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The spectrum of the Dirac equation for hydrogenlike systems with extended nuclei becomes complicated
when the nuclear charge exceeds a critical value Z= 170, since the lowest bound state becomes a resonance in

the negative energy continuum. We address the problem of computing the resonance parameters by extending
the mapped Fourier grid method to incorporate either complex scaling of the radial coordinate, or alternatively
a complex absorbing potential. The method is tested on the case of quasimolecular collisions in the monopole

approximation.
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I. INTRODUCTION

The spectrum of hydrogenlike atoms represents a text-
book example both in nonrelativistic and in relativistic quan-
tum mechanics. In the relativistic case of the Dirac-Coulomb
problem with pointlike nuclei problems arise for Za=1 [1].
Recently it was shown that solutions are possible for any
value of the nuclear charge Z, when self-adjoint extensions
of the Hamiltonian are introduced [2]. For large Z, the effects
of extended nuclei become important [3,4]. For very large
values of Z=170 the 1S;,, energy eigenvalue merges with
the negative continuum (E<-mc?). The interpretation
worked out by the Frankfurt group is that the 1S;,, state
becomes a resonance for Z>Z,, [5]. The precise value of Z,
depends on the model for the extended nucleus [3].

Given that no ordinary nuclei exist with charges in this
range one might consider the problem an academic one.
However, in the context of heavy-ion collisions near the
Coulomb barrier an adiabatic treatment of the inner electron
shells is called for (due to the slow-down of the nuclear
motion caused by the Coulomb repulsion) [5—8]. Therefore,
the problem resurfaces in the context of the monopole ap-
proximation to the full time-dependent two-center problem.
When a K-shell vacancy is brought into the collision it
couples resonantly to the filled negative-energy continuum
once the system becomes supercritical. This coupling then
leads to a breakdown of the perturbative QED vacuum [1].

Systematic studies of resonance parameters in atomic
physics are usually performed by so-called dilation methods
where the radial position coordinate is rotated into the com-
plex plane. Recent advances in such techniques in nonrela-
tivistic quantum mechanics can be found in the literature
[9.10]. The goal is to modify the resonance wave function so
that it becomes square integrable. The eigenvalue problem
becomes non-Hermitian and the resonance parameters are
given by a complex energy eigenvalue. Details on how to
deal with the non-Hermitian eigenvalue problem have been
given recently [11]. The method of complex rotation (scal-
ing) has been used, e.g., to compute Stark-level parameters
[12,13], and electron-atom [14] and electron-molecule reso-
nance states [15]. For the relativistic Dirac case, the Stark
resonance parameters have been computed only recently by
this technique in the weak relativistic limit [16]. Complex
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scaling has also been used in the context of relativistic many-
body perturbation theory [17].

In the present work, we apply two analytic continuation
methods to the problem of supercritical 15,;,, Dirac reso-
nances, namely the complex scaling (CS) method and the
method of a complex absorbing potential (CAP). The tech-
nique to construct a matrix representation of the Dirac
Hamiltonian is an adaptation of the mapped Fourier grid
method [18,19] which we applied recently to the ordinary
Dirac-Coulomb problem [20].

The diagonalization of a matrix representation of the
Hamiltonian provides a discretized spectrum with positive-
energy and negative-energy quasicontinuum states which
span a large range of energies. We demonstrate that a direct
application of the Hermitian method yields a representation
of the supercritical resonance as a superposition of these con-
tinuum states. Once we apply one of the analytic continua-
tion techniques the supercritical resonance is represented by
a single state. This allows for a more accurate determination
of the resonance parameters.

II. THEORY
A. Supercritical resonances

In single-particle quantum mechanics bound states be-
come resonances when the potential is modified such that the
previously bound particle can escape to infinity (e.g., when
the linear Stark potential is added to the Coulomb interac-
tion). More generally for a system which has sufficient en-
ergy to break up into two or more subsystems a scattering
state is called resonant if it is long-lived compared to the
collision time [21,22]. Such a state is described by the mean
energy position E,, (which is usually shifted from the
bound-state eigenenergy), and by the lifetime 7. The latter
provides a measure of the decay time of an initially prepared
quasibound state. In scattering theory, the total cross section
resonates if the particle energy is close to E.. and can be
described by a Breit-Wigner shape, which is characterized by
a width parameter I". According to the uncertainty principle
the temporal behavior of a decaying bound state and the
cross section shape are related by I'7~#. A determination of
I' normally requires a solution of the scattering problem for
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many energies in the vicinity of E,., and a fit of the phase
shifts to the Breit-Wigner shape.

In analytic continuation methods the resonance param-
eters E,., and I are determined from a non-Hermitian eigen-
value problem with eigenenergy Ei=FE,—il'/2. Without
complex scaling, the eigenstates (called Siegert states) are
non-normalizable (exponentially divergent). The dilation
transformation makes them square normalizable and ame-
nable to calculation by basis-state expansion. An alternative
to the dilation transformation is the addition of a complex
absorbing potential at large distances.

Supercritical resonance states occur when the attractive
Coulomb potential, modified at short distances to account for
a finite nucleus, becomes deep enough such that the energies
of some low-lying bound states fall below —mc?. These
negative-energy resonances are qualitatively similar to reso-
nances embedded in a positive-energy continuum and can be
characterized by discrete complex energies. In contrast to
resonances embedded in the positive continuum, supercriti-
cal resonance energies are given by Eg=FE . +il'/2. This is
understood by reinterpreting the supercritical resonance for
an electron with negative energy as a positive-energy posi-
tron resonance propagating backwards in time according to
CPT symmetry. The time reversal transformation necessitates
a positive imaginary part of the energy eigenvalue to ensure
that the state decays as time propagates to negative infinity.
In order to calculate the supercritical resonance parameters
the Hamiltonian is analytically continued (either by complex
scaling or by adding an imaginary long-range potential) in
order to break the hermiticity of the Hamiltonian, which re-
sults in complex eigenvalues [21].

B. Complex scaling

Complex scaling introduces an analytic continuation of
the Hamiltonian by a transformation of the reaction coordi-
nate by r— re'?, where 6 is a real parameter (rotation angle).
It has been used extensively in atomic and molecular physics
and has been put on firm mathematical grounds by Reinhardt
[22] and Moiseyev [21]. Recently it was applied to the case
of Stark resonances in the Dirac equation [16]. Increasing 6
in small steps from zero results in a series of energy spectra
where the continuum-state energies are increasingly rotated
into the complex energy plane with the branch cuts as pivot
points. The bound states remain on the real axis and are not
affected by the change in 6. As 6 is increased from zero the
resonance states initially rotate with the neighboring con-
tinuum states, but then stabilize at the resonance energy, and
remain relatively stable for a range of 6 values (this is why
the method is also referred to as the stabilization method).
The closest approximation to the resonance energy occurs at

the most stable energy eigenvalue along the 6 trajectory,

L dEg]) . . . .
which is found where (|d—;|) is minimized.

C. Complex absorbing potential

Adding a complex absorbing potential to the Hamiltonian
is an alternate way of analytically continuing the Hamil-
tonian, and has been put on firm mathematical grounds by
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Riss and Meyer [23]. An illustration of why the method
works was given recently by Santra [24]. Several authors
have used this method with the Schrodinger equation
[25-31], yet no work in the literature is known to us where
the CAP has been used with the Dirac equation. To augment
the Dirac Hamiltonian, the CAP should transform as a scalar,

Hepp=H-inW(r), (1)
where 7 is a non-negative parameter determining the
strength of the CAP, ,é is the standard Dirac matrix [1], and

W(r) is a function tailored for the specific problem. Its prop-
erties are chosen such that the “bound” part of the resonance
state is not deformed significantly, i.e., one chooses a poten-
tial function which is nonzero in the asymptotic region only.
The procedure for revealing the resonances is similar to that
of CS. The strength of the CAP is increased from 7=0 in
small steps which yields a sequence of eigenvalue spectra as
a function of 2. To identify the resonance energy one

searches for the minimum of (‘ ni—?p along the 7 trajectory
[23].

D. Matrix representation from the mapped Fourier grid
method

Both the CS and CAP methods are usually implemented
in a matrix representation. Of particular importance to reso-
nance problems is the coupling to continuum states. The
mapped Fourier grid method provides an efficient represen-
tation of the Hamiltonian and yields a systematic discretiza-
tion of its continuum spectrum [20]. It works by first map-
ping the semi-infinite radial coordinate to a finite equidistant
parameter ¢ € [0, 7r]. The mapping function is chosen to al-
locate many points near the origin and then at increasingly
sparse intervals further from the origin. We choose

r(p) =[5 — 4000 arctan(s p/4000) /(¢ — m)>.  (2)

The parameter s of the mapping function allows for a tailor-
ing of the grid to a given potential. The solution to the Dirac
equation is then expanded into a finite sine series given by

N
f(r()) = 2 by sin(mep), (3)
m=1
LD S 1 cosins), @)
dd) m=1
where without approximation
,
bn= 7 2 /(& ))sinin,). (5)

The set {¢;:i=1,...,N} defines the radial collocation points.

Upon diagonalization of the matrix representation of size
2N X 2N, one obtains N negative energy states, and a total of
N bound and positive continuum states. For supercritical
Hamiltonians, an increased density of states occurs in the
vicinity of the supercritical resonance energy. This is demon-
strated in the next section.
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III. RESULTS

While it is possible to solve the Dirac equation for a
single extended nucleus of supercritical charge Z> 170, no
evidence exists for such exotic elements. Therefore, we use a
physically relevant model of two extended nuclei separated
by distances of the order of a few nuclear radii. In this work
we focus almost exclusively on the U%**+Cf*®* system at a
distance of R=20 fm in the monopole approximation. We
compare results from the two analytic continuation methods
to previous literature values. At the separation of R=20 fm

PHYSICAL REVIEW A 75, 022508 (2007)

the ground state, 1So is embedded into the negative-energy
continuum as a supercritical resonance at about —1.76mc?,
ie., well below the negative continuum boundary. The
nuclear radius is taken to be R,= 1.27A fm, where A is the
number of nucleons (in our case Ay;=238 and A=251). The
nuclei are assumed to be displaced homogeneously charged
spheres with a separation of R between the charge centers. In
the center-of-mass frame the monopole potential for each of
the two nuclei with respective charge Z;, radius Rl(;), and
center-of-mass displacement R, is given (in units of fi=c
=m,=1,2=7;,R,=R") by

forr>r,,

.
Za
r
Vi) o4 - 22 ((Rc.m.—Rn)3(RC.m.+3Rn) _Rem =2R,) 3RS, —R)r Renr 1
RR. 16r 4 8 8 16
Za
\ Rc.m

where r,=R.,, =R, [32]. The expression is obtained from
the potential for a homogeneously charged sphere displaced
by R., along the z axis and then expanded in Legendre
polynomials.

The mapped Fourier grid method can provide approxi-
mate resonance parameters directly without analytic continu-
ation methods. Even though it is unlikely that a discretized

continuum eigenstate of the Hamiltonian matrix will fall ex-
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FIG. 1. (Color online) The projections [{A(E,)| s>/ (E,
—E,_;) of a bound ¢, state onto the supercritical U-Cf quasicon-
tinuum states @(E,) (calculated for a N=3900 and s=6000 basis)
are shown as crosses (+). The subcritical bound ¢, was obtained
for a separation of R=45 fm, while the supercritical basis is for R
=20 fm. The line represents a Breit-Wigner fit to the data with
E.s=—1.75795mc? and T'=4.12 keV for the U-Cf system at R
=20 fm.

) forr-.<r<r,,

forr<r_,

(6)

actly on the mean energy of the resonance, the closer such a
state is to the mean energy the more it resembles the reso-
nance state. The bound (small-distance) part of a supercriti-
cal 1So resonant state is similar to a subcritical 1So state.
The inner product of a normalized subcritical and supercriti-
cal 1So equals approximately one, and thus the projection of
a subcritical 1So onto the supercritical basis states shows
how similar the latter states are to a bound state.

A plot of the square modulus of this inner product, P,
displays the resonance shape as shown in Fig. 1. By fitting
the data to a Breit-Wigner distribution the parameters of the
supercritical resonance (E,,I") are obtained without the
need to subtract a background. This provides a direct and
independent verification of the analytic continuation methods
discussed below. The result is, however, sensitive to the par-
ticular subcritical 1So used for the calculation of P.

The resonance parameters can also be calculated by fitting
the Breit-Wigner shape to the density of states as shown in
Fig. 2. We obtain the density of states (in arbitrary units) by
calculating

E,,+E, 1
p( - )= : (7)
2 EV+1_EV

where E, are the quasicontinuum eigenvalues. The fit re-
quires the approximation to the local background density,
and, thus, the results are somewhat sensitive to the form of
the fit. Using a single rational term for the background with
a Breit-Wigner distribution added the density of states is fit-
ted in Fig. 2 by
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FIG. 2. (Color online) The density of states Eq. (7) from a
Hermitian matrix diagonalization for the U-Cf (R=20 fm) Hamil-
tonian obtained with a basis with N=3900 states and s=6000, is
shown by crosses (+). The line shows a fit with Eq. (8), and yields
E,es=—1.757 94mc? and I'=4.17 keV.

A, 2
|Eu|q 2(Eres_Ev)2+ F2/4’

p(E,) = (8)

where A, A,, and ¢ are fit constants. For both methods some
inaccuracy is introduced by the choice of energy window to
which the fitting procedure is applied. The analytic continu-
ation methods discussed below are free from these problems.

Figures 1 and 2 also provide an indication of the energy
resolution achieved by the present implementation of the
mapped Fourier grid method. In a matrix representation ob-
tained by conventional localized basis sets it would be diffi-
cult to attain this level of resolution. Nevertheless, we call
the present discretization a quasicontinuum, since it is clear
that each discretized continuum state has a finite energy
width associated with it, i.e., it really does represent a wave
packet state.

For the present problem there is no barrier in the poten-
tial. However, as explained by Reinhardt et al. [5] one can
find the region where the supercritical resonance state dis-
plays tunneling behavior by looking at the intersection of E
with the curve V(r)—mc?. For our case this occurs at ry,~2
(in units of 2/m,c).

For the calculations with complex absorbing potential we
choose the polynomial form

W(r)=0(r-rJ)r", )

where © is the Heaviside step function and n=1. When
using a linear absorber (n=1) we found that the resonance
parameters (E,.,I") do depend on the choice of r,, but are
least sensitive when r,.=ry. In fact, we observe a minimum
for the width parameter, I', at r.=ry as seen in Fig. 3. For a
quadratic CAP (n=2) there is minimal variation in the ex-
tracted resonance parameters on the same scale.

We can draw a few conclusions from these results. The
linear CAP through the sensitivity of the result to the value
of r., is providing support to the notion of an effective po-
tential barrier in the calculation at r=~r,.. The quadratic CAP
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FIG. 3. (Color online) The width I'(1S¢) as a function of r. (in
units of 72/mc) for a linear (X) and a quadratic (+) CAP, as obtained
in a basis specified by N=2000 and s=6000 for the U-Cf (R
=20 fm) system.

calculation is deemed to be less sensitive to the value of r,
due to the gradual turn-on of the absorber with continuous
derivative. Obviously it leads to more accurate results and
will be used in the subsequent comparisons. Both CAP cal-
culations do provide, however, consistent results for the
complex resonance energy.

In Fig. 4, our results for the different analytic continuation
methods are compared for the U%*+Cf*** system at R
=20 fm. The resonance energy E, and the width I' are
shown as a function of the mapping parameter s [cf. Eq. (2)]
for a fixed mesh size of N=2500 collocation points for the
CS method and N=2000 points for the quadratic CAP
method. The linear CAP results would be indistinguishable
from the n=2 results on the scale of the figures.

We find that the CS and CAP (n=2) methods return con-
sistent results within a parameter range of 500 <<s<<8000
with small relative fluctuations. Both E,., and I" are deter-
mined with a relative accuracy of better than 10~*. For values
of the mapping parameter s outside of the ideal range the
uncertainties increase, particularly so for the width.

Also shown in Fig. 4 are two results for the same system
from Ref. [5]. They deviate among themselves on the same
scale approximately as from the present values derived from
the CS and CAP methods. Not shown are the results from the
Breit-Wigner fits based on the diagonalization of the Hermit-
ian Hamiltonian matrix in the Fourier grid method. We note,
however, that E . is predicted in close agreement with the
CAP or CS data, while I is overestimated. For the projection
method it happens to agree with the result from a phase-shift
analysis performed in Ref. [5].

In order to demonstrate the convergence properties of the
present CAP and CS results, we explore in Fig. 5 the depen-
dence of I" on the grid size N for a fixed value of the map-
ping parameter (s=1000). The data indicate a systematic
variation with N for the CS data at large N, and for N
=2500 it appears as if the width is established to four sig-
nificant digits. The CAP results, on the other hand, display
better convergence at N=1000 already, with a deviation of
less than 20 meV from the N=2000 result. The stability of
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FIG. 4. (Color online) The width I'(1S0) and mean energy
E,s(1S0) for the U-Cf (R=20 fm) system as a function of the map-
ping parameter s [cf. Eq. (2)] with N=2500 points for the CS
method (X) and N=2000 points for the CAP method (+). The lines
indicate values from Ref. [5], the phase-shift result is given as a
solid line, and the truncated potential method result as a dashed
line.

E,. for different grid sizes is on the order of 10™8mc? for
both methods and so it is stable for all N values shown.

To generalize our results from the test case of a U-Cf
quasimolecule at R=20 fm to other situations, we have ex-
plored the relationship between the resonance position and
width. In Fig. 6, I' is shown as a function of E,. over a
substantial range of system parameters. On the scale of the
graph, differences between the present data and previous lit-
erature results cannot be noticed, i.e., they follow an almost
universal curve. A number of the data points were obtained
from different quasimolecular systems at various internuclear
separations with both point and extended nuclear models (in
monopole approximation). Data from single-center calcula-
tions with one extended nucleus also follow the same rela-
tionship.

The data displayed in Fig. 6 demonstrates that the mapped
Fourier grid method provides an accurate discretization in
order to represent resonances embedded deeply in the nega-
tive continuum. We find that small changes to the potential
(single-center vs monopole approximation to the two-center
Coulomb interaction), or changes to the method of deriving
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FIG. 5. (Color online) The width I'(1So) as a function of mesh
size N using the CS (X), and quadratic CAP (+) methods with
mapping parameter s=1000 for the U-Cf (R=20 fm) system.

the resonance parameters, such as represented by those used
in Ref. [5] or the Hermitian projection and density of states
methods result in small deviations from the E,. vs I' rela-
tionship displayed in Fig. 6. These deviations are on the scale
of up to a percent, such as displayed in Fig. 3. We carried out
calculations with the quadratic CAP method for the U-Cf
system with distances in the vicinity of R=20 fm to explore
whether one of the data pairs (E,.,I") from Ref. [5] could be
reproduced accurately, and found this not to be the case.

IV. CONCLUSIONS

Analytic continuation by a complex absorbing potential
was applied to the Dirac equation and shown to provide a
robust technique for computing supercritical resonances
when using the mapped Fourier grid method to generate a
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FIG. 6. (Color online) The width I'(1So) as a function of
E,.(1S0) calculated by different methods and using different super-
critical potentials. The U-U and U-Cf data from Ref. [5] were ob-
tained for the distances R=16", 16, 20, 25, 30 fm, while the single-
center CAP/CS data from the present work were obtained for Z
=195,193,190,187,184,181,178. The leftmost U-U and U-Cf
points marked by R=16" fm were calculated with pointlike nuclei.
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matrix representation of the Hamiltonian. Both a linear and a
quadratic CAP potential were used and gave consistent re-
sults. The quadratic CAP was found to be superior due to the
virtual independence of the results on the choice of the
boundary parameter r., where the absorber kicks in.

Analytic continuation by complex scaling has also been
shown to be an accurate method for computing supercritical
Dirac resonance parameters. Its advantage of introducing a
single parameter with a well-defined optimization criterion
was found to be offset by the need of larger matrix sizes
within the mapped Fourier grid method.

The mapped Fourier grid method without analytic con-
tinuation is capable of representing the spectrum to a degree
where the resonance parameters can be estimated on the ba-
sis of overlap matrix elements or the density of states. Its
implementation is straightforward as there is no dependence
on external parameters and subsequent optimization.

PHYSICAL REVIEW A 75, 022508 (2007)

Thus, it has been shown that a problem with somewhat
uncertain results, which were obtained a number of years
ago, can now be solved systematically to a desirable level of
precision. The advantage of the analytic continuation meth-
ods is that they yield a unique result free of any fitting pro-
cedures.

Finally, we note that the mapped Fourier grid method with
quadratic CAP or with CS is well-suited to investigate effects
beyond the monopole approximation to the two-center super-
critical potential. We also anticipate that time-dependent
relativistic collision calculations based on these techniques
will offer advantages over previous calculations.
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