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Atomic Compton profiles �CPs� are a very important property which provide us information about the
momentum distribution of atomic electrons. Therefore, for CPs of heavy atoms, relativistic effects are expected
to be important, warranting a relativistic treatment of the problem. In this paper, we present an efficient
approach aimed at ab initio calculations of atomic CPs within a Dirac-Hartree-Fock �DHF� formalism, em-
ploying kinetically balanced Gaussian basis functions. The approach is used to compute the CPs of noble gases
ranging from He to Rn, and the results have been compared to the experimental and other theoretical data,
wherever possible. The influence of the quality of the basis set on the calculated CPs has also been system-
atically investigated.
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I. INTRODUCTION

Recent years have seen tremendous amount of progress in
the field of relativistic electronic structure calculations of at-
oms and molecules using Dirac-equation-based approaches
�1�. Particularly noteworthy are the advances made in the
field of basis-set-based relativistic electronic-structure theory
pioneered by Kim �2� and Kagawa �3�. Although, initially,
the basis sets employed in the calculations were of the ordi-
nary Slater-type �2,3�, however, nowadays, the preferred ba-
sis functions are those which incorporate the so-called
kinetic-balance condition between the large and the small
component basis functions �4–6�. The most commonly used
variety of such functions in relativistic electronic-structure
calculations are the kinetically balanced Gaussian functions
�KBGFs� which have not only been instrumental in avoiding
the problem of “variational collapse,” but have also allowed
the import of efficient algorithms developed in basis-set-
based nonrelativistic quantum chemistry. Using such basis
functions, calculations are now routinely performed both at
the mean-field Hartree-Fock �henceforth Dirac-Hartree-Fock
�DHF�� level �7,8�, as well as at the correlated level, employ-
ing methods such as the configuration-interaction �CI� ap-
proach, both for atoms �9� and molecules �10�.

However, the progress in calculating wave functions and
atomic energies using KGBFs has not been matched by the
progress in computing expectation values corresponding to
various physical quantities. For example, atomic Compton
profiles �CPs� are a very important property which provide
us information about the momentum distribution of atomic
electrons, and help us in interpreting the x-ray Compton scat-
tering data from atoms in the large momentum-transfer re-
gime �11�. Compton profiles are also very useful in under-
standing the bonding properties, as one makes a transition
from the atomic scale to the scale of condensed matter �11�.
Indeed, the nonrelativistic Schrödinger equation-based calcu-
lations of CPs of atomic and molecular systems both within
an ab initio, as well as model-potential based formalisms are
quite well developed �11�. As recently demonstrated by us,

and several other authors earlier on, such nonrelativistic ab
initio calculations of CPs can also be performed on crystal-
line systems �12�. However, for systems involving heavy at-
oms, on intuitive grounds one expects that the relativistic
effects will become quite important, thereby requiring a rela-
tivistic treatment of the problem �13�. A while back Mendel-
sohn et al. �14� and Bigss et al. �15� presented the first fully
relativistic calculations of atomic CPs which were performed
at the DHF level, employing a finite-difference-based nu-
merical approach. Yet, since that time, there has been hardly
any activity in the field, which is surprising given the fact
that now relativistic electronic-structure calculations are rou-
tinely performed employing KBGF basis functions. There-
fore, in this work, our aim is to report calculations of atomic
CPs at the DHF level, employing a basis set composed of
KBGFs. Our approach is based upon analytic formulas for
the CP matrix elements with respect to a KBGF basis set,
whose derivation is presented in the Appendix. The DHF
calculations of atomic CPs are presented for the entire rare
gas series �He to Rn�, and our results are compared to ex-
perimental data, wherever available. Additionally, our results
for Ar, Kr, Xe, and Rn are also compared to the DHF results
of Mendelsohn et al. �14� and Bigss et al. �15�, and excellent
agreement is obtained between the two sets of calculations.

At this point we would like to clarify one important aspect
related to the relativistic effects which our calculations are
computing, in light of the fact that there have been several
papers in the literature dealing with a relativistic treatment of
Compton scattering of bound electrons �16–18�. Several au-
thors have pointed out that for very large photon energies, a
fully relativistic treatment, within the framework of quantum
electrodynamics, of the Compton scattering from bound
electrons is essential �13�. When such a treatment of the
problem is performed, it is not clear whether the Compton
scattering cross sections can be written in terms of Compton
profiles �13,16–18�. Our work presented here, however, does
not correspond to that regime of photon energies. What we
mean by the relativistic effects here are the changes in the
computed CPs because of a relativistic treatment of the
bound electrons within a Dirac-Hamiltonian-based formal-
ism. Thus, our calculations assume that the Compton scatter-
ing from atomic electrons can be described in terms of the
CPs under the impulse approximation �19�. The electron mo-*Electronic address: shukla@phy.iitb.ac.in
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mentum densities needed to calculate the CPs, however, are
computed from the Dirac orbitals of the atomic electrons.
This approach is identical to the one adopted in the earlier
DHF calculations �14,15�.

The remainder of this paper is organized as follows. In
Sec. II we present the basic theoretical formalism behind the
present set of calculations. Next, in Sec. III we present and
discuss the results of our calculations. Finally, in Sec. IV our
conclusions, as well as possible future directions for further
work are discussed. Additionally, in the Appendix we present
the derivation of the closed-form formulas for CPs over KB-
GFs used in our calculations.

II. THEORY

Our theory is based upon the Dirac-Coulomb Hamiltonian

H = �
i

�c�i · pi + c2��i − 1� + Vnuc�ri�� + �
i�j

1

rij
, �1�

where c is the speed of light, p is the momentum operator,
Vnuc�r� is the electron-nucleus interaction potential, indices i
and j label the electrons of the atom, and rij is the distance
between the ith and jth electrons. For Vnuc�r� a spherical
finite-nucleus approximation is employed, with the radius es-
timated as 2.2677�10−5A1/3, where A is the atomic mass
number �7�. The Dirac matrices are chosen to be �= � 0 �

� 0
� and

�= � I 0
0 −I

�, where 0, I, and � represent the 2�2 null, identity,
and Pauli matrices, respectively. Equation �1� is solved under
the DHF approximation utilizing spherical symmetry with
the orbitals of the form

�n	m = r−1�Pn	�r�
	m��,��
iQn	�r�
−	m��,��

� , �2�

where Pn	�r� and Qn	�r� are the radial large and small com-
ponents, and 
	m�� ,�� is the two-component angular part
composed of Clebsch-Gordon coefficients and spherical har-
monics. In the basis-set approach adopted here, the radial
parts of the wave function are expressed as linear combina-
tion of radial Gaussian type of functions

Pn	�r� = �
i

C	i
L g	i

L �r�

and

Qn	�r� = �
i

C	i
S g	i

S �r� ,

where C	i
L and C	i

S , are the expansion coefficients of the large
and small component basis functions, respectively. The
large-component basis function is given by

g	i
L �r� = N	i

L rn	e−�ir
2
, �3�

while the small-component basis function is obtained by the
kinetic-balancing condition �6�

g	i
S = N	i

S � d

dr
+

	

r
�g	i

L �r� . �4�

Above n	 is the principal quantum number associated with a
symmetry species �n	=1,2 ,2 ,3 ,3 , . . ., for symmetry species

s , p1/2 , p3/2 ,d3/2 ,d5/2 , . . .�, �i is the Gaussian exponent of the
ith basis function, and N	i

L , N	i
S are the normalization coeffi-

cients associated with the large and the small component
basis functions, respectively.

Under the impulse approximation �19�, the differential
cross section of Compton scattering of x rays from many-
electron systems is proportional to the Compton profile

J�q� =� � dpxdpy�p� , �5�

where �p� is the momentum distribution of the electrons
before scattering and q is the component of the momentum
of the electron along the scattering vector, assumed to be
along the z direction. Under the mean-field DHF approxima-
tion, for a closed-shell atom, the expression for the CP re-
duces to

J�q� = � �2ji + 1�Jni	i
�q� , �6�

where ji is the total angular momentum of the ith orbital
while Jni	i

is the CP associated with it;

Jni	i
�q� =

1

2
�

q

�

	
Pni	i
�p�
2 + 
Qni	i

�p�
2�pdp , �7�

where Pni	i
�p� and Qni	i

�p� are the Fourier transforms of the
radial parts of the large and small components, respectively,
of the ith occupied orbital �cf. Eq. �2�� and are defined as

Pni	i
�p� =

4�

�2��3/2�
0

�

rPni	i
�r�jlA

�pr�dr , �8�

Qni	i
�p� =

4�

�2��3/2�
0

�

rQni	i
�r�jlB

�pr�dr , �9�

where jlA
�pr�(jlB

�pr�) is the spherical Bessel function corre-
sponding to the orbital angular momentum lA�lB� of the large
�small� component. Therefore, calculation of atomic CPs in-
volves computation of two types of integrals: �i� radial Fou-
rier transforms of Eqs. �8� and �9�, and �ii� momentum inte-
grals of the Fourier transformed orbitals in Eq. �7�. When
one solves the DHF equation for atoms using the finite-
difference techniques, then, obviously the calculation of
atomic CPs mandates that both these types of integrals be
computed by means of numerical quadrature. However, for
the basis-set-based approach adopted here, in order to facili-
tate rapid computation of atomic CPs, it is desirable to obtain
closed-form expressions for both types of integrals with re-
spect to the chosen basis functions. Indeed, we have man-
aged to derive closed-form expressions for the atomic CPs
with respect to the KBGFs, which can be easily computer
implemented. It is easy to see that within a KBGF-based
approach, the integral of Eq. �7� can be computed in terms of
the following two types of integrals:

Jij
L;	�q� =

1

2
�

q

�

pg	i
L �p�g	j

L �p�dp ,
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Jij
S;	�q� =

1

2
�

q

�

pg	i
S �p�g	j

S �p�dp ,

where g	i
L �p� and g	i

S �p� are the radial Fourier transforms �cf.
Eqs. �8� and �9�� of the large and small component basis
functions g	i

L �r� and g	i
S �r�, respectively. Obtaining closed-

form expressions for Jij
L;	�q� and Jij

S;	�q� expressions was not
an easy task, and those formulas, along with their derivation,
are presented in the Appendix. Additionally, elsewhere we
have described a Fortran 90 computer program developed by
us, which uses these expressions to compute the atomic CPs
from a set of given Dirac orbitals expressed as a linear com-
bination of KBGFs �20�.

Here we would like to comment on possible quantitative
manifestations of relativistic effects in Compton profiles.
One obvious way to quantify the relativistic effects on the
CPs is by comparing the values obtained from the DHF cal-
culations with those obtained from nonrelativistic HF calcu-
lations. There is another way by which one can judge the
influence of relativistic effects on Compton profiles, that is
by comparing the orbital CPs of different fine-structure com-
ponents. For example, in nonrelativistic calculations, np,
nd , . . . orbitals have only one set of values each for the or-
bital CPs. However, in relativistic calculations, each such
orbital splits into two fine-structure components, i.e.,
np1/2 /np3/2, nd3/2 /nd5/2, which, if the relativistic effects are
strong, can differ from each other in a significant manner.
Thus, one expects, that under such situations, the orbital pro-
files of the two fine-structure components will also be sig-
nificantly different. Therefore, we will also examine this
“fine-structure splitting” of the orbital CPs of various atoms
to quantify the relativistic effects.

III. CALCULATIONS AND RESULTS

In this section we present our DHF results on the atomic
profiles of the rare gases. The DHF orbitals of various atoms
were computed using the KBGF-based REATOM code of Mo-
hanty and Clementi �21�. During the DHF calculations the
value of the speed of light used was c=137.037 a.u. Addi-
tionally, for obtaining the radius of the nucleus for the finite-
nucleus approximation description of Vnuc�r�, values of
atomic mass A were taken to be 4.026, 20.18, 39.948, 83.80,
131.3, and 222.0 for He, Ne, Ar, Kr, Xe, and Rn, respec-
tively. Using the orbitals obtained from the DHF calcula-
tions, the atomic CPs were computed using our computer
program COMPTON �20�. Next we present our results for the
rare gas atoms, one by one. In order to investigate the basis-
set dependence of the CPs, for each atom, two types of basis
sets were used: �i� a large universal basis set proposed by
Malli et al. �22� and �ii� a smaller basis set tailor made for
the individual atom.

A. He

For He, DHF calculations were performed with �i� well-
tempered basis set of Matsuoka and Huzinaga �23� employ-
ing 12s functions �23� and �ii� the universal basis set using
22s functions �22�. The computed CPs are plotted in Fig. 1 as

a function of the momentum transfer q. The results of our
calculations for some selected values of q are presented in
Table I. For the sake of comparison, the same table also
contains the nonrelativistic HF results of Clementi and Roetti
�24�, as well as the experimental results of Eisenberger and
Reed �25�. Upon inspection of the table, the following trends

0 1 2 3 4
q (a.u.)

0

0.5

1

J(
q)

FIG. 1. DHF Compton profiles of He, J�q�, computed using the
well-tempered basis set �23�, and the universal basis set �22�, as a
function of the momentum transfer q. Profiles obtained using the
two basis functions are virtually indistinguishable.

TABLE I. Relativistic �DHF� Compton profiles of He atom
computed using various basis functions, compared to the nonrela-
tivistic HF results �24� and the experiments �25�.

q �a.u.� J�q� �WT�a J�q� �Uni�b J�q� �HF�c
J�q�

�Expt.�d

0.0 1.0704 1.0704 1.0705 1.071±1.5%

0.1 1.0567 1.0567 1.0568 1.058

0.2 1.0171 1.0171 1.017 1.019

0.3 0.9557 0.9557 0.955 0.958

0.4 0.8782 0.8782 0.878 0.881

0.5 0.7910 0.7910 0.791 0.795

0.6 0.7003 0.7004 0.700 0.705

0.7 0.6111 0.6112 0.611 0.616

0.8 0.5270 0.5270 0.527 0.533±2.3%

0.9 0.4503 0.4503 0.450 0.456

1.0 0.3820 0.3820 0.382 0.388

1.2 0.2712 0.2712 0.271 0.274

1.4 0.1910 0.1910 0.190 0.188

1.6 0.1344 0.1345 0.134 0.129

1.8 0.0952 0.0952 0.095 0.092

2.0 0.0678 0.0678 0.068 0.069

2.5 0.0307 0.0307 0.031 0.030±15%

3.0 0.0148 0.0148 0.015 0.013

5.0 0.0014 0.0014 — —

8.0 0.0001 0.0001 — —

10.0 0.00003 0.00003 — —

aOur DHF results computed using the well-tempered �WT� basis set
�23�.
bOur DHF results computed using the universal basis set �22�.
cNonrelativistic HF results from Ref. �24�.
dExperimental results from Ref. �25�.
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emerge: �i� Our relativistic CPs computed with the well-
tempered and the universal basis sets are in excellent agree-
ment with each other. This implies that the smaller well-
tempered basis set is virtually complete, as far as the CPs are
concerned. �ii� Our DHF CPs are in excellent agreement with
the nonrelativistic HF CPs of Clementi and Roetti �24�. This,
obviously, is a consequence of the fact that the relativistic
effects are negligible for a light atom such as He. �iii� Gen-
erally, the agreement between the theoretical and the experi-
mental CPs is excellent, implying that the electron-
correlation effects do not make a significant contribution in
this case.

B. Ne

DHF calculations were performed for Ne using �i�
�14s ,14p� well-tempered basis set of Matsuoka and Huzi-
naga �23� and �ii� the large �32s ,29p� universal basis set of
Malli et al. �22�. In order to facilitate direct comparison with
the experiments, the valence CPs �excluding the contribution
from the 1s core orbital� obtained from our calculations are
presented in Table II. They are also compared to the nonrel-
ativistic HF results of Clementi and Roetti �24�, the classic

experiment of Eisenberger �26�, and more recent experiment
of Lahmam-Bennani et al. �27�. Additionally, the total
Compton profiles of Ne �including the contribution of the 1s
orbital�, computed using both the aforesaid basis sets, are
plotted in Fig. 2.

Upon inspecting Table II we notice the following trends:
�i� profiles computed using two different sets are again in
very good agreement with each other, implying that both the
basis sets are essentially complete and �ii� our relativistic
profiles are in quite good agreement with the nonrelativistic
HF profiles �24�, essentially implying that even in Ne, the
relativistic effects are quite negligible. As far as comparison
with the experiments is concerned, for smaller values of q
there is slight disagreement with the theory which progres-
sively disappears as one approaches the large momentum-
transfer regime. This suggests that electron-correlation ef-
fects possibly play an important role in the small momentum
transfer regime.

Finally we examine the individual orbital CPs of the Ne
atom in Fig. 3. The maximum contribution to the total CP for
small values of momentum transfer comes from the 2s or-
bital, while in the same region, the smallest contribution
comes from the 1s core orbital. The orbital CP of the 2s

TABLE II. Relativistic �DHF� valence Compton profiles of Ne
atom computed using various basis functions, compared to the non-
relativistic HF results �24� and the experiments �25�.

q
�a.u.� J�q� �WT�a

J�q�
�Uni�b J�q� �HF�c J�q� �Expt.�d J�q� �Expt.�e

0.0 2.5439 2.5452 2.548 2.582 2.602

0.1 2.5363 2.5375 2.540 2.574 2.593

0.2 2.5128 2.5140 2.515 2.558 2.560

0.3 2.4722 2.4731 2.475 2.519 2.506

0.4 2.4129 2.4133 2.418 2.451 2.435

0.5 2.3342 2.3339 2.335 2.359 2.340

0.6 2.2367 2.2357 2.236 2.249 2.235

0.7 2.1224 2.1210 2.120 2.124 2.099

0.8 1.9947 1.9933 1.990 1.986 1.966

0.9 1.8579 1.8568 1.855 1.839 1.826

1.0 1.7166 1.7159 1.715 1.685 1.690

1.2 1.4360 1.4361 1.435 1.394 1.417

1.4 1.1776 1.1780 1.171 1.140 1.171

1.6 0.9533 0.9537 0.951 0.921 0.975

1.8 0.7663 0.7665 0.766 0.749 —

2.0 0.6142 0.6144 0.619 0.608 —

2.5 0.3559 0.3558 0.355 0.355 —

3.0 0.2125 0.2123 0.212 0.225 —

3.5 0.1318 0.1319 0.132 0.156 —

4.0 0.0852 0.0853 0.085 0.102 —

5.0 0.0397 0.0397 0.040 0.041 —

aOur DHF results computed using the well-tempered basis set �23�.
bOur DHF results computed using the universal basis set �22�.
cNonrelativistic HF results from Ref. �24�.
dExperimental results from Ref. �26�.
eExperimental results from Ref. �27�.

0 2 4 6 8 10
q (a.u.)

0

1

2

3

J(
q)

FIG. 2. DHF Compton profiles of Ne, J�q�, computed using the
well-tempered basis set �23� and the universal basis set �22� as a
function of the momentum transfer q. Profiles obtained using the
two basis sets are virtually indistinguishable. All numbers are in
atomic units.

0 2 4 6 8 10
q (a.u.)

0

0.1

0.2

0.3

0.4

0.5

J o
rb
(q
)

FIG. 3. Orbital Compton profiles of Ne for 2s �solid line�,
2p3/2 /2p1/2 �dashed line�, and 1s �dotted line�, plotted with respect
to q. Compton profiles of 2p1/2 and 2p3/2 orbitals are virtually in-
distinguishable. These profiles were computed using the universal
basis set �22�.
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orbital varies rapidly with respect to q and becomes quite
small for q�2 a.u. On the other hand, the orbital profile of
the 1s orbital shows the least dispersion with respect to q,
and has the largest magnitude in the large q region, as com-
pared to other orbital profiles. The behavior of the
2p1/2 /2p3/2 orbital profiles is intermediate as compared to the
two extremes of 1s and 2s profiles. These profiles have lesser
magnitude compared to the 2s profile for q�0, while they
vary more rapidly with respect to q, when compared to the
1s profile. Another pointer to the insignificance of the rela-
tivistic effects for Ne is the fact that the difference in the
values of the 2p1/2 and 2p3/2 is quite small for all values of q.

C. Ar

Next, we discuss our calculated Compton profiles of Ar.
The DHF calculations on Ar atom were performed using the
following two basis sets: �i� smaller �16s ,16p� well-
tempered basis set of Matsuoka and Huzinaga �23�, and the
�ii� large �32s ,29p� universal basis set of Malli et al. �22�.
Calculated total CPs of Ar, for a selected number of q values
in the range 0 a.u.�q�15 a.u., are presented in Table III.
The same table also contains the nonrelativistic HF results of
Clementi and Roetti �24�, numerical-orbital-based DHF re-
sults of Mendelsohn et al. �14�, and the experimental results
of Eisenberger and Reed �25�.

Additionally, in Figs. 4 and 5, respectively, we present our
total and orbital CPs of Ar plotted as a function of the mo-
mentum transfer q. From Ar onwards, CP results of Mendel-
sohn et al. �14� exist, which were computed from the DHF
orbitals obtained from finite-difference-based calculations. If
our calculated CPs are correct, they should be in good agree-
ments with those of Mendelsohn et al. �14�. Therefore, it is
indeed heartening for us to note that our CP results computed
with the universal basis set �22� are in perfect agreement
with those of Mendelsohn et al. �14� to the decimal places,
and for the q points, reported by them. As a matter of fact,
even our CPs obtained using the smaller well-tempered basis
set �23� disagree with those of Mendelsohn et al. �14� by
very small amounts. Thus, this gives us confidence about the
essential correctness of our approach.

When compared to the experiments, for q=0, our value of
CP of 5.054 computed with universal basis set, is in excellent
agreement with the experimental value of 5.058 �25�. For
0.1 a.u.�q�0.8 a.u., our results begin to overestimate the
experimental ones slightly. For q�0.9 a.u., however, our
theoretical results underestimate the experimental results by
small amounts. The nonrelativistic HF results �24� also ex-
hibit the same pattern with respect to the experimental re-
sults. Upon comparing our CPs to the nonrelativistic HF CPs
�24�, we notice that the two sets of values differ slightly for
smaller values of q. However, the difference between the two
begins to become insignificant as we approach larger values
of q, suggesting that the relativistic effects will be most
prominent for q�0.

Finally we examine the contributions of the individual
orbitals to the atomic CP in Fig. 5, which presents the orbital
profiles of all the orbitals of Ar. We observe the following
trends: �i� 3s profile has the maximum value at q=0, fol-

lowed by 3p3/2 /3p1/2 profiles. The minimum value at q=0
corresponds to the 1s profile. �ii� Profiles of outer orbitals
vary more rapidly with q, as compared to the inner ones. In
other words, profile flattening occurs as one moves inwards
from the valence to the core orbitals. �iii� Again no signifi-
cant fine-structure splitting is observed, in that the profiles of
np3/2 and np1/2 orbitals differed from each other by small
amounts, pointing to the smallness of relativistic effects.

D. Kr

Now, we discuss our DHF results of Compton profile of
Kr. The DHF calculations on Kr atom were performed using
the following two basis sets: �i� the smaller �20s ,15p ,9d�
basis set of Koga et al. �28� and �ii� the large �32s ,29p ,20d�
universal basis set of Malli et al. �22�. Calculated total CPs

TABLE III. Our relativistic �DHF� total Compton profiles of Ar
atom computed using various basis sets, compared to the relativistic
results of other authors �14�, the nonrelativistic HF results �24�, and
the experiments �25�.

q
�a.u.� J�q� �WT�a J�q� �Uni�b

J�q�
�DHF�c J�q� �HF�d J�q� �Expt.�e

0.0 5.0471 5.0543 5.05 5.052 5.058±0.7%

0.1 5.0229 5.0302 5.03 5.028 5.022

0.2 4.9473 4.9539 4.95 4.950 4.917

0.3 4.8130 4.8171 — 4.812 4.749

0.4 4.6143 4.6144 4.61 4.608 4.526

0.5 4.3528 4.3487 — 4.369 4.259

0.6 4.0395 4.0324 4.03 4.028 3.960

0.7 3.6928 3.6854 — 3.690 3.643

0.8 3.3343 3.3288 — 3.328 3.319

0.9 2.9842 2.9814 — 2.982 3.000

1.0 2.6576 2.6573 2.66 2.658 2.697±1%

1.2 2.1071 2.1088 — 2.108 2.164

1.4 1.7011 1.7022 — 1.701 1.753

1.6 1.4163 1.4166 — 1.417 1.461

1.8 1.2198 1.2197 — 1.221 1.264

2.0 1.0825 1.0824 1.08 1.084 1.129

2.5 0.8728 0.8727 — 0.873 0.904

3.0 0.7360 0.7360 — 0.736 0.744

3.5 0.6216 0.6217 — 0.621 0.634

4.0 0.5207 0.5208 0.521 0.520 0.534±2.5%

7.0 0.1773 0.1774 — 0.177 0.181

8.0 0.1300 0.1300 — 0.130 0.137

9.0 0.0981 0.0981 — 0.098 0.104

10.0 0.0758 0.0757 0.076 0.075 0.078±10%

15.0 0.0254 0.0254 — 0.025 0.025

aOur DHF results computed using the well-tempered basis set �23�.
bOur DHF results computed using the universal basis set �22�.
cDHF results of Mendelsohn et al. �14� based upon finite-difference
calculations.
dNonrelativistic HF results from Ref. �24�.
eExperimental results from Ref. �25�.
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of Kr, for 0 a.u.�q�30 a.u., are presented in Table IV,
which also contains the nonrelativistic HF profiles computed
by Clementi and Roetti �24�, DHF profiles calculated by
Mendelsohn et al. �14�, and the experimental results of
Eisenberger and Reed �25�.

In Figs. 6 and 7, respectively, our total and orbital CPs of
Kr are plotted as a function of the momentum transfer q.
Upon comparing our CPs of Kr obtained using two basis sets
we note that �i� for small values of q, the values obtained
using the smaller basis set of Koga et al. �28� are slightly
smaller than the ones obtained using the universal basis set
and �ii� for large values of q, the results obtained using the
two basis sets are in excellent agreement with each other.
Next, we compare our calculated CPs with those computed
by Mendelsohn et al. �14� using the numerical orbitals ob-
tained in their DHF calculations. From Table IV it is obvious
that, for the all the q values for which Mendelsohn et al. �14�
reported their CPs, our profiles obtained using the universal
basis set �22� are in exact agreement with their results. As a
matter of fact, the agreement between the results of Mendel-
sohn et al. �14� and our results computed using the smaller
basis set of Koga et al. �28� is also excellent.

Upon comparing our results to experimental ones, we see
that our universal basis set value of J�q=0�=7.187 is in ex-

cellent agreement with the experimental value of 7.205 �25�.
For other values of momentum transfer in the range
0.1 a.u.�q�1.0 a.u., although the agreement between our
results and the experiments is slightly worse, our results are
closer to the experimental value as compared to the nonrel-
ativistic HF results �24�. For higher values of momentum
transfer, our DHF results are fairly close to the HF results,
suggesting that in the region of large q, relativistic effects are
unimportant. Thus, we conclude that from Kr onwards, rela-
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FIG. 4. DHF Compton profiles of Ar, J�q�, computed using the
well-tempered basis set �23� and the universal basis set �22� as a
function of the momentum transfer q. Profiles obtained using the
two basis sets can be seen to differ slightly for q�0.
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FIG. 5. Orbital Compton profiles of Ar, plotted as functions of
the momentum transfer q. In the decreasing order of the value of
Jorb�q=0�, the profiles correspond to 3s, 3p3/2 /3p1/2, 2s,
2p3/2 /2p1/2, and 1s orbitals. Note that for all the cases, profiles of
p3/2 and p1/2 orbitals are virtually identical. These profiles were
computed using the universal basis set �22�.

TABLE IV. Our results on total profiles of Kr computed using
the smaller basis set of Koga, Tatewaki, and Matsuoka �KTM� �28�,
and the universal basis set �22�. Relativistic results of other authors
�14�, nonrelativistic HF results �24�, and the experimental results
�25� are also presented for comparison.

q
�a.u.�

J�q�
�KTM�a

J�q�
�Uni�b

J�q�
�DHF�c

J�q�
�HF�d

J�q�
�Expt.�e

0.0 7.1788 7.1871 7.19 7.228 7.205

0.1 7.1470 7.1548 7.15 7.194 7.152

0.2 7.0452 7.0505 7.05 7.085 7.022

0.3 6.8588 6.8595 — 6.888 6.767

0.4 6.5780 6.5735 6.57 6.595 6.459

0.5 6.2087 6.2010 — 6.216 6.098

0.6 5.7744 5.7670 5.77 5.776 5.701

0.7 5.3093 5.3053 — 5.309 5.289

0.8 4.8485 4.8486 — 4.848 4.880

0.9 4.4197 4.4225 — 4.420 4.491

1.0 4.0395 4.0429 4.04 4.039 4.133

1.2 3.4425 3.4432 — 3.441 3.540

1.4 3.0368 3.0353 — 3.037 3.122

1.6 2.7662 2.7650 — 2.769 2.850

1.8 2.5787 2.5785 — 2.583 2.670

2.0 2.4362 2.4364 2.44 2.441 2.533

2.5 2.1425 2.1428 — 2.144 2.219

3.0 1.8571 1.8572 — 1.857 1.898

3.5 1.5784 1.5782 — 1.578 1.597

4.0 1.3257 1.3255 1.33 1.326 1.338

5.0 0.9333 0.9335 — 0.934 0.937

6.0 0.6773 0.6773 0.677 0.678 0.683

7.0 0.5118 0.5118 — 0.512 0.522

8.0 0.4001 0.4001 — 0.400 0.399

9.0 0.3205 0.3205 — 0.319 0.316

10.0 0.2608 0.2608 0.261 0.259 0.254

15.0 0.1062 0.1062 — 0.104 0.095

20.0 0.0506 0.0506 — 0.049 0.044

25.0 0.0271 0.0271 0.027 0.026 0.022

30.0 0.0157 0.0157 — 0.015 0.009

aDHF results computed using the basis set of Koga, Tatewaki, and
Matsuoka �28�.
bDHF results computed using the universal basis set �22�.
cDHF results of Mendelsohn et al.�14� based upon finite-difference
calculations.
dNonrelativistic HF results from Ref. �24�.
eExperimental results from Ref. �25�.
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tivistic effects make their presence felt in the small q region.
Finally, we investigate the orbital CPs of Kr in Fig. 7,

which presents the plots of the profiles of outer orbitals start-
ing from 3d3/2 to 4p3/2. As far as the general trends of the
orbital profiles are concerned, they are similar to what we
observed for the cases of Ne and Ar, except for one impor-
tant aspect. Unlike the Ne and Ar, for Kr we begin to observe
the fine-structure splitting in the orbital profiles of 4p3/2 and
4p1/2 orbitals in the low q region, as is obvious from Fig. 7.
For example, for q=0, corresponding values are J4p3/2
=0.508 and J4p1/2

=0.496, amounting to a difference of �2%.
This is in complete agreement with our earlier observation
that the relativistic effects make significant contributions to
the CPs of Kr in the small q region.

E. Xe

In this section, we discuss our results on the relativistic
Compton profiles of Xe. The DHF calculations on Xe atom
were performed using the following two basis sets: �i� the
smaller �22s ,18p ,12d� basis set of Koga et al. �28� and �ii�
the large �32s ,29p ,20d� universal basis set of Malli et al.
�22�. Total CPs of Xe, for selected values of momentum
transfer in the range 0 a.u.�q�100 a.u., are presented in

Table V. For the sake of comparison, the same table also
contains DHF and the nonrelativistic HF profiles calculated
by Mendelsohn et al. �14�. Here, we are unable to compare
our results with the experiments because, to the best of our
knowledge, no experimental measurements of the CPs of Xe
exist.

Additionally, in Figs. 8 and 9, respectively, we present the
plots of our total and orbital CPs of Xe. Upon comparing our
total CPs obtained using the two basis sets we find that, as
before, they disagree for smaller values of q, with the CPs
obtained using the smaller basis set �28� being slightly lower
than those obtained using the universal basis set �22�. As is
obvious from Table V, that for q�1.5 a.u., the two sets of
basis functions yield virtually identical results. In the same
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FIG. 6. DHF Compton profile of Kr, J�q�, computed using the
universal basis set �22�, plotted as a function of the momentum
transfer q.
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FIG. 7. Orbital Compton profiles of Kr for 4s, 4p3/2, 4p1/2, 3s,
3p3/2 /3p1/2, and 3d5/2 /3d3/2 orbitals in the order of decreasing val-
ues at q=0. For small q values, the differences between the 4p3/2

and 4p1/2 profiles are visible. These profiles were computed using
the universal basis set �22�.

TABLE V. Total CPs of Xe computed using the smaller basis set
of Koga, Tatewaki, and Matsuoka �KTM� �28�, and the universal
basis set �22�. Relativistic results of other authors �14� and nonrel-
ativistic HF results �14� are also presented for comparison.

q �a.u.� J�q� �KTM�a J�q� �Uni�b J�q� �DHF�c J�q� �HF�d

0.0 9.722 9.737 9.74 9.88

0.1 9.673 6.687 9.69 9.82

0.2 9.515 9.523 9.52 9.65

0.4 8.784 8.775 8.78 8.85

0.6 7.597 7.587 7.59 7.62

1.0 5.448 5.451 5.45 5.46

1.5 4.293 4.292 4.29 4.31

2.0 3.678 3.678 3.68 3.69

4.0 1.707 1.707 1.71 1.72

6.0 1.060 1.061 1.06 1.06

10.0 0.5150 0.5150 0.515 0.515

25.0 0.0660 0.0662 0.066 0.064

50.0 0.0088 0.0088 0.0088 0.0076

100.0 0.00067 0.0067 0.00068 0.00043

aOur DHF results computed using the basis set of Koga, Tatewaki,
and Matsuoka �28�.
bOur DHF results computed using the universal basis set �22�.
cDHF results of Mendelsohn et al. �14� based upon finite-difference
calculations.
dNonrelativistic HF results reported in Ref. �14�.
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FIG. 8. DHF Compton profile of Xe, computed using the uni-
versal basis set �22� and plotted as a function of the momentum
transfer q.
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table, when we compare our results to the earlier DHF results
of Mendelsohn et al. �14�, we find that for all the q values,
the agreement between our universal basis-set-based CPs,
and their results, is perfect up to the decimal places reported
by them. This again points to the correctness of our calcula-
tions.

Upon comparing our DHF results to the nonrelativistic
HF results of Mendelsohn et al. �14�, we find that for smaller
values of q, the DHF values of CPs are smaller than the HF
values, while for large values of q, the trend is just the op-
posite.

Finally, upon examining the orbital profiles presented in
Fig. 9, we observe further evidence of the importance of
relativistic effects in Xe. As is obvious from the figure, the
fine-structure splitting between the orbitals profiles of 5p3/2
and 5p1/2 orbitals is larger as compared to 4p3/2 /4p1/2 split-
ting in Kr, and persists for a longer range of q values. For
smaller values of q, J5p3/2

�q��J5p1/2
�q�, while for large q

values, the opposite is the case. For q=0, J5p3/2
=0.592, while

J5p1/2
=0.562, which amounts to a difference of �5%.

F. Rn

As far as atomic Rn is concerned, to the best of our
knowledge, no prior experimental studies of its Compton
profiles exist. However, Biggs et al. �15� did perform DHF
calculations of this atom, using a finite difference approach,
with which we compare our results later on in this section.
Our DHF calculations on Rn atom were performed using the
following two basis sets: �i� the smaller �25s ,21p ,15d ,10f�
basis set of Koga et al. �29� and �ii� the large
�32s ,29p ,20d ,15f� universal basis set of Malli et al. �22�.
Total CPs of Rn, for selected values of momentum transfer in
the range 0 a.u.�q�100 a.u., are presented in Table VI.

Our results for total and orbital CPs of Rn are plotted in
Figs. 10 and 11, respectively. As for other atoms, we find that
our total CPs obtained using the two basis sets disagree for
smaller values of q, with the CPs obtained using the smaller
basis set of Koga et al. �29� being slightly smaller than those
obtained using the universal basis set �22�. From Table VI we
deduce that for q�4.0 a.u., the two sets of basis functions
yield virtually identical values of CPs. In the same table,

when we compare our results to the earlier DHF calculations
of Biggs et al. �15�, we find that for all the q values, the
agreement between our universal basis-set-based CPs and
their results is perfect up to the decimal places reported by
them.

Of all the rare gas atoms considered so far, on the intuitive
grounds we expect the relativistic effects to be the strongest
in Rn. Indeed, this is what we confirm upon investigating the
orbital profiles presented in Fig. 11. As is obvious from the
figure, the splitting between the orbitals profiles of 6p3/2 and
6p1/2 orbitals is quite big, and persists for a large range of q
values. Similar to the case of Xe, here also for smaller values
of q, J6p3/2

�q��J6p1/2
�q�, while for large q values, opposite is

the case. For q=0, J6p3/2
=0.644, while J6p1/2

=0.551, amount-
ing to a difference of �15%, which is quite substantial. The
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FIG. 9. Orbital Compton profiles of Xe for 5s, 5p3/2, 5p1/2, and
4d5/2 /4d3/2 orbitals in the order of decreasing values at q=0. For
small q values, the differences between the 5p3/2 and 5p1/2 profiles
are quite significant. These profiles were computed using the uni-
versal basis set �22�.

TABLE VI. Total CPs of Rn computed using the smaller basis
set of Koga, Tatewaki, and Matsuoka �KTM� �29� and the universal
basis set �22�, compared to the earlier calculations of Biggs et al.
�15�.

q �a.u.� J�q� �KTM�a J�q� �Uni�b J�q� �DHF�c

0.0 11.8344 11.8531 11.9

0.1 11.7850 11.8026 11.8

0.2 11.6176 11.6306 11.6

0.4 10.8055 10.7996 10.8

0.6 9.4877 9.4744 9.47

1.0 7.2130 7.2130 7.21

1.6 5.8127 5.8132 5.81

2.0 5.1530 5.1533 5.15

4.0 2.8379 2.8381 2.84

6.0 2.0453 2.0454 2.05

10.0 0.9804 0.9804 0.98

30.0 0.1083 0.1083 0.11

60.0 0.0166 0.0166 0.017

100.0 0.0037 0.0037 0.0037

aOur DHF results computed using the basis set of Koga, Tatewaki,
and Matsuoka �29�.
bOur DHF results computed using the universal basis set �22�.
cDHF results of Biggs et al. �15� based upon finite-difference cal-
culations.
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FIG. 10. DHF Compton profile of Rn, computed using the uni-
versal basis set �22� and plotted as a function of the momentum
transfer q.
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fine-structure splitting between the profiles of 5d5/2 and 5d3/2
orbitals although is not quite that large, yet it is visible in
Fig. 11. At q=0, J5d5/2

=0.185 and J5d3/2
=0.179, leading to a

difference of �3%, which is quite significant for an inner
orbital. Thus, we conclude that the relativistic effects are
quite substantial in case of Rn, and, therefore, it will be
useful if experiments are performed on this system to ascer-
tain this.

G. Z dependence of relativistic effects on Compton profiles

In earlier sections, while discussing relativistic effects on
Compton profiles, we noticed that they were most prominent
for small momentum transfers. Moreover, one intuitively ex-
pects the relativistic effects to increase with increasing
atomic number Z. In this section our aim is to perform a
quantitative investigation of relativistic effects on quantum
profiles, as a function of Z, for both large and small values of
momentum transfer. We noticed that for small momentum
transfers, DHF values of J were smaller than their nonrela-
tivistic counterparts, while for large momentum transfer op-
posite was the case. Therefore, for a given value of momen-
tum transfer q, we quantify relativistic effects in terms of

J�DHF�−J�HF�
, which is the magnitude of the difference of
relativistic DHF value of the Compton profile (J�DHF�), and
the nonrelativistic HF value of the profile (J�HF�). We obtain
J�HF� by using a large value of the velocity of light �c
=104 a.u.� in the DHF calculations. We explore the depen-
dence of this quantity on Z, for two values of momentum
transfer, q=0 and q=Z a.u., where the latter value clearly
belongs to the large momentum transfer regime. The values
of ln
J�DHF�−J�HF�
 as a function of ln Z, are presented in
Fig. 12 for both these values of momentum transfer. From
the figure it obvious that, to a very good approximation, the
corresponding curves are straight lines, suggesting a power-
law dependence of the relativistic effects on Z. The slopes of
the least-square-fit line for q=0 is 2.36 while for q=Z, the
slope is 1.35. Of course, these results are based upon data
points generated by six values of Z �rare gas series�, and
consequently can only be treated as suggestive. But the re-
sults suggest �i� super-linear dependence of the relativistic

effect on quantum profiles in both momentum transfer re-
gimes, and �ii� stronger influence of relativity in the small
momentum transfer regime as compared to the large one. Of
course, this exploration can be refined further by separately
investigating the Z dependence of these effects on the core
and valence profiles. Additionally, this investigation can be
extended to a larger number of atoms to obtain a larger set of
data points. However, these calculations are beyond the
scope of the present work and will be presented elsewhere.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented an approach aimed at comput-
ing the relativistic Compton profiles of atoms within the
DHF approximation, when the atomic orbitals are repre-
sented as linear combinations of kinetically balanced set of
Gaussian functions. The approach was applied to compute
the CPs of rare gas atoms ranging from He to Rn, and results
were compared to the experimental profiles, and theoretical
profiles of other authors, wherever such data was available.
Additionally, the influence of size and type of basis set was
examined by performing calculations on each atom with two
basis sets: �i� a well-known smaller basis set and �ii� a large
universal basis set proposed by Malli et al. �22�.

Upon comparing our results with the experiments, we
found that for lighter atoms He, Ne, and Ar, the agreement
was similar to what one obtains from the nonrelativistic HF
calculations, indicating lack of any significant relativistic ef-
fects for these atoms. For Kr, we noticed that for smaller
momentum transfer values, DHF results were in better agree-
ment with the experiments, as compared to the HF results.
For heavier atoms, Xe and Rn, unfortunately no experimen-
tal data is available. Yet another quantitative indicator of the
importance of relativistic effects is the fine-structure splitting
of the profiles, i.e., the difference in the profiles of
np1/2 /np3/2, etc., which will have identical profiles in nonrel-
ativistic calculations. We found that this splitting becomes
larger with the increasing atomic number of the atom, thus
justifying a relativistic treatment of the problem for heavy
atoms. Additionally, by comparing our results with the non-
relativistic HF results we found that the relativistic effects
are most prominent in the region of small momentum trans-
fer, while at large momentum transfer, their contribution is
much smaller.
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FIG. 11. Orbital Compton profiles of Rn for 6s, 6p3/2, 6p1/2, and
5d5/2 /5d3/2 orbitals in the order of decreasing values at q=0. For
small q values, the differences between the 6p3/2 and 6p1/2 profiles
are quite large. Even the splitting of 5d5/2 and 5d3/2 profiles is
visible. These profiles were computed using the universal basis set
�22�.
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FIG. 12. Difference between the relativistic (J�DHF�) and the
nonrelativistic (J�HF�) Compton profiles plotted, on a logarithmic
scale, as a function of the atomic number Z. Plots correspond to the
momentum transfer values q=0 and q=Z.
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In the literature, we were able to locate prior theoretical
calculation of relativistic CPs of atoms only from one group,
namely the DHF calculations of Mendelsohn et al. �14� and
Biggs et al. �15�, performed on Ar, Kr, Xe, and Rn, employ-
ing a finite-difference-based approach. The CPs computed by
them �14,15� for these atoms were found to be in perfect
agreement with our results computed using the universal ba-
sis set. This testifies to the correctness of our approach, and
suggests that by using a large basis set it is possible to reach
the accuracy of finite-difference approaches in relativistic
calculations, not just on total energies �22� but also on ex-
pectation values.

Having investigated the influence of the relativistic ef-
fects, the next logical step will be to go beyond the mean-
field DHF treatment and incorporate the influence of electron
correlations on atomic CPs within a relativistic framework.
Such a treatment can be within a relativistic CI framework
�9�, or can also be performed within a perturbation-theoretic
formalism. Work along these lines is currently underway in
our group and the results will be submitted for publication in
the future.

APPENDIX A: A DERIVATION OF COMPTON PROFILE
MATRIX ELEMENTS OVER KINETICALLY

BALANCED GAUSSIAN BASIS SETS

During our discussion here we use the same notations for
various quantities as adopted in Sec. II. Our aim here is to
evaluate the closed form expressions for the following two
integrals:

Jij
L;	�q� =

1

2
�

q

�

pg	i
L �p�g	j

L �p�dp , �A1�

Jij
S;	�q� =

1

2
�

q

�

pg	i
S �p�g	j

S �p�dp , �A2�

which, as explained in Sec. II, are needed to compute the
orbital �and total� atomic CPs when the KBGF based numeri-
cal formalism is employed to solve the DHF equations. First,
we will obtain expressions for g	i

L �p� and g	i
S �p�, the radial

Fourier transforms of the large and small component basis
functions g	i

L �r� and g	i
S �r�, respectively, defined as

g	i
L �p� =

4�

�2��3/2�
0

�

rg	i
L �r�jlA

�pr�dr , �A3�

g	i
S �p� =

4�

�2��3/2�
0

�

rg	i
S �r�jlB

�pr�dr , �A4�

where jlA
�pr� / jlA

�pr� refer to the spherical Bessel functions
corresponding to the orbital angular momentum lA / lB of the
large and/or small component. The spherical Bessel function
is related to the Bessel function by the well-known relation

j��x� = �

2x
J�+1/2�x� , �A5�

where J��x� is the Bessel function.

1. Derivation for the large component

First, we obtain and expression for g	i
L �p� by performing

the integral involved in Eq. �A3�. Substituting the expression
for g	i

L �r� from Eq. �3� into Eq. �A3�, we obtain

g	i
L �p� =

4�

�2��3/2�
0

�

N	i
L r�n	+1�e−�ir

2
jlA

�pr�dr

=
N	i

L

p
�

0

�

N	i
L r�n	+1/2�e−�ir

2
JlA+1/2�pr�dr , �A6�

where in the last step, we have used Eq. �A5�. Next, on using
the relation n	= lA+1, and the definite integral �30�

�
0

�

x�+1e−�r2
J���x�dx

=
��

�2���+1e−�2/4��Re��� � 0,Re��� � 0� , �A7�

Eq. �A6� simplifies to

g	i
L �p� = N	i

L plA

�2�i�lA+3/2e−p2/4�i. �A8�

On substituting the above result in Eq. �A1�, one obtains

Jij
L;	�q� =

1

2
�

q

�

�N	i
L ��N	j

L �
p2lA+1

�4�i� j�lA+3/2e−p2/4�ijdp ,

where �ij =
�i� j

�i+� j
. Next, on making the change of variable t

= p2

4�ij
in the integral above, leading to the lower limit qt

= q2

4�ij
, we obtain

Jij
L;	�q� =

�N	i
L ��N	j

L �
4

�4�ij�lA+1

�4�i� j�lA+3/2�
qt

�

tlAe−tdt ,

leading to the final expression

Jij
L;	�q� =

�N	i
L ��N	j

L �
4

�4�ij�lA+1

�4�i� j�lA+3/2��lA + 1,qt� , �A9�

where ��lA+1,qt� is the incomplete � function. Since lA is a
non-negative integer, the incomplete � function can be easily
computed using the series �30�

��lA + 1,qt� = �lA�!e−qt �
m=0

lA qt
m

m!
. �A10�

We note that our general result for Jij
L;	�q� in Eq. �A9�

leads to the same formulas as reported by Naon et al. �31� for
the atomic CP matrix elements for s- and p-type Gaussian
orbitals for the nonrelativistic case.

2. Derivation for the small component

We note that the explicit form of the small component
basis function g	i

S �r� �cf. Eq. �4�� is

g	i
S �r� = N	i

S N	i
L ��n	 + 	�rn	−1e−�ir

2
− 2�ir

n	+1e−�ir
2
� .

On substituting the above in Eq. �A4�, the Fourier transform
of the small component basis function becomes
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g	i
S �p� =

N	i
S N	i

L

p
�

0

�

��n	 + 	�r�n	−1/2� − 2�ir
�n	+3/2��

�e−�ir
2
JlB+1/2�pr�dr . �A11�

As before, we seek a relation between n	 and lB, which is
summarized in Table VII. Here, the two cases have to be
dealt with separately since the relations are different for the
two possibilities.

a. Case (i): �=−„j+1/2…

From Table VII it is easy to see that for this case n	= lB
=−	. The integral in Eq. �A11� becomes

g	i
S �p� =

N	i
S N	i

L

p
�

0

�

�− 2�i�r�n	+3/2�e−�ir
2
Jn	+1/2�pr�dr

= − N	i
S N	i

L pn	

�2�i��n	+1/2�e
−p2/4�i. �A12�

b. Case (ii): �= „j+1/2…

For this case, lB=n	−2=	−1, which upon substitution in
Eq. �A11� yields

g	i
S �p� =

N	i
S N	i

L

p
�

0

�

��2n	 − 1�r�n	−1/2� − 2�ir
�n	+3/2��

�e−�ir
2
Jn	−3/2�pr�dr . �A13�

Next we use the result �30�

�
0

�

x�e−�x2
J���x�dx

=

�����

2
+

�

2
+

1

2
�

2�+1�1/2��+�+1���� + 1�
��� + � + 1

2
,� + 1,−

�2

4�
�

for Re��� � 0, Re�� + �� � − 1, �A14�

where ��a ,b ,z� is the confluent hypergeometric function in

Eq. �A13�, and after some simplifications obtain

g	i
S �p� =

N	i
S N	i

L

p

p�n	−3/2�

2�n	−3/2��i
�n	−1/2���n	 −

1

2
���n	 −

1

2
,n	 −

1

2
,

−
p2

4�i
� − �n	 −

1

2
���n	 +

1

2
,n	 −

1

2
,−

p2

4�i
��

�A15�

Next, we use the following two identities involving the con-
fluent hypergeometric functions �30�:

a��a + 1,b,z� = �z + 2a − b���a,b,z� + �b − a���a − 1,b,z� ,

�A16�

��a,a,z� = ez, �A17�

to obtain the following simple expression from Eq. �A15�,

g	i
S �p� = N	i

S N	i
L pn	

�2�i��n	+1/2�e
−p2/4�i. �A18�

Comparing the results of the two cases �A12� and �A18�,
we find that they only differ by a sign, and hence when
substituted in the expression for Jij

S;	�q� in Eq. �A2� yield the
same result

Jij
S;	�q� =

1

2
�

q

�

�N	i
S ��N	j

S ��N	i
L ��N	j

L �
p2n	+1

�4�i� j�n	+1/2e−p2/4�ijdp ,

where �ij =
�i� j

�i+� j
. The above integral can be evaluated in ex-

actly the same way as was done before for the large compo-
nent �cf. Eq. �A9��, to yield the final expression for the
Compton profile matrix element

Jij
S;	�q� =

�N	i
S ��N	j

S ��N	
Li��N	j

L �
4

�4�ij�lA+2

�4�i� j�lA+3/2��lA + 2,qt� ,

�A19�

where qt=
q2

4�ij
and the incomplete � function is defined in Eq.

�A10�. Finally, the large and small components of the CP of
an orbital can be computed in terms of these matrix elements
as

Jn	
L �q� = �

i,j
C	i

L C	j
L Jij

L;	, �A20�

Jn	
S �q� = �

i,j
C	i

S C	j
S Jij

S;	. �A21�

It is these formulas derived here which have been numeri-
cally implemented in our computer program COMPTON �20�
aimed at calculating relativistic atomic CPs.

TABLE VII. Relationship between quantum numbers 	, n	, and
lB, for relativistic atomic orbitals.

	 n	 lB

−�j+
1

2 � −	
j+

1

2
=−	

�j+
1

2 � 	+1
j−

1

2
=	−1
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