�

where h and d denote the matrix representations of the �un-
perturbed� KS Hamiltonian and the perturbing potential
�time-independent part�, respectively, and �h is the change of
the KS Hamiltonian linear in ��. Note that due to the form of
� the commutator �d ,�� on the rhs of Eq. �19� projects out
the p-p and h-h matrix elements of d. Arranging the p-h and

h-p matrix elements of �� and of d̂ in columns �vectors�,

�� = 
��ph

��hp
�, d = 
dph

dhp
� , �20�

the linear response equation for �� takes on the familiar RPA
form
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 − A − B

− B* − 
 − A* ��� = d . �21�

The elements of the matrices A and B, being related to the
functional derivatives of the Coulomb and xc potentials of
the KS Hamiltonian, have been specified elsewhere �see, for
example, Ref. �7�, and Sec. III�. The information on the per-
turbing external potential enters the response equations �21�
only via the vector d. Thus, it is manifest that only the p-h
and h-p matrix elements of the perturbing potential come
into play. Does the neglect of the h-h and p-p matrix ele-
ments of the perturbing operator mean that TDDFT is not
formally exact? The same problem occurs in the case of a
time-independent �static� perturbation, and here it would
even challenge the logical consistency of DFT itself, more
specifically, the universality of the HK energy functionals. In
the next Sec. III we will consider the static case and see how
the apparent contradiction to the universality of the DFT
functionals can be resolved.

III. TIME-INDEPENDENT KOHN-SHAM RESPONSE
THEORY

In this section we consider the problem of the loss of the
h-h and p-p matrix elements in the simpler static case of a
�small� time-independent external perturbation û.

The linear KS response equations are obtained here as a
special case �
=0� of the more general time-dependent
equations �19�:

�h,��� + ��h,�� + �u,�� = 0 . �22�

Likewise, these equations can be deduced via first-order per-
turbation theory for the ground-state KS orbitals, also re-
ferred to as coupled-perturbed Kohn-Sham �CPKS� theory
�see Casida �13� and references therein�. As above h and u
denote the matrix representations of the unperturbed KS
Hamiltonian and the perturbing potential, respectively. The
KS density matrix � associated with the unperturbed ground
state is diagonal, �pq=�pqnp; �� denotes the first-order
change in the KS density matrix. Finally, �h is the matrix
representation of the linear change of the KS Hamiltonian,

�h = J�����r� + �vxc�r� . �23�

A basic assumption of the KS linear response theory is that
the xc part of �h can be expanded according to

�vxc = vxc�� + ��� − vxc��� =� �vxc����r�
���r��

���r��dr� + O���2�

�24�

in terms of �� �and, possibly, gradients, ���, and higher
derivatives�. Here �� is related to the first-order density ma-
trix �� according to

���r� = 

a,k



s

��k
*�r,s��a�r,s���ak + �a

*�r,s��k�r,s���ka	 .

�25�

Proceeding in the usual way, one now may evaluate the
p-h and h-p matrix elements of �h,

��h�pq =� �h�r��p
*�r��q�r�dr , �26�

which leads to linear expressions in the density matrix ele-
ments ��rs:

��h�pq = 

rs

Mpq,rs��rs. �27�

Here the index pairs �pq� or �rs� are of either p-h or h-p
type. Finally, introducing �h in that form in Eq. �22� one
arrives at the desired KS linear response equations, reading
in matrix form analogous to Eqs. �20� and �21�,


 A B

B* A* ��� = − u . �28�

Here, the matrix elements of A and B are given by

Aak,bl = ��a − �k��ab�kl + Mak,bl, Bak,lb = Mak,lb. �29�

As in Eq. �20�, the p-h and h-p matrix elements of �� and u
are arranged to form column vectors,

�� = 
��ph

��hp
�, u = 
uph

uhp
� . �30�

As in the TD case, the perturbation enters the set of linear
equations via the inhomogeneity vector u, in which the p-p
and h-h matrix elements of û are absent.

It appears that we are facing a paradox here: on the one
hand, we have just applied a valid first-order perturbation
theory to the density within the KS framework, arriving at a
seemingly deficient result; on the other hand, the full solu-
tion of the KS eigenvalue problem for the perturbed Hamil-
tonian must yield the exact density, so that also the result of
first-order perturbation theory cannot be incorrect. The an-
swer to this puzzle is that no information on the perturbing
potential is lost in the absent p-p and h-h matrix elements
provided that the perturbation is a local �multiplicative� op-
erator �45�. This is due to a remarkable, though apparently
not widely known, property of local operators which may be
stated as follows.

Theorem 1. A local operator v=v�r� is uniquely deter-
mined up to a constant by its p-h �and h-p� matrix elements
with respect to a complete one-particle basis and an arbitrary
partitioning of that basis into occupied �hole� and unoccu-
pied �particle� one-particle states. A simple proof of this as-
sertion is given in the Appendix. An interesting aspect here is
that the proof assures merely the uniqueness �up to a con-
stant� of the local operator but does not offer a way to repro-
duce the operator from its p-h matrix elements. It seems that
for such a reconstruction one needs one of the diagonal
blocks, that is, either h-h or p-p, in addition to the p-h block.
Thus, the logical status of theorem 1 resembles that of the
HK and KS theorems which prove the existence of universal
xc functionals but do not provide for means to construct the
functionals.

Theorem 1 assures that the loss of the p-p and h-h matrix
elements in the CPKS equations is no contradiction to the
formal exactness of the theory, provided that the external
potentials are local �multiplicative�. Clearly, this observation
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applies also to the TD KS linear response considered in Sec.
II. The restriction to local external �one-particle� potentials is
a basic and well-understood consistency requirement of DFT.
The universality of the kinetic energy and xc functionals
hinges on the condition that the external potential functionals
are of the form

Ev��� =� v�r���r�dr . �31�

It should be recalled that quantum theory is essentially
nonlocal, and many physically important interactions are not
of the local type. For example, the interaction of electrons
with an electromagnetic field involves the momentum opera-
tors, pj =−i� j. It is common practice, to apply the usual
CPKS and TDDFT methods also for nonlocal external poten-
tials �see, for example, �46–48��. In that case one should be
aware that the loss of the p-p and h-h matrix elements of the
external operator introduces indeed an error beyond the ap-
proximation for the functional, which is of second order in
the Coulomb repulsion. In the TD KS linear response this
error affects only the transition moments. In particular, it
destroys the equivalence between the so-called length and
velocity forms of the transition moments, because the former
is associated with a local operator and the latter with a non-
local operator.

In principle, DFT can be extended to account for nonlocal
external potentials as well. For this purpose the non-local
potential must be incorporated a priori into the HK and KS
formalism, that is, the HK and KS functionals have to be
defined from the outset for the N-electron system under the
action of the external potential. This would lead to modified
functionals being now specific to the considered nonlocal
potential. In other words, the functionals would depend on
the respective nonlocal external potentials. An important ex-
ample for the necessity to deal with nonlocal operators is the
presence of magnetic fields. As a systematic approach re-
ferred to as current density-functional theory one here con-
siders functionals that depend not only on the density but
also on the current density �49–51�. As another possibility of
dealing with nonlocal external potentials, Gilbert �52� and
Levy �53� have considered density-matrix-dependent func-
tionals.

Let us briefly inspect how the CPKS equations will
change if the xc potential depends directly on a nonlocal
perturbing potential u. Obviously, this would lead to an ad-
ditional contribution to �h of the form

�ṽxc = w��,u��r� �32�

and, thus, to another inhomogeneity term in the linear re-
sponse equation �28�. Here � is the unperturbed GS density.
Because the additional inhomogeneity contribution depends
on u, the full information on u can be restored, reconciling
the �first-order� result of the KS linear response with the
exact result.

As a more general aspect, the nonlocal potential problem
shows that the CPKS equations, while justified as a valid
first-order perturbation theory for the KS approach to deter-
mine the ground-state density of the system plus perturba-

tion, may not be seen as physical response equations for the
interacting N-electron system �in that case they should apply
also to nonlocal perturbations�. This admonishes us to be
wary of the prospect that the TD KS equations can describe
the time evolution of the system in response to a TD pertur-
bation.

IV. A RADICAL KOHN-SHAM VERSION

The KS formulation is a clever way to transform the prob-
lem of finding the density minimizing the HK functional into
the determination of the ground state of an associated non-
interacting N-particle system. While providing a good basis
for practical computational schemes, the usual KS formula-
tion still does not achieve its full theoretical potential. In
fact, one may proceed to a radical KS approach, in which the
mapping of the exact density is not onto that of a noninter-
acting N-particle system but rather to the density of a single
particle. Whereas such a radical KS formulation will be less
suitable as a starting point for the approximate treatment of
the exact ground state density, it may serve as a valuable
analytical tool to clarify various aspects of DFT and, in par-
ticular, TDDFT. It should be noted that the idea of such an
obvious extension of the usual KS approach is not new,
though apparently little known. Already in 1984 it was used
by Levy et al. �54� to discuss asymptotic properties of the xc
potential.

In the usual �N-particle� KS formulation the kinetic en-
ergy contribution T��� to the HK functional is substituted by
the kinetic energy functional

TS��� = 

i,s
� 
i

*�r,s��− 1
2�2�
i�r,s�dr �33�

of a noninteracting N-particle system, the density being ob-
tained according to

��r� = 

k



s


k
*�r,s�
k�r,s� �34�

as the density function associated with the Slater determinant
���= �
1
2¯
N� of orthonormal orbitals 
i, i=1, . . . ,N. As
is well known, the functional �33� can be made unambiguous
using the Levy constrained search �LCS� definition �53� �see
also Parr and Yang �55��:

TS��� = min
�→�

��� − 1
2 
 �i

2��� �35�

where �→� indicates that the search is over all Slater de-
terminants yielding the given density �.

The deviation between the exact and the KS kinetic en-
ergy is accounted for in the KS exchange-correlation func-
tional,

Exc��� = FHK��� − TS��� − J��� , �36�

where

FHK��� = T��� + Vee��� �37�

is the original HK functional �supposing here again the rig-
orous LCS definition�; J��� denotes the classical electronic
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repulsion energy. Now the task of finding the minimum of
the total energy functional,

E��� = TS��� + J��� + Exc��� +� ��r�v�r�dr = E���
i	�

�38�

under the constraint ���r�dr=N can be performed in orbital
space �see Parr and Yang �55��. The corresponding varia-
tional procedure yields the well-known KS equations for the
ground state of a system of N noninteracting electrons mov-
ing in the effective potential

vef f����r� = v�r� + J����r� + vxc����r� �39�

where

vxc����r� =
�Exc���
���r�

�40�

is the KS exchange-correlation potential. In this derivation a
direct variation with respect to the orbitals 
i is implied for
the explicit KS kinetic energy functional �first term on the
rhs of Eq. �38��, whereas the chain rule � /�
i=� /���� /�
i
is used for the other terms. This is reflected in the more
precise form, E�
i�=TS�
i�−TS���
i	�+E���
i	�, advocated
for the functional underlying the KS equations �see Levy and
Perdew �56��.

Let us emphasize that vef f����r� is a potential functional,
and Eqs. �39� and �40� have to be solved self-consistently.
Self-consistency will be attained for the exact ground-state
density �0, where the KS equations with the potential
vef f��0��r� reproduce �0.

As this rigorous derivation of the KS equations shows,
there is nothing that would compel a density representation
associated with N noninteracting electrons: any number of
non-interacting electrons will be permissible, even N=1. In-
deed, we will demonstrate in the following how the entire
line of arguments can readily be transferred to the represen-
tation of the density in terms of a single �spinless� particle.

Obviously, any N-electron �ground-state� density function
��r� can be represented by a one-particle wave function �or-
bital� according to

��r� = N���r��2 �41�

where

��r� = 
��r�
N

�1/2

. �42�

Such a representation is unique as long as ��r��0 and
��r��0 for finite values of �r�. Obviously, this defines di-
rectly �that is, without invoking the concept of noninteracting
v-representability� a 1-1 mapping of density functions and
�real� orbitals. Next we can define a corresponding kinetic
energy functional:

T̃S��� = N� ��r��− 1
2�2���r�dr . �43�

Since the �real� orbital ��r� is uniquely defined by ��r�, so is
the kinetic energy. One may note that this is the well-known
von Weizsäcker functional �57�.

It is readily seen that this definition is consistent with the
Levy constrained search procedure. The general form of an
orbital reproducing the density ��r� according to Eq. �41�
reads


�r� = eik�r���r� �44�

where k�r� is a real function. Clearly, the kinetic energy of 
,

�
� − 1
2�2�
� = 1

2 � ��k�r��2��r�2dr + ��� − 1
2�2���

�45�

is larger than the kinetic energy of the real orbital �, if
k�r��const. This means that the orbital minimizing the ki-
netic energy functional for a given density is �up to a con-
stant phase� a real function. As a consequence, Eq. �42� re-
lates densities and orbitals, and the kinetic energy functional
�43� is uniquely defined at the orbital level. We may elabo-
rate that point somewhat further by considering a system
where the KS orbital cannot be chosen real, e.g. in the pres-
ence of an external magnetic field. Clearly, an orbital of the
general form �44� is not determined by the density alone. In
addition, one has to take into account the current density j
=�2�k in order to obtain a unique definition of kinetic en-
ergy functional, now being a functional of both � and j, at the
orbital level. That is why a current density version of DFT
must be used in the case of magnetic fields.

The next step is to introduce a correspondingly modified
xc functional,

Ẽxc��� = T��� + Vee��� − T̃S��� − J��� �46�

so that the functional for the total energy can be written as

E��� = T̃S��� + J��� + Ẽxc��� +� ��r�v�r�dr . �47�

As in the usual KS approach, the variational search for the
minimum of E��� under the constraint ���r�dr=N can
equivalently be effected by a search in the space of �normal-
ized� orbitals ��r�. The variation of E����	� with respect to
��r� via

��r� = N���r��2 �48�

leads to the single KS equation

�− 1
2�2 + vef f����r�	��r� = ���r� �49�

for the ground state of a single particle moving in the effec-
tive potential

vef f����r� = v�r� + J����r� + ṽxc����r� �50�

where ṽxc����r� is the modified xc potential deriving from

Ẽxc���,
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ṽxc����r� =
�Ẽxc���
���r�

. �51�

Obviously, the single GS KS orbital has no direct physical
meaning. It may be viewed as a kind of a mean orbital av-
eraged over the N /2 spatial KS orbitals of the usual ap-
proach.

Like the usual KS approach, the radical Kohn-Sham
�rKS� formulation, established by Eqs. �48� and �49� is, in
principle, exact. That is, one would obtain the exact ground-
state density of the interacting N-electron system provided
the exact energy functional were available. Of course, the
usual N-electron KS formulation will be a better starting
point for the use of approximate functionals, simply because
its expression for the kinetic energy, Eq. �33�, will give a
better approximation to the full kinetic energy than the mean
one-orbital term of Eq. �43�. The actual benefit of the rKS
variant is its potential as an analytical tool, and in the ensu-
ing Sec. V we will use that tool to examine the foundations
of TDDFT.

Let us emphasize once again that ṽxc����r� is a potential
functional and Eqs. �49� and �50� have to be solved self-
consistently to yield the exact GS density �0�r�. As a conse-
quence of the simple structure of the rKS equation �49�, the
xc potential for the exact GS density �0�r� can be expressed
according to

ṽxc��0��r� =
1

2��0�r�
�2��0�r� − v�r� − J��0��r� + � .

�52�

Equation �52� has been used to study features of the exact
KS xc potential, such as the asymptotic behavior �54�. A
similar equation, arising in the ordinary KS treatment of two-
electron systems, was used to characterize two-electron KS
xc potentials �58–60�.

While the rKS version introduced above is the simplest
possible KS-type approach, other variants are conceivable in
which the noninteracting system consists of M =2 or more
electrons �M might even be larger than N�. For example, in
the case M =2 any �reasonable� density can be derived from
the KS determinant

��0
KS� = ��0��0�� �53�

for two noninteracting spin-1
2 particles in the spin orbitals

�0�=�0�r����s�, �=� ,�, where the spatial orbital is given
by

�0�r� = 
2�0�r�
N

�1/2

. �54�

Whereas the rKS formulation is purely spatial, spin degrees
of freedom come into play in these M-electron KS variants
for M �2.

V. REVIEW OF TIME-DEPENDENT DFT

A. Time dependent radical Kohn-Sham theory

Having established the rKS formulation for the static
case, we may now use this tool to analyze TD density-
functional theory.

Let us consider a TD external potential Û�t�=
u�ri , t�,
supposed to be static for t�0, that is, u�r , t�=v�r� for t�0,
and let the system be in the ground state �of the static Hamil-
tonian� at t=0. The solution of the TD N-electron
Schrödinger equation

i
�

�t
��t� = �T̂ + V̂ + Û�t����t� , �55�

where T̂ and V̂ denote the kinetic energy and the electron
repulsion operator, respectively, gives rise to an associated
TD density function �=��r , t� with ��r ,0�=�0�r�. As in the
static case, the time development of the density can be as-
signed to a TD orbital by generalizing Eq. �42�:

��r,t� = 
��r,t�
N

�1/2

. �56�

This is trivial. The nontrivial issue is, of course, whether one
can establish a Schrödinger-type equation at the single-
orbital level that would allow one to predict the time devel-
opment of the density. Because inevitably any �nonstation-
ary� wave function evolving according to a TD Schrödinger
equation picks up a time- and space-dependent phase, the
orbital must be written in the general form


�r,t� = eik�r,t���r,t� �57�

where k�r , t� is a real-valued phase function, and ��r , t� is
given by Eq. �56�.

Supposing the Runge-Gross theorems valid in their origi-
nal form, they will apply as well to the rKS formulation.
Then there is a single TD KS equation of the form

i
�

�t

�r,t� = �− 1

2�2 + u�r,t� + J����r� + ṽxc����r,t�	
�r,t�

�58�

governing the time evolution of 
�r , t� and, thus, of ��r , t�
=N �
�r , t��2. Here

ṽxc����r,t� =
�Ãxc���
���r,t�

�59�

is the TD xc potential associated with the rKS modification

of the RG TD xc functional Ãxc���t��. The RG theorems
assure that such a TD xc potential exists, so that, in principle,
the time development of the density can be determined ex-
actly via Eq. �58�. In practice, of course, one has to resort to
approximations such as the widely used adiabatic local den-
sity approximation. Here one uses the ordinary static DFT xc
potentials, depending on time only via the instantaneous den-
sity function �=��r , t�.

In the rKS version the RG theorems suggest that one can,
at least in principle, condense the full N-electron TD
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Schrödinger equation into a one-orbital TD KS equation.
Can this be true? As a step toward an answer let us inspect
how the fourth RG theorem, establishing an analogy to the
KS concept in the time-independent DFT, works in the rKS
case.

B. The Runge-Gross theorems

The KS equations have been invented as a means for de-
termining the minimum of the HK energy functional and
thus the exact ground-state density of the interacting
N-electron system. In TDDFT the role of the KS equations is
daringly expanded: their time-dependent form is believed to
govern, at least in principle, also the exact time evolution of
the density of the interacting N-electron system. The basis
for that claim has been laid in a series of four theorems in a
famous article by Runge and Gross �5�. Let us critically re-
view their arguments.

The first theorem �RG1� is the TD analog of the first HK
theorem. It establishes a one-to-one correspondence between
TD density functions ��r , t� and TD external potentials
u����r , t�, which, in turn, via the TD Schrödinger equation

i
�

�t
�����t� = �T̂ + V̂ + Û����t�	�����t� �60�

determine the exact TD N-electron wave functions �����t�
�up to a purely time-dependent phase�.

The third theorem �RG3� is the analog to the second HK
theorem. Instead of the HK energy functional, one considers
the action integral defined according to

A��� = �
t0

t1

dt������t��i
�

�t
− Ĥ�t�������t�� �61�

where Ĥ�t�= T̂+ V̂+ Û�t� is the TD Hamiltonian of the con-
sidered system. We may leave any problems in this definition
�see Ref. �36�� at that and go on further to the fourth theorem
�RG4�. In analogy to the ordinary KS approach, one intro-
duces a kinetic energy action functional

S0��� = �
t0

t1

dt������t��i
�

�t
− T̂������t�� �62�

for noninteracting particles. Here it is supposed that for a
given TD density function ��r , t� there exists a unique state
�Slater determinant�, �����t�, of the noninteracting electron
system. The functional S0��� is defined in analogy to the full
kinetic energy action functional,

S��� = �
t0

t1

dt������t��i
�

�t
− T̂������t�� �63�

for the original interacting electron system. As in the time-
independent KS approach, S0��� replaces S���, the remain-
der, S���−S0���, being transferred into the exchange-
correlation part, Axc���, of the full action functional �61�.
Everything seems to be completely analogous to the time-
independent case.

However, there is a problem, clearly to be seen in the
focus of the rKS formulation. Here the noninteracting state

�����t� becomes a one-particle state of the general form of
Eq. �57�,


����r,t� = eik�r,t�
��r,t�
N

�1/2

so that the S0 functional reads

S̃0��� = �
t0

t1

dt� dr
*�r,t�
i
�

�t
+ 1

2�2�
�r,t� . �64�

While the modulus of 
�r , t� is completely determined by the
density ��r , t�, the phase function k�r , t� is not. Clearly, the

value of S̃0��� depends manifestly on this phase function, but
there is no way of determining it �completely� from the given
density. This means that the functional S0 is ill defined at the
orbital level. There are �infinitely� many orbital trajectories
for a given TD density, each yielding a different value for the
S0 functional.

Let us consider the latter argument in somewhat greater
detail. Inserting the form �57� of the orbital in the integrand
of the S0��� functional one readily obtains

�
�i
�

�t
+ 1

2�2�
� = ��� 1
2�2��� − 1

2 �����k�2��� − ���k̇��� .

�65�

This means that besides the density here also the gradient of

the phase function �k�r , t� and the time derivative k̇�r , t� is
needed. In fact, the latter information can be derived from
the density to a certain extent if, as an additional require-
ment, one takes into account that the orbital is not only to
reproduce the density, but also to satisfy a TD Schrödinger
equation of the form

i
�

�t

�r,t� = �− 1

2�2 + w�r,t�	
�r,t� �66�

where w�r , t� is a local TD potential yet to be determined.
Therefore, the continuity equation

d

dt
�2 + � · j = 0 �67�

applies to the orbital, where the current density is given by

j = �2�k . �68�

As a consequence, it is possible to determine �k from � and
�̇, respectively. �A mathematical complication may arise here
due to the requirement that �� �j /�2� must vanish.� Further,
if �k is given �at any time�, then also k�r , t� is determined,
though only up to a purely time-dependent function ��t�.
Thus we have established in a direct way a mapping ��t�
→
����t�, which is uniquely defined up to a purely TD
phase ei��t�. But as Eq. �65� clearly shows, the latter indefi-
niteness of the phase prevents the S0 functional from becom-
ing well defined. The time integral ��̇�t�dt on the rhs of Eq.
�65� leads to a completely undetermined constant in the defi-
nition of the S0 functional. Note that this does not mean just
a uniform shift of the S0 values, which of course would drop
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out in a variational search for stationary points. The S0 func-
tional can assume any value for a given density ��t�.

So far we have not specified the local potential w�r , t� in
Eq. �66�, but only assumed that such a potential exists, e.g.,
as a consequence of the first RG theorem �RG1� applied to
the noninteracting KS system �of one electron�. Remarkably,
in the rKS version the ��t�→w�t� mapping can be obtained
in a direct way �thereby proving the one-orbital TD
v-representability of any “reasonable” density�, allowing us
even to give an explicit expression for w�r , t�. This is
achieved by inserting the ansatz �57� in the SE �66�. Sepa-
rating the real and imaginary parts yields the following two
equations:

w�r,t� =
�2�

2�
− 1

2 ��k�2 − k̇ �69�

and

�̇ + �k · �� + 1
2�2k� = 0. �70�

Obviously, the latter equation reproduces the continuity
equation �67�, whereas the former gives an explicit expres-
sion for the local TD potential w�r , t�. Since both �k and k
result from � as discussed above, w�r , t� is determined by �
�more precisely by �, �̇, and �̈� up to a purely time-dependent
function, namely, −�̇�t�. As easily seen, the explicit form of
the potential is of no avail to determine ��t�. Even if the
value of ��t� was given �or fixed� at an initial time, it cannot
be determined for later times by solving the TD SE �66� due
to the corresponding indefiniteness of w�r , t�.

So inevitably the rKS formulation calls our attention to
the problem of the undetermined purely time-dependent
phase functions corrupting the RG action integral function-
als. The phase problem arises not only in the functionals of
the noninteracting KS system but already in the functional
�61� for the original interacting N-electron system. When one
consults the RG paper �5� with regard to this issue, one finds
that the phase problem, being correctly discussed in the be-
ginning of the paper, gets lost in the matrix element

���t� � i� /�t− T̂−Ŵ− V̂�t� ���t�� after Eq. �11�. Here V̂�t� is
the external TD potential of the physical system under con-

sideration �Û�t� in our notation�. Erroneously, RG mistake

V̂�t� for Ṽ�t� �i.e., Û����t� in our notation	, that is, the poten-

tial associated with the RG1 mapping ��t�→ Ṽ�t�. The latter
potential contains an undefined TD function C�t� that would
cancel the term arising from the time derivative of the phase
function in ��t�. �Later TDDFT papers and virtually all re-
view articles inconspicuously leap over the phase problem in
the action integral functionals.�

Whereas there is still widespread confidence in the RG
foundations of TDDFT, their breakdown due to the phase
problem has been clearly analyzed and expressed by van
Leeuwen already several years ago �32,36�. In his 2001 re-
view article �36� he draws the following conclusion: “We
therefore conclude that time-dependent density-functional
theory can not be based on the usual variational principle,
and indeed attempts to do so have led to paradoxes.” Let us

note that, besides the phase problem, van Leeuwen also ana-
lyzed correctly the nonstationarity of the RG action integral
functionals, exposing another fault line in the original RG
argumentation. But why have van Leeuwen’s revelations not
triggered stronger shock waves in the TDDFT community
and beyond? Apparently because by the time of van Leeu-
wen’s analysis the leading actors in the field had come to the
conclusion that the KS equations could be established di-
rectly without the necessity of resorting to a variational prin-
ciple �34,61�. Sharing that conviction, van Leeuwen commu-
nicated the reassuring message that TDDFT is valid, though
only in a new shape featuring the so-called Keldysh Green’s
function technique �62�. In the ensuing Sec. V C, we will
have a closer look at the nonvariational KS theory.

Before proceeding let us note that recently Cohen and
Wasserman �30� have attempted to restore and generalize the
original RG formulation by introducing a time-dependent
analog of the LCS concept. This development can also be
tried using the rKS analysis, which, as will be reported
elswhere �63�, uncovers unexpected, presumably irreparable,
problems underneath a seemingly faultless formal solution.

C. Kohn-Sham equations without a variational principle?

In the derivation of the static KS equations three elements
are essential: �i� a universal energy functional �HKI�; �ii� a
variational principle for the exact ground-state density
�HKII�; and �iii� a functional for the kinetic energy of non-
interacting electrons defined at the orbital level �KS�. Runge
and Gross have pursued a strictly analogous approach in or-
der to establish a basis for TDDFT. As first analyzed by van
Leeuwen and corroborated here, this endeavor must be
viewed as faulted in each of the three essentials.

But is there a different way to derive TD KS equations?
Within the TDDFT community, the generally accepted view
is that there is such a route based entirely on the mappings
established by the RG1 theorem. Indeed, the first RG theo-
rem does offer a shortcut to KS-type equations. Applying
RG1 to the case of noninteracting N electrons, there is the
mapping

��r,t� → w����r,t� �71�

so that the TD KS-type equations

i
�

�t

 j�r,t� = �− 1

2�2 + w����r,t�	
 j�r,t�, j = 1, . . . ,N ,

�72�

allow one to calculate the density ��r , t� from the orbitals

 j�r , t�. The KS potential in Eq. �72� can be written in a more
familiar form,

w����r,t� = u�r,t� + J����r,t� + vxc����r,t� �73�

where u�r , t� is the external TD potential of the system under
consideration. Apparently, Eq. �73� serves as a definition of
an xc potential functional vxc����r , t� by subtracting two
known potentials from the unknown KS potential functional
w����r , t� �see Refs. �37,38,64��. At least formally, every-
thing looks as one would expect. But is this already the so-
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lution? Once more, the rKS formulation allows for a closer
inspection of what we have got, because here the potential
w����r , t� can be given in an explicit form.

Indeed, as the analysis of Sec. V B has shown, for a given
density ��r , t� there exists a single-particle TD SE �Eq. �66��,

i
�

�t

�r,t� = �− 1

2�2 + w����r,t�	
�r,t� �74�

with the TD local potential �Eq. �69��

w����r,t� =
�2�

2�
− 1

2 ��k�2 − k̇ �75�

which is determined by the density up to a purely TD func-
tion �−�̇�t��. Let us note that the indefinite TD function does
not affect the resulting density and, thus, is no longer rel-
evant in the present context. Equation �75� together with the
prescription to determine k�r , t� from ��t� and �̇�t� via the
continuity equation can be seen as a direct �constructive�
proof of the RG1 theorem in the noninteracting �one-
electron� case. But it should be clear that Eqs. �74� and �75�
do not yet offer a method to determine the time development
of the exact density of the interacting N-electron system
�0�r , t�. They hold for any density, and the question is how
can �0�r , t� be determined without knowing it beforehand
and using it to construct the potential w��0��r , t�. �In the case
of two-electron systems, such a construction of w��0��r , t�
from �0�t� obtained otherwise was presented, for example, by
Hessler et al. �65� and Lein and Kümmel �66�.	

At this point it is instructive to inspect the more transpar-
ent case of static DFT. Let us assume for a moment that there
is no second Hohenberg-Kohn theorem �HKII� and, thus, no
variational principle. As above, however, one has a shortcut
to KS-type equations �now applying the HKI mapping to the
noninteracting system�. In the rKS variant, the corresponding
single KS-type equation can explicitly be constructed �by
inserting the ansatz �42� in the one-particle Schrödinger
equation�:

�− 1
2�2 + w����r�	��r� = ���r� . �76�

Here the potential

w����r� =
�2��

2��
+ c �77�

is determined by the density ��r�=N��r�2 �up to a constant
c�. Equations �76� and �77� show that any �reasonable� den-
sity is noninteracting �one-electron� v-representable. But,
clearly, the potential functional w����r� of Eq. �77� as such is
of no avail for determining the exact ground-state density �0.
According to the successive steps

��r� → w����r� → �Eq . �76�� → ��r� → ��r�

any density ��r� will only reproduce itself. Obviously, the
KS potential functional �77� is trivial, i.e., without physical
meaning.

By contrast, in the variationally derived KS equation �49�
the potential functional vef f����r�=v�r�+J����r�+ ṽxc����r�
according to Eq. �50� is of completely different type. The

density will change in the course of the iterative solution of
the KS equation and will �eventually� converge to the exact
�or approximate� ground-state density �0. Only for �0 will the
KS equation �with vef f��0��r� 	 reproduce the initial density
�0. At this “fixed point,” the potentials deriving from the
nontrivial and trivial functionals become identical �up to a
constant�,

w��0��r� = v�r� + J��0��r� + ṽxc��0��r� + c , �78�

as can be seen by comparing Eqs. �52� and �77�.
Equation �78� holds only for �0�r�, but w����r�, J����r�,

and ṽxc����r� are universal potential functionals, so that any
density can be turned into a fixed point if the external poten-
tial vext��� is chosen accordingly:

w����r� = vext����r� + J����r� + ṽxc����r� + c . �79�

Obviously, vext����r� can be identified with the potential
functional associated with the HKI mapping for the interact-
ing N-electron system. For the exact ground-state density of
the original system, �0, the potential functional yields of
course

vext��0��r� = v�r� . �80�

Equation �79� can be read in two ways. On the one
hand, it can be used to define vext����r� in terms of w����r�,
J����r�, and ṽxc����r�, as we have done just now. But one
may as well suppose the external potential functional
vext����r� as established by the HKI theorem, which then
offers the possibility to define the �nontrivial� xc potential
functional vxc����r�. This shows that, apart from the
v-representability problem, the HKI mappings for the inter-
acting �N-electron� and the non interacting �one-electron�
systems establish the existence of a non-trivial xc potential
functional �36,67�, which in turn can be used in the KS equa-
tion in the familiar way, that is, together with the given one-
particle potential v�r� of the considered system. What one
gets is formally equivalent to the variationally derived result
�Eqs. �49� and �50��: a KS equation with the exact ground-
state density �0 as fixed point, thereby offering the possibility
of determining �0 by a self-consistency procedure. At this
point, the only difference between the variational and the
mapping-based derivations is that in the former the iterative
procedure represents a well-defined search for a minimum on
an energy surface, whereas in the latter approach the final
step amounts to an ad hoc fixed-point equation, for which the
possibility of a converging self-consistency procedure has to
be shown. One should not expect such a proof to be possible
without recourse to the HKII theorem, that is, the existence
of a minimum of the energy functional at the exact ground-
state density. In other words, the mapping derivation of the
KS equation is valid only because, wittingly or unwittingly,
the HKII variational principle is in the background.

Now we may come back to the time-dependent case.
Lacking variationally derived KS equations, one can, never-
theless, establish a “nontrivial” xc potential functional in
analogy to Eq. �79�:
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w���t���r,t� = vext���t���r,t� + J���t���r,t� + vxc���t���r,t�
�81�

where vext���t�� and w���t�� denote the potential functionals
established via the RG1 theorem �analogous to HKI� for the
interacting �N-electron� and noninteracting �one-electron�
systems, respectively. Let us note that for the exact density
trajectory �0�r , t� of the interacting N-electron system with
the external potential u�r , t� the RG1 potential functional
gives

vext��0�t���r,t� = u�r,t� . �82�

Again, we may use the nontrivial xc potential functional
vxc���t���r , t� in the �radical� KS equation together with
u�r , t�, giving rise to the one-orbital TD KS equation

i
�

�t

�r,t� = �− 1

2�2 + u�r,t� + J���t���r,t�

+ vxc���t���r,t�	
�r,t� �83�

which is “correct” only for the exact density �0�r , t�. In the
latter case the effective potential in Eq. �83� becomes iden-
tical to the trivial KS potential functional of Eq. �75� taken at
the exact density �0�r , t�,

vef f��0�t���r,t� = u�r,t� + J��0�t���r,t� + vxc��0�t���r,t�

= w��0��r,t� �84�

and the KS equation with the potential w��0��r , t� reproduces
�0�r , t�, that is, the exact density �0�r , t� is a fixed point of the
TD KS equation �83�. Again, everything looks very similar
to the static case, and one might be tempted to acquiesce in
this status. However, as we will argue below, the TD KS Eq.
�83� by no means offers a method to determine the exact
density: it can reproduce �0�r , t�, but not predict it.

At this point it is helpful to distinguish two distinct modes
of solving the TD KS equation�s�, namely, �i� a potential
functional �PF� propagation mode, in which the instanta-
neous potential vef f���t�� changes with the �instantaneous�
density ��t�; and �ii� a trajectory mode supposing a predeter-
mined density in a given time interval.

Let us first consider the PF propagation mode and assume
the ideal case that the exact xc potential-functional is given
and the propagation can start from the exact static ground-
state density �0�r� at t=0. This means one would solve Eq.
�83� by time propagation “along” the exact density trajectory
�0�t�, for which the effective potential reduces to that ob-
tained from the trivial KS potential functional �see Eq. �84��.
Miraculously, one would not need to know the xc potential
functional at all since already the trivial KS potential func-
tional, via w��0�, would do the job. The catch is that the
propagation does not work. There is a problem associated
with the mapping ��t�→w���t�� �Eq. �71�� being “nonlocal”
in time �or noninstantaneous�. What does this mean? An in-
stantaneous potential functional, for example, is the Hartree
potential, J���t���r , t�: the density at a given time t deter-
mines the Hartree potential at the same moment t. But the
situation is not as simple in the case of the KS potential
functional. This can be seen by inspecting again the KS po-

tential functional �75� of the rKS formulation. The first con-
tribution on the rhs of Eq. �75� is instantaneous; the second
term, depending on the gradient of the phase function k�r , t�,
requires the first time derivative of the density, �̇�t�, accord-
ing to the discussion in Sec. V B; and the third term, being

the time derivative of the phase function, k̇�r , t�, can only be
determined if the second time derivative of the density, �̈�t�,
is available. A similar temporal nonlocality must be expected
for vxc���t�� and vext���t��.

What is the consequence of this temporal nonlocality for
the time propagation according to Eq. �83�? Obviously, the
second time derivative of the density is not determined by
the development through a given time t �“past” or “history”�
so that the potential at the time t is undefined unless one
takes into account the density beyond that point �“future”� in
the form of the second derivative. To see this more clearly let
us consider a general propagation scheme on a time grid. The
step generating the wave function at time tn+1 from that at tn
reads


�tn+1� = 
�tn� − i�t ĥKS�tn�
�tn� . �85�

Due to the presence of a temporal nonlocal potential func-

tional, the determination of ĥKS�tn� requires the second de-
rivative of 
�t� at tn, numerically given by the three-point
formula


̈�tn� =
1

�t2 �
�tn+1� − 2
�tn� + 
�tn−1�� . �86�

These equations show that, in order to determine the wave
function at the point tn+1, one already needs to know the
wave function at that point, thwarting the possibility of a
stringent propagation. Perhaps one could view Eqs. �85� and
�86� as implicit equations for 
�tn+1� to be solved by itera-
tion? But there is no a priori guarantee that such a procedure
would lead to a self-consistent solution. As another possible

way out, one might think of using the approximation 
̈�tn�
� 
̈�tn−1� in the sense of a predictor-corrector approach. In
practice, this may succeed for a while, but, lacking a correc-
tor step, one will sooner or later lose track of the actual
solution. One may compare the situation to the problem of
predicting the trajectory, say, of a missile using Newton’s
equations without knowing the actual force. The knowledge
of the trajectory r�t�, including velocity and acceleration,
through a given time allows one to extrapolate a probable
trajectory beyond that point, but not to predict the actual
trajectory.

The problem with the PF propagation becomes even more
distinct when the second time derivative of the density is
discontinuous. Like any TD SE, the TD KS equation is of
first order in time. Supposing a continuous TD potential, the
first derivative of the wave function will be continuous as
well. But the second derivative need not be continuous, and,
in fact, discontinuities will usually be encountered whenever
the perturbation u�t� is turned on, say, at t=0. In the latter
case, it is quite obvious that one would need the second
derivative at the t+ �future� side of the point t for the purpose
of propagation. To be more specific, assume a system in the
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unperturbed ground state for t	0. Consider a TD perturba-
tion of the form u�t�� t ��t�, or even u�t����t�. In both
cases, the density behaves as ���t��ct2��t� for small times,
that is, the second derivative vanishes for t	0 and is �2c
for t=0. Clearly, the propagation step at t=0 requires the
second derivative at 0+.

But what about the trajectory mode of solving the TD KS
equation? Let us suppose some “trial” density �trajectory�
��t� in a time interval ti� t� tf. Then of course also vef f���t��
is determined in that interval, and the TD KS equation can be
solved like any ordinary TD differential equation, yielding a
new, usually distinct, density trajectory �̃�t� in the considered
inerval. Obviously, this process can be iterated, establishing
a kind of a self-consistency procedure. Will it eventually lead
to the desired fixed-point solution �0�t�? That is the question.
Lacking a proof, the possibility of convergence of the fixed-
point iteration must be considered as unfounded. The situa-
tion differs from that in the static case, where the self-
consistency procedure is equivalent to the search for the
minimum of the energy functional, shown to exist according
to the HKII theorem or the Levy constrained search defini-
tion. Without a corresponding variational or stationarity prin-
ciple, the TD fixed-point iteration scheme cannot be ex-
pected to be convergent.

It should be noted that the trajectory and the PF propaga-
tion modes are, in fact, related. Choosing a �quasi-�in-
finitesimal time interval, say, the interval �tn , tn+1� between
two successive grid points, the self-consistency procedure for
the trajectory mode becomes equivalent to iteratively solving
Eqs. �85� and �86� for 
�tn+1�. This means that both modes of
treating the TD KS equation must be expected to fail as a
method to predict the desired fixed-point solution for the
same reason, that is, the absence of a variational principle in
the TD case.

To conclude, the TD KS equations do not provide a
method for predicting the exact density �0�t� of the interact-
ing N-electron system. They would allow one to reproduce
the time development of the density at the orbital level, pro-
vided the TD density is already given, e.g., from a solution
of the full N-electron TD Schrödinger equation, which is of
course without practical use. In view of this analysis, the
“causality problem” in the TDDFT linear response equations
is to be seen from a new perspective. Rather than being the
consequence of improperly defined xc functionals, as van
Leeuwen and others have supposed, the problem seems to
reflect a basic inadequacy of the formally correct, but not
predictive, TD KS equations. The shortcut to TD KS equa-
tions based entirely on the RG1 mappings between densities
and potentials does not suffice to establish physical equations
of motion. A suitable variational principle seems to be indis-
pensable for this end.

Let us add that at the formal level of TD KS theory the
distinction between predictive and merely reproductive equa-
tions is well concealed and easy to overlook. In particular,
the essentially mathematical, that is, acausal, nature of the
RG1 mappings between TD densities and potentials, suppos-
ing besides ��t� both the first and second time derivatives,
has become apparent only by the explicit construction within
the rKS framework.

D. Linear response in the adiabatic approximation

So far we have used the rKS concept as a tool to analyze
some basic aspects of the TDDFT approach. Let us finally
take a view at the structure of the results to be expected at
the linear response �LR� level of the theory.

Using the adiabatic approximation for the TD xc potential
functional, in both the usual and radical KS versions, leads to
the RPA-like equations given by Eq. �21�, where the blocks
of the secular matrix, A and B, are constant
�
-independent� matrices. The excitation energies 
m=Em
−E0 are obtained as the eigenvalues of the pseudo-
eigenvalue problem


 A B

B* A* �
xm

ym
� = 
m
 xm

− ym
� . �87�

The transition moment associated with the 0→m transition
derives from the corresponding �specifically normalized�
pseudo-eigenvector components according to

��m�D̂��0� = 

a,k

�xak,m
* dak + yka,m

* dka� . �88�

The manifold of excitations obtained from these equations is
determined by the configuration space of the secular matrix
block A �note that the RPA pseudo-eigenvalues occur in pairs
having positive and negative values, respectively�. For the
ordinary KS approach this means that the excitation mani-
fold is that of the p-h or single excitations �with respect to
the GS KS determinant�. Here each spatial p-h configuration
gives rise to four �primitive� spin states, from which one
singlet and three �degenerate� triplet states can be formed.
Let no=N /2 and nv denote the number of occupied and vir-
tual spatial KS orbitals. Then the KS LR excitation manifold
comprises 4nonv solutions. The full excitation manifold of N
interacting electrons is, of course, much larger, because
double and higher excitations come into play. It is thought
that the restriction to single excitations is a consequence of
the adiabatic approximation and the missing double and
higher excitations would be accounted for by going beyond
that approximation. Supposing that the exact TD xc potential
functional vxc����r , t� exists, one would arrive at the same
type of equations as in Eq. �21�, but now with 
-dependent
matrices A�
� and B�
�. In principle, this could lead to an
enhanced excitation manifold.

Let us now inspect the excitation manifold in the rKS
case. The LR equations within the adiabatic approximation
have the same structure �Eq. �21�� as those of the usual KS
approach, but there is only one occupied spatial KS orbital
�no=1�. As a consequence, the excitation manifold comprises
only nv excitations, that is, the excitations out of a single
�average� KS orbital. Moreover, any spin degrees of freedom
are missing, and, even if one assigns the nv spatial excita-
tions to singlets, any triplet excitations are absent. We have
argued that the TD treatment in the rKS framework is as
legitimate or not legitimate as the usual KS approach. This
means that here the hypothetical nonadiabatic TD xc poten-
tial functional ṽxc����r , t� must not only account for the
double and higher excitations but has to restore already the
single excitation manifold. A generation of triplet excitations
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appears to be completely impossible, because the density
function ��r , t� and, thus, ṽxc����r , t�, does not bear informa-
tion on the spin degrees of freedom. Let us note that the
absence of triplets in the rKS version does not constitute an
inconsistency with the N-particle KS case. In principle, the
standard KS approach too does not allow for triplets, because
the perturbing TD potential has to be local, and a local po-
tential cannot excite triplets from a singlet ground state. This
fact is often suppressed because, in a technical sense, the
usual TDDFT LR equations do yield triplet excitations �al-
beit with vanishing intensities�. In the rKS scheme triplet
excitations are accessible neither basically nor technically.

As was noted in Sec. IV, the rKS variant is only the lim-
iting case of more general M-electron KS schemes, where
the number M of noninteracting electrons may even exceed
N. In the latter case the adiabatic approximation would pro-
duce more single excitations than the original interacting
N-electron system, which would mean that the nonadiabatic
TD xc potentials must eliminate spurious solutions intro-
duced at the adiabatic level of theory.

This shows that the well-known excitation manifold or
“counting” problem of the LR form of TDDFT is further
aggravated in the rKS �and M-electron KS� variants.
Whereas it cannot be excluded that a hypothetical energy-
dependent xc potential beyond the adiabatic approximation
might restore the single-excitation manifold of the ordinary
KS scheme and, moreover, generate double and higher exci-
tations, it appears more convincing to see this problem as an
indication of the invalidity of the TDDFT equations.

VI. SUMMARY AND CONCLUSIONS

In this paper we have critically reexamined the founda-
tions of TDDFT. In particular, we have addressed the ques-
tion whether TDDFT is, in principle, exact. What have we
learned to judge that issue? Let us summarize the three main
results of our investigation.

First, we have observed that an error is introduced in both
the TD and static KS linear response theory if the perturbing
�external� potential is given by a nonlocal operator. This er-
ror, resulting from the neglect of the h-h and p-p matrix
elements of the perturbing operator in the KS response equa-
tions, is of second order in the electronic repulsion. Yet for a
local �multiplicative� potential no logical inconsistency
arises, because the absence of h-h and p-p matrix elements
does not imply a loss of information of the local operator. As
stated in Theorem 1 of Sec. III, this is a remarkable general
property of local operators. It is a well-known consistency
requirement of DFT that the external potentials must be lo-
cal. One can also extend the HK and KS approach to general
nonlocal potentials, but that would require the incorporation
of the nonlocal potentials already in the definition of the HK
functional FHK���, and, accordingly, in the KS xc potential
vxc���. As a consequence, the functionals would no longer be
universal but would depend on the respective nonlocal po-
tentials.

The problem of the nonlocal operators reminds us that the
KS LR equations cannot be viewed as having an uncondi-
tional physical meaning. In fact, their validity derives from

the underlying theory. The CPKS equations, for instance, are
founded on a valid first-order perturbation theory for the KS
equations for the perturbed N-electron system. In the TD
case the validity of the response equations would presuppose
that the time-dependent extension of the KS equations be
correct, that is, the TD KS equations establish a formally
exact approach to the time development of the N-electron
density.

Second, we have discussed an utmost simplification of the
KS concept, referred to as the radical Kohn-Sham approach.
Here the ground-state density is obtained from a single one-
particle KS equation supposing a correspondingly modified
xc potential. In principle, the rKS form of the theory is as
legitimate as the usual N-particle KS approach. Whereas the
ordinary KS approach will certainly be better suited for de-
veloping practical computational schemes, it is not incon-
ceivable that the rKS variant will have some computational
potential as well. More importantly though, the rKS formu-
lation represents a useful pedagogical and analytical tool,
and as such it has been used here to elucidate basic aspects of
DFT and TDDFT.

In the TD extension of the rKS approach, having the same
validity status as the ordinary TD KS theory, a single TD
one-particle KS equation, though involving a possibly very
complicated TD xc potential, would allow us to determine
exactly the time development of the density function of the
full interacting N-electron system, thus bypassing the
N-electron time dependent Schrödinger equation. Given the
richness of the phase relations of the full N-electron wave
function, the spin degrees of freedom, even the permutation
symmetry, all the wealth of information seemingly absent in
a one-particle orbital or the one-particle density function, the
possibility of predicting the exact time development at a fic-
titious one-particle level must appear fantastic. But this is
what TDDFT implies. Is that expectation justified? Guided
by the rKS approach, in the third step, we have critically
reexamined the RG foundation of TDDFT. What has become
apparent here is a phase problem corrupting the definitions of
the RG action integral functionals, as already recognized and
analyzed by van Leeuwen in a different way �36�. Our find-
ings fully confirm van Leeuwen’s conclusion that the RG
foundation of TDDFT, based on analogs to the HKI, HKII,
and KS theorems, is invalid.

Yet there is an alternative way of introducing the KS
equations of TDDFT without invoking a variational prin-
ciple, as formulated by Gross, van Leeuwen, and others.
Once again, this idea can be analyzed at the rKS level. The
mere existence of one-particle KS-type equations reproduc-
ing the exact TD density is almost a triviality within the rKS
framework. But these equations do not allow one to predict
the exact density �0�t� of the interacting N-electron system.
Due to the temporal nonlocality of the KS potential function-
als, explicitly seen at the rKS level, the usual time-
propagation schemes for solving the TD KS equations cannot
be applied. Moreover, a possible self-consistent procedure
based on successive trajectory mode solutions of the KS
equations within a definite time interval cannot be expected
to succeed as the question of convergence is completely un-
founded. As we have argued, the common cause for these
failures is the absence of an underlying variational principle.
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The concept of a shortcut to TD KS equations based entirely
on the RG1 mappings between densities and potentials, dis-
pensing with a variational principle, must be seen as an illu-
sion.

Given that the original RG foundation of TDDFT is in-
valid and the design of a KS theory without a variational
principle unfounded, one should face the possibility that the
idea of TDDFT, that is, the idea of a formally exact method
for predicting the time development of an interacting
N-electron system at the orbital level, must be abandoned.
The TDDFT approach �in linear response form� was first
introduced 25 years ago as an analog to the TDHF method
�or RPA� before any attempts at a rigorous foundation had
been made. Without the RG theorems or other viable justifi-
cation, the theory would be set back to the status it had in its
beginning: an empirically “corrected” version �17� of the
RPA. While TDDFT �LR� may afford an improvement over
the RPA description, it cannot escape the RPA limitation of
being an approximate method for singly excited states.
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APPENDIX: MATRIX REPRESENTATION OF LOCAL
OPERATORS

For matrix representations of local one-particle operators
the following uniqueness theorem holds.

Theorem 1. If two local operators v�r� and w�r� have the
same p-h matrix elements with respect to an arbitrary parti-
tioning of a �complete� one-particle basis into hole �h� and
particle �p� states, they can differ only by a constant �, that
is, w�r�=v�r�+�.

Proof. Let �s�r�, s=1,2 , . . . , denote the functions �orbit-
als� of a one-particle basis and assume a partitioning of the
orbitals such that �1�r� , . . . ,�n�r� are referred to as occupied
or hole states and �n+1�r�, �n+2�r� , . . . as unoccupied or par-
ticle states. Consider two local operators v�r� and w�r� hav-
ing the same p-h matrix elements,

��a�v��k� = ��a�w��k�, k � n, a � n . �A1�

This means that the p-h matrix elements of the difference
operator ��r�=w�r�−v�r� vanish:

�ak = ��a�w − v��k� = 0, k � n, a � n . �A2�

Now consider the n functions ��r��l�r�, l�n. These func-
tions may be expanded in terms of the basis functions,

��r��l�r� = 

s=1

�

�sl�s�r� �A3�

=

k=1

n

�kl�k�r�, l � n , �A4�

yielding finite linear combinations as a consequence of Eq.
�A2�. Obviously, the latter equations can be brought to diag-
onal form by a suitable unitary transformation:

��r��̃k�r� = �̃kk�̃k�r�, k � n . �A5�

This means that all transformed diagonal matrix elements

must be equal, �̃kk=�, k�n, and the difference potential is
constant: ��r���.

The proof given here shows that the theorem can also
stated as follows: Any local operator with vanishing p-h ma-
trix elements with respect to a complete basis set and an
arbitrary partitioning into p and h states must be a constant.
There is an apparent objection: What about a diagonal rep-
resentation of the operator? The answer is that local opera-
tors cannot be diagonalized properly, that is, in the Hilbert
space of l2 functions.

An interesting question arising in this context is if it is
possible to reconstruct a local operator v�r� �up to a con-
stant�, if only its p-h matrix elements are given. It seems that
this is not possible except for the special case n=1 �one
occupied state�. Let us first inspect the case n=1 and let
�1�r� be the single h orbital. Expanding v�r��1�r� yields

v�r��1�r� = v11�1�r� + 

a=2

�

va1�a�r� , �A6�

where vpq= ��p�v��q� denote the matrix elements of v�r�. Di-
viding this expression by �1�r� yields an explicit representa-
tion

v�r� = v11 + 

a=2

�

va1�a�r��1�r�−1 �A7�

which reconstructs v�r� in terms of the p-h matrix elements
va1 up to a constant, being here the �single� h-h matrix ele-
ment v11.

In obvious generalization of the case n=1 one may pro-
ceed as follows. Let there be n occupied orbitals
�1�r� , . . . ,�n�r�, n�1. Expanding the products v�r��i�r�
gives

v�r��i�r� = 

k=1

n

vki�k�r� + 

a=n+1

�

vai�a�r�, i � n , �A8�
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where the summation on the rhs has been split into h and p
parts. As in the proof above, the h-h block of the v matrix
can be diagonalized by a suitable unitary transformation,
yielding

v�r��̃i�r� = ṽii�̃i�r� + 

a=n+1

�

ṽai�a�r�, i � n . �A9�

Here ṽai denote the transformed p-h matrix elements of
v�r�. Dividing these equations by the respective transformed

occupied orbital �̃i�r� leads to n different representations
of v�r�,

v�r� = ṽii + 

a=n+1

�

ṽai�a�r��̃i�r�−1, i � n . �A10�

However, this does not solve the problem because the trans-
formed p-h matrix elements ṽai cannot be determined with-
out diagonalization of the h-h block of the v matrix, that is,
without the knowledge of the h-h matrix elements. Thus, it
appears that one encounters a similar situation as in the the-
oretical foundation of DFT, where the Hohenberg-Kohn
theorem states the existence of a universal xc functional
without any constructive means.
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