
Level-crossing spectroscopy of the 7, 9, and 10D5/2 states of 133Cs and validation of relativistic
many-body calculations of the polarizabilities and hyperfine constants

M. Auzinsh,1,* K. Bluss,1 R. Ferber,1 F. Gahbauer,1 A. Jarmola,1 M. S. Safronova,2 U. I. Safronova,3 and M. Tamanis1

1Department of Physics and Mathematics, University of Latvia, Rainis Boulevard 19, Riga LV-1586, Latvia
2Department of Physics and Astronomy, 223 Sharp Lab, University of Delaware, Newark, Delaware 19716, USA

3Physics Department, University of Nevada, Reno, Nevada 89557, USA
�Received 9 November 2006; published 5 February 2007�

We present an experimental and theoretical investigation of the polarizabilities and hyperfine constants of DJ

states in 133Cs for J=3/2 and 5/2. Experimental values for the hyperfine constant A are obtained from
level-crossing signals of the �7,9 ,10�D5/2 states of 133Cs and precise calculations of the tensor polarizabilities
�2. The results of relativistic many-body calculations for scalar and tensor polarizabilities of the �5–10�D3/2

and �5–10�D5/2 states are presented and compared with measured values from the literature. Calculated values
of the hyperfine constants A for these states are also presented and checked for consistency with experimental
values.
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I. INTRODUCTION

Level-crossing spectroscopy in an electric field has been
shown to be a useful technique to determine atomic proper-
ties. Already the first experimental studies of resonant signals
at pure electric field crossings of magnetic ±mF components
of certain hyperfine �hfs� atomic levels F at nonzero electric
field �1–3� and their further development by applying two-
step laser excitation �4� demonstrated how this technique
could be used to obtain atomic properties. The method makes
use of the fact that the electric field values at which magnetic
sublevels mF cross in an electric field depend on the tensor
polarizability �2 and on the hfs constants. When the electric
field is scanned and laser induced fluorescence �LIF� of defi-
nite polarization is observed, these crossings are associated
with resonance behavior in the LIF signals. When the sepa-
ration between crossings is large compared to the widths of
the resonance signals, as in the nD3/2 states of the 133Cs atom
�see Fig. 1�a��, they lead to rather well-pronounced reso-
nances in the observed fluorescence. Moreover, under appro-
priate experimental conditions, these resonances correspond
exactly to the level-crossing points. Such resonances were
used to measure the tensor polarizabilities �2 in the 7 ,9D3/2
states of 133Cs atoms �4�, in which the magnetic dipole cou-
pling hfs constant A had been previously measured with
good precision, and the electric quadrupole hfs constant B
was assumed to be negligibly small �5�.

Such measurements become more challenging, however,
in the case of the nD5/2 states of cesium, since there are
many closely spaced crossing points of magnetic ±mF com-
ponents �see Figs. 1�b�–1�d��. As a result, the level-crossing
signals overlap and no longer contain discernable reso-
nances. In this case, reliable values for atomic properties can
be extracted only by means of a very detailed and accurate
theoretical description of the observed electric field depen-
dence of the signals as a function of atomic properties and
experimental conditions. Such theoretical descriptions have

been developed and tested in connection with the nD3/2
states �4�. Nevertheless, the level-crossing technique cannot
be used at this time to improve the knowledge of the tensor
polarizabilities �2 of the nD5/2 states because the extant mea-
surements of the hfs constant A contain uncertainties on the
order of 30%. The small hyperfine interaction, especially for
n�7, makes them difficult to measure �6,7�.

The first value of the hfs constant A of the nD5/2 states of
133Cs was obtained with measurements of the widths of op-
tical double resonance �ODR� signals in the Paschen-Back
region. The results for the 9D5/2 and 10D5/2 states were
−0.5�2� and −0.4�2� MHz, respectively �8�. These values
were improved through level-crossing spectroscopy in mag-
netic fields, yielding −0.40�15� and −0.30�10� MHz �6�. The
authors combined these data with previous ODR measure-
ments �7� and presented the weighted average as −0.45�10�
and −0.35�10� MHz. They concluded that the quadrupole in-
teraction can be completely ignored when fitting the experi-
mental data. For the 7D5/2 state, Bulos et al. estimated the A
value to be −1.7�2� MHz from the ODR signal width �9�.
The drawback of the ODR experiments on the 7, 9, and
10D5/2 signals is that it is necessary to use indirect cascade
transitions to observe the nD5/2 signals because of the pres-
ence of scattered light at the nD5/2→6P3/2 fluorescence
transition �7,9�.

The tensor polarizabilities �2 for the nD5/2 states in ce-
sium under discussion are known with far greater precision.
For the 10D5/2 state, �2 has been measured by Xia and co-
workers to a very high precision of about 0.3% at
6815�20��103 a.u. �10�. For the 9D5/2 state the �2 value is
measured with ca. 5% accuracy at 2650�140��103 a.u. by
means of level-crossing spectroscopy in combined electric
and magnetic fields �6,11�. For the 7D5/2 state, there exists a
measured value of 129�4��103 a.u. presented in Ref. �12�,
which, however, should be verified because it differs signifi-
cantly from the theoretical value of 140�103 a.u. �13�. Fur-
thermore, a more recent measurement of �2 for the 7D3/2
state �4� was closer to the theoretical estimate of �13� than
the measurement of �12�.

The situation with the electronic structure calculations is
similar to the experimental situation. Rather good accuracy*Electronic address: mauzins@latnet.lv
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has been achieved for theoretical estimates of the tensor po-
larizability �2, as can be seen from the fact that the calcula-
tions of �13� for 133Cs agree with very accurate experimental
data for the �10–13�D3/2,5/2 states �10�. Despite this precision
for the polarizability, the estimates of the hfs constants are
poor and can hardly be evaluated reliably, for reasons that
will be discussed below. Therefore there is a need for more
accurate values for the hfs constants of the nD5/2 states.

In order to determine the hfs constants A from our mea-
surements of mF sublevel-crossing signals in the 7, 9, and
10D5/2 states of cesium, we used the following approach. We
fitted the measured signals with calculated curves derived
from simulations, which had been developed and tested in
�4�. With the tensor polarizability �2 fixed, these fits yielded
the hfs constant A. To choose the proper value for �2, we
performed an all-order relativistic many-body calculation.

Section II contains a description of the experiment, fol-
lowed by a discussion of the simulations used to describe the
measured signals. The all-order relativistic many-body calcu-
lations that provided the values for the tensor polarizabilities
�2 are described in Sec. III, and the values for �2 obtained
from these calculations are compared with earlier experimen-
tally measured values. In Sec. IV we discuss the application
of these calculations to estimating the hfs constants and com-
pare them to the results of previous experiments. In Sec. V
we show how to use our experimental results from Sec. II
and the calculated tensor polarizabilities from Sec. III to
estimate new values for the hfs constant A.

II. EXPERIMENT AND DESCRIPTION OF SIGNALS

A. Method

The premise of level-crossing spectroscopy is that the
spatial intensity distribution and polarization of the laser in-
duced fluorescence produced when an atom is excited de-
pends on the coherences between different magnetic sublev-
els mF of hyperfine levels F. Such coherences are destroyed
when the degeneracy between different sublevels is broken
in an electric field. However, in the case of linear polariza-
tion, they can be restored when sublevels with �mF= ±2
cross at certain electric field values. Figure 1 shows the hy-
perfine level-splitting diagram in an external electric field for
the 7D3/2 and 7D5/2 states of cesium. This diagram is calcu-
lated by diagonalizing the Hamiltonian, which includes the
hyperfine and Stark interactions, in an uncoupled basis �14�.

When applying the method of level-crossing spectroscopy
to the study of the nD5/2 states of cesium, one encounters two
difficulties not present in the case of the nD3/2 states. The
first difficulty is that the nD5/2 hyperfine manifold contains
seven level crossings with �mF= ±2, whereas the nD3/2
manifold contains only two �see Fig. 1�. The large number
of level crossings in the nD5/2 state wash out the sharp
resonances that could be observed in the nD3/2 state.

The second difficulty is that in the case of the nD5/2 states,
after the two-step excitation 6S1/2→6P3/2→nD5/2 �see
Fig. 2�, it is necessary to observe the fluorescence from
the nD5/2→6P3/2 transition. Thus scattered light from the

(a)

(d)(c)

(b)

FIG. 1. Hyperfine level-splitting diagram in an external electric field for the �a� 7D3/2, �b� 7D5/2, �c� 9D5/2, and �d� 10D5/2 states of Cs.
Circled points indicate level crossings with �mF= ±2.
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exciting laser constitutes a high background that must be
suppressed. Figure 2 shows the level excitation scheme.

B. Experimental details

We studied cesium vapor at room temperature in a glass
cell. The experimental setup is essentially the same as in Ref.
�4�. We could apply an electric field between two transparent
electrodes inside the cell, which were separated by a 2.5 mm
gap. Figure 3 shows a schematic diagram of the experimental
setup and geometry. The most crucial detail of the experi-
ment is the relative orientation of the electric field and the
polarization vectors of the linearly polarized laser radiation.
The first laser, which excited the 6S1/2→6P3/2 transition,
was polarized with its polarization vector E1 parallel to the
dc electric field E, which was along the z-axis. The second
laser, which excited the 6P3/2→7, 9, 10D5/2 transition, was
sent in a counterpropagating direction and was polarized per-
pendicular to the first, with polarization vector E2 parallel to
the y-axis. We observed the laser induced fluorescence �LIF�
at the nD5/2→6P3/2 transition along the z-axis through the
transparent electrodes. A linear polarizer selected the inten-
sities of the LIF polarization components along the x- or
y-axes, Ix or Iy. Since the LIF was observed at the same
frequency at which the second laser was operating, it was
necessary to suppress carefully the scattered light by means

of diaphragms. The scattered light accounted for between
30% and 50% of the measured signal. We checked that this
background remained stable during the measurements and
subtracted it from the signals. The LIF passed through an
MDR-3 monochromator with 2.6 nm/mm inverse dispersion
and was recorded with a photomultiplier tube �PMT� in pho-
ton counting mode during 1 s time intervals.

The first laser was always a diode laser �based on an
LD-0850-100sm laser diode� and was tuned to excite the
62P3/2 state from the F=3 hfs component of the ground state.
We chose to excite from the F=3 level because in this way
we could avoid the F=6 level of the nD5/2 final state. The
F=6 level contained no level crossings and thus would con-
tribute only background. We took advantage of a sideband of
the radiation of the first laser in order to achieve broadband
excitation.

For the second excitation step, we used a diode laser
�based on a Hitachi HL6738MG laser diode� in the case of
the 7D5/2 state and a CR699-21 ring dye laser with
Rhodamine 6G dye in the case of the 9D5/2 and 10D5/2 states.
The second laser was operated in single mode regime. We
recorded data at different values of the detuning of the sec-
ond laser in order to compare the results obtained at different
detunings with simulations. A HighFinesse WS/6 wavemeter
allowed us to measure changes in the lasers’ detuning with a
resolution of 30 MHz. However, in general we operated at
the detuning that maximized the fluorescence signal. When
the second laser was the diode laser, we jittered its output
frequency over a range of approximately 1.2 GHz by apply-
ing a sawtooth wave with a frequency of tens of Hertz to a
piezoelectric crystal mounted to its feedback grating. The
laser power was of the order of a few mW, and the laser
beam diameters were approximately 1 mm.

The electric field produced in the cell was calibrated with
measurements of level-crossing signals for the 10D3/2 state
of cesium as in �4�. The level-crossing resonance positions
obtained with our cell were compared with the crossing
points calculated from the tensor polarizability of �10� and
the hfs constant A of �5�. The overall uncertainty on the
electric field magnitude was estimated to be about 1%.

C. Experimental results

We plot with markers the measured LIF intensity as a
function of the electric field for the nD5/2 states of cesium in
Figs. 4–6. Signals for different experimental geometries are
plotted. We label the experimental geometry as zyy or zyx,
where the first and the second letters, z and y, denote the
orientation of the polarization of the first and second lasers,
E1 � z and E2 � y, and the third letter, x or y, denotes the po-
larization direction of the observed LIF. The solid line in the
figure indicates the results of the simulations that are de-
scribed below. As inputs to the theoretical model, we used
the tensor polarizabilities calculated with the relativistic
many-body approach described in Sec. III below.

As can be seen from Figs. 4–6 there are no well-defined
level-crossing resonances. Nevertheless, a curve with mul-
tiple features is obtained, and these features can be fitted
with the results of a simulation based on a theoretical model.
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FIG. 2. �Color online� Level excitation scheme.

FIG. 3. Experimental geometry.
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This simulation is described in the following section. The fit
involves adjusting the hyperfine constant A and those experi-
mental parameters that we could not measure absolutely,
such as the laser detuning. We fix the tensor polarizability �2
at the values that are obtained from the calculations
described in Sec. III.

D. Signal description

Since well-defined resonances are no longer present in the
signals of the D5/2 states, the data can be interpreted only by
means of simulations based on a detailed model. Such a
model was elaborated in detail and verified in a previous
publication �4�, so we will only outline the approach in what
follows.

The model describes atoms that interact simultaneously
with radiation produced by two lasers with relatively broad
spectral profiles, which were necessary to excite coherently
magnetic sublevels that are split by an external electric field
E �see Fig. 1�. The model assumes that the atoms move
classically and are excited at the internal transitions. Thus the
internal atomic dynamics can be described by a semiclassical
atomic density matrix �, which also depends on the classical
coordinates of the atomic center of mass.

The ground state of the Cs atom consists of two hyperfine
levels with total angular momentum Fg=3 and Fg=4, each
containing 2Fg+1 magnetic sublevels. The first laser excites
the atoms from the ground state to the 6P3/2 state, which
contains hyperfine levels Fe=2, 3, 4, and 5. The second laser
excites the atom from the 6P3/2 state to the nD5/2 state, which
contains hyperfine levels Ff =1, 2, 3, 4, 5, and 6.

The external electric field E partially decouples the elec-
tronic angular momentum from the nuclear spin, which im-
plies that the magnetic sublevel energies no longer depend
quadratically on the electric field �see Fig. 1�. In order to
obtain the real dependence on the electric field, it is neces-
sary to diagonalize the full Hamilton matrix. It is also nec-
essary to take into consideration that the decoupling of an-
gular momentum from nuclear spin alters the dipole
transition probabilities between magnetic sublevels.

The entire model is based on the optical Bloch equations
�OBEs� for the density matrix � �see, for example, �15��

i�
��

�t
= �Ĥ,�� + i�R̂� . �1�

The relaxation operator R̂ includes spontaneous emission and
transit relaxation. We assume that the density of atoms is

FIG. 4. Experimental results for 7D5/2.

(a)

(b)

FIG. 5. Experimental results for 9D5/2.

(a)

(b)

FIG. 6. Experimental results for 10D5/2.
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sufficiently low that different velocity groups of thermally
moving atoms do not interact. The elements of the relaxation

matrix are given in �4�. The Hamiltonian Ĥ= Ĥhfs+ V̂ in-
cludes the hyperfine Hamiltonian and the dipole interaction

operator V̂=−d̂ ·E�t�, where d̂ is the electric dipole operator
and E�t� is the electric field of the exciting radiation.

The equations can be simplified by assuming that each
laser excites only the transition to which it is tuned. We also
apply the rotating wave approximation for multilevel sys-
tems �16� to the OBEs. The resulting stochastic differential
equations can be further simplified by using the decorrelation
approach �17�. The stochasticity derives from the random
fluctuations of the laser radiation with finite spectral width.
This approach assumes that both lasers are uncorrelated and
that the integration time for each measurement is large com-
pared to the characteristic phase-fluctuation time of the ex-
citing light source. The decorrelation approximation amounts
to solving the equations of the density matrix elements that
correspond to optical coherences and taking a formal statis-
tical average over the fluctuating phases �18�. This procedure
results in a system of equations that, when solved, yields the
observed signals.

From the density matrix of the final state, one can obtain
the fluorescence intensities of a given polarization along the
unit vector e from �19–21�

I�e� = Ĩ0 �
gi,f i,f j

dgif j

�ob�*deigi

�ob�� f if j
, �2�

where Ĩ0 is a constant and dgif j

�ob�= �gi�d ·e��f j	 is the matrix
element between the ground and final states of the dipole
operator along a specific polarization direction e, i.e., the
x- or y-direction.

III. CALCULATION OF SCALAR AND TENSOR
POLARIZABILITIES

A. Motivation

The description of the signals obtained from the experi-
ment described above depends on two atomic properties si-
multaneously: the hyperfine constant A and the tensor polar-
izability �2. If one of these constants can be known by
independent means, the experiment provides a way to deter-
mine the other. In this section, we describe an all-order rela-
tivistic many-body calculation of the tensor polarizability �2.
A reliable theoretical estimate of this constant, together with
the experimental results of the previous section, can be used
to estimate the hyperfine constant A, which is difficult to
calculate theoretically and has not been measured to high
precision for the 7, 9, and 10D5/2 states of cesium.

B. Method

The scalar �0 and tensor �2 polarizabilities of an atomic
state v are calculated using formulas

�0 =
2

3�2jv + 1��n

�n�D�v	2

En − Ev
, �3�

�2 = − 4
 5jv�2jv − 1�
6�jv + 1��2jv + 1��2jv + 3��

1/2

��
n

�− 1� jv+jn+1� jv 1 jn

1 jv 2

 �n�D�v	2

En − Ev
, �4�

where D is the dipole operator and the formula for �0 in-
cludes only the valence part of the polarizability. The contri-
bution to �0 from the ionic core is negligible for the present
calculation �16 a0

3�. The sum over n includes the nP1/2, nP3/2,
and nF5/2 states for the calculation of the D3/2 polarizabilities
in cesium and the nP3/2, nF5/2, and nF7/2 states for the cal-
culation of the D5/2 polarizabilities. The sum over the inter-
mediate states n converges rather quickly, and only the first
few terms need to be calculated accurately. Therefore we
separate the calculation of the polarizabilities into the calcu-
lation of the main term �main and the evaluation of the re-
mainder �tail. We include the contributions from the follow-
ing states into the main term: 6P, 7P, 8P, 9P, 10P, 11P,
12P, 4F, 5F, 6F, 7F, and 8F to calculate the polarizabilities
of all D states considered in this paper. We also include the
contributions from the 9F states into the calculation of the
�main�10D�. All electric-dipole reduced matrix elements in
Eqs. �3� and �4� that are needed for the calculation of the
main term are calculated using the relativistic all-order
method, which is briefly described below. We use experi-
mental energies from �22� in the main term calculations. We
note that the polarizabilities of the 9D and 10D states are
very sensitive to the values of the 9D–10P and 10D–11P
energy differences, respectively, since they are small
�50–100 cm−1�. We assume that the energies in Ref. �22� are
accurate to all quoted digits. The remainders �tail are small
for all sums and are calculated in the Dirac-Hartree-Fock
�DHF� approximation.

The all-order method used here sums infinite sets of
many-body perturbation theory terms. We refer the reader
to Refs. �23–25� for a detailed description of the approach.
Briefly, the wave function of the valence electron v is
represented as an expansion

��v	 = �1 + �
ma

�maam
† aa +

1

2 �
mnab

�mnabam
† an

†abaa

+ �
m�v

�mvam
† av + �

mna

�mnvaam
† an

†aaav���v	 , �5�

where �v is the lowest-order atomic state function, which is
taken to be the frozen-core Dirac-Hartree-Fock wave func-
tion of a state v. This lowest-order atomic state function can
be written as ��v	=av

†�0C	, where �0C	 represents DHF wave
function of a closed core. The indices m and n designate
excited states and indices a and b designate core states. The
equations for the excitation coefficients are solved iteratively
until the correlation energy converges to an acceptable accu-
racy. The excitation coefficients �ma, �mv, �mnab, and �mnva
are used to calculate the matrix elements, which can be
expressed in the framework of the all-order method as linear
or quadratic functions of the excitation coefficients. The
electric-dipole matrix elements as well as the hyperfine con-
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stants are calculated using the same approach. The expansion
given by Eq. �5� is restricted to single and double �SD� ex-
citations leading to the omission of certain fourth- and
higher-order terms.

We use B-splines �26� to generate a complete set of DHF
basis orbitals for the all-order calculation. Here, we use N
=70 splines for each angular momentum. The basis orbitals
are constrained to a cavity of radius R=220 a.u. The size of
the cavity is taken to be large enough to fit all of the states
needed for the calculation of the main terms for all of the
polarizabilities calculated in this work. The calculation of the
polarizabilities of the 9D and 10D states requires such a
large cavity since we need to be able to properly describe
states up to 12P and 9F. This work required extensive study
of the numerical accuracy and stability of the calculations.
We verified that our basis set gives correct lowest-order
�DHF� values for the energies of all relevant states and tran-
sition matrix elements between these states. We have also
verified that our basis set correctly reproduces DHF values of
the hyperfine constants for all the nDJ states considered here.
We find that it is necessary to use 70 splines to produce an
accurate basis set. We also conducted an all-order calculation
with a smaller cavity �R=90 a.u.� that is appropriate for the
calculation of the properties of the low-lying states and
found that the properties of the low-lying states are accu-

rately described by our large R=220 a.u., N=70 basis set.
Therefore we conclude that numerically accurate results can
be obtained even for such highly excited states as 12P with
the use of large basis sets.

C. Results

The contributions to the scalar and tensor polarizabilities
for the 7D3/2 state in cesium are listed in Table I. We note
that the calculation of the scalar and tensor polarizability
differs only in the angular factor, and all matrix elements and
energies are the same. The corresponding energy differences
and the absolute values of the lowest-order and final all-order
electric-dipole reduced matrix elements are also listed. The
energy differences are given in cm−1. Electric-dipole matrix
elements are given in atomic units �ea0�, and polarizabilities
are given in 103 a0

3, where a0 is the Bohr radius. The differ-
ence between the lowest-order values and the all-order val-
ues allows us to evaluate the size of the correlation correc-
tion. The accuracy of our calculation is generally higher
when the relative size of the correlation correction is smaller.

The contributions from all terms in �main are listed sepa-
rately to identify the most important terms. The remainder
�tail is separated to �tail�nP1/2�, �tail�nP3/2�, and �tail�nF5/2�
for the study of the convergence of these three sums.

TABLE I. The contributions to scalar and tensor polarizabilities for the 7D3/2 state in cesium. The corresponding energy differences and
the absolute values of the lowest-order �DHF� and final all-order electric-dipole reduced matrix elements are also listed. The energy
differences are given in cm−1. The electric-dipole matrix elements are given in atomic units �ea0�, and the polarizabilities are given in 103

a0
3, where a0 is Bohr radius.

Contribution nlj Znlj,7D3/2

DHF Znlj,7D3/2

SD Enlj −E7D3/2
�0�7D3/2� �2�7D3/2�

�main�nP1/2� 6P1/2 1.628 2.067 −14869.6 −0.011 0.011

7P1/2 4.030 6.580 −4282.2 −0.370 0.370

8P1/2 33.633 31.970 −338.7 −110.4�1.2� 110.4�1.2�
9P1/2 13.535 8.734 1589.4 1.756 −1.756

10P1/2 3.843 2.819 2679.2 0.109 −0.109

11P1/2 2.026 1.537 3355.8 0.026 −0.026

12P1/2 1.324 1.020 3805.0 0.010 −0.010

�tail�nP1/2� 0.041 −0.041

�main�nP3/2� 6P3/2 0.794 0.983 −14315.5 −0.002 −0.002

7P3/2 2.111 3.336 −4101.2 −0.099 −0.079

8P3/2 15.190 14.351 −256.1 −29.4�3� −23.5�3�
9P3/2 5.590 3.430 1634.1 0.263 0.211

10P3/2 1.642 1.142 2706.1 0.018 0.014

11P3/2 0.872 0.627 3373.2 0.004 0.003

12P3/2 0.572 0.417 3816.9 0.002 0.001

�tail�nP3/2� 0.008 0.006

�main�nF5/2� 4F5/2 9.165 13.027 −1575.4 −3.9�1� 0.79�3�
5F5/2 46.603 43.406 923.7 74.6�1.1� −14.9�2�
6F5/2 9.074 1.289 2281.9 0.027 −0.005

7F5/2 5.484 1.999 3100.4 0.047 −0.009

8F5/2 3.767 1.695 3631.1 0.029 −0.006

�tail�nF5/2� 0.434 −0.087

Total −66.8�1.6� 71.2�1.2�
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We find that three contributions, from the 8P1/2, 8P3/2,
and 5F5/2 states, are dominant. Another term �4F5/2� gives a
small but significant contribution to the tensor polarizability.
Therefore we conduct a more accurate calculation of the rel-
evant matrix elements and evaluate their uncertainties. The
study of the breakdown of the correlation correction demon-
strates that the main contributions to these transitions come
from the terms containing only single valence excitation co-
efficients �mv �see Eq. �5��. In such cases, it is possible to use
a semiempirical scaling procedure such as is described, for
example, in Ref. �24� to estimate dominant classes of the
omitted higher-order corrections. The single excitation coef-
ficients �mv are multiplied by the ratio of the experimental
and theoretical correlation energy, and the calculation of the
matrix elements is repeated using the modified excitation
coefficients. The difference between the ab initio and scaled
SD all-order values for the particular matrix element is taken
to be its uncertainty. The relative uncertainty of the corre-
sponding contribution to polarizability is twice the relative
uncertainty of the matrix element. As we noted above, we
assume that the experimental energies are accurate to all dig-
its quoted in Ref. �22�. The uncertainties of the total polar-
izability values are obtained by adding the uncertainties of
the individual terms in quadrature. The uncertainty in all
remaining contributions is estimated to be insignificant in
comparison with the uncertainty of the dominant terms.

We observe significant cancellations between the domi-
nant terms for both scalar and tensor polarizabilities of

the 7D3/2 state. However, the cancellation is more severe for
the scalar polarizability, where the contributions from 8P1/2
and 5F5/2 states are comparable in size but have opposite
signs. Therefore we expect higher accuracy of our tensor
polarizability calculation in comparison with the scalar one.

The contributions to scalar and tensor polarizabilities for
the 7D5/2 state in cesium are listed in Table II. The table is
structured in exactly the same way as the one for the 7D3/2
state. We find that the contribution from the 8P3/2 state is
clearly dominant and the cancellation is much less severe.
For the tensor polarizability, the next largest term, 5F7/2, is
six times as small as the dominant term. The accuracy of the
matrix elements in the dominant terms is similar for the
7D3/2 and 7D5/2 states. Therefore our calculation of the 7D5/2
polarizabilities is expected to be more accurate than that of
the 7D3/2 polarizabilities.

The contributions to scalar and tensor polarizabilities for
the 9DJ and 10DJ states in cesium are listed in Tables III and
IV, respectively. The breakdown of the polarizability contri-
butions is similar to that of the 7D polarizability calculations.
We list only the dominant contributions separately and group
all of the other contributions together in the rows labeled
“Other.” The uncertainty is evaluated using the method
described above. The relative importance of the correlation
corrections decreases with the principal quantum number n
and the cancellation of different terms becomes less signifi-
cant, which results in smaller uncertainties of the polarizabil-
ities for the 9D and 10D states in comparison with the un-

TABLE II. The contributions to the scalar and tensor polarizabilities for the 7D5/2 state in cesium. The corresponding energy differences
and the absolute values of the lowest-order �DHF� and the final all-order electric-dipole reduced matrix elements are also listed. The energy
differences are given in cm−1. The electric-dipole matrix elements are given in atomic units �ea0�, and the polarizabilities are given in 103

a0
3.

Contribution nlj Znlj,7D5/2

DHF Znlj,7D5/2

SD Enlj −E7D5/2
�0�7D5/2� �2�7D5/2�

�main�nP3/2� 6P1/2 2.375 2.909 −14336.5 −0.014 0.014

7P1/2 6.303 9.679 −4122.2 −0.554 0.554

8P1/2 45.594 43.210 −277.1 −164.3�1.7� 164.3�1.7�
9P1/2 16.835 10.774 1613.1 1.755 −1.755

10P1/2 4.939 3.555 2685.1 0.115 −0.115

11P1/2 2.623 1.947 3352.3 0.028 −0.028

12P1/2 1.720 1.294 3795.9 0.011 −0.011

�tail�nP3/2� 0.047 −0.047

�main�nF5/2� 4F5/2 2.444 3.471 −1596.4 −0.184 −0.210

5F5/2 12.464 11.660 902.7 3.67�5� 4.20�5�
6F5/2 2.441 0.457 2260.9 0.002 0.003

7F5/2 1.472 0.590 3079.4 0.003 0.003

8F5/2 1.011 0.488 3610.1 0.002 0.002

�tail�nF5/2� 0.021 0.024

�main�nF7/2� 4F7/2 10.925 15.292 −1596.5 −3.6�1� 1.28�4�
5F7/2 55.737 52.145 902.6 73.5�9� −26.2�3�
6F7/2 10.926 2.049 2260.8 0.045 −0.016

7F7/2 6.588 2.643 3079.3 0.055 −0.020

8F7/2 4.522 2.186 3610.1 0.032 −0.012

�tail�nF7/2� 0.416 −0.148

Total −89.0�1.9� 141.8�1.7�
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certainties for the 7D states. Overall, the uncertainties of our
polarizability calculation are 0.5%–2.3%.

D. Comparison with existing experimental values
and other theory

Our results for the scalar polarizabilities of the 7DJ, 9DJ,
and 10DJ states in cesium are compared with the experimen-
tal values from Refs. �10–12� and theoretical values from
Ref. �13� in Table V. The polarizabilities are given in 103 a0

3.
The conversion factor from the MHz/ �kV/cm�2 units to 103

atomic units used in the present work is 10−7h / �4	
0a0
3�

=4.018 78, where h is the Planck constant. The present val-
ues agree with the experimental results for 7D3/2, 9D3/2, and

10D5/2 states within the corresponding uncertainties. There is
some discrepancy with the accurate experimental value for
the 10D3/2 state, but the discrepancy is only 1.5 of our esti-
mated uncertainty. However, our values for the 7D5/2 and
9D5/2 states disagree significantly with the experimental val-
ues for these states. The calculations for the 7D5/2, 9D5/2, and
10D5/2 state polarizabilities are very similar. Thus the experi-
mental values for the scalar polarizabilities are not consistent
with each other according to our theoretical model. Our cal-
culations confirm the value for the 10D5/2 state to high pre-
cision, and one would have expected similar agreement in
the case of the 7D5/2 and 9D5/2 states.

The results for the tensor polarizabilities for the 7DJ, 9DJ,
and 10DJ states in cesium are compared with the experimen-
tal values from Refs. �4,10–12� and theoretical values from
Ref. �13� in Table VI. The polarizabilities are also given in
103 a0

3. The present results for the nD3/2 states support the
measurements of Refs. �4,10� and disagree with the less pre-
cise previous measurements �11,12�. The comparison of the
nD5/2 values with experiment mirrors the result of the com-
parison for the scalar polarizabilities: the 7D5/2 and 9D5/2
values differ significantly from the experiment while the
10D5/2 value agrees with the precise experiment within the
corresponding uncertainties. Our values agree with the cal-
culation of Ref. �13� for all states for both scalar and tensor
polarizabilities.

IV. CALCULATION OF HYPERFINE CONSTANTS

In this section we evaluate the current knowledge about
the hyperfine constants of the D3/2 and D5/2 states of cesium.

TABLE III. The contributions to scalar and tensor polarizabil-
ities for the 9D3/2 and 9D5/2 states in cesium in 103 a0

3.

Contribution �0�9D3/2� �2�9D3/2�

10P1/2 −1760�9� 1760�9�
10P3/2 −483�2� −386�2�
6F5/2 −129�2� 25.8�4�
7F5/2 938�8� −188�2�
Other 31 −22

Total −1403�12� 1190�10�

Contribution �0�9D5/2� �2�9D5/2�

10P3/2 −2653�12� 2653�12�
7F5/2 46.3�3� 53.0�4�
6F7/2 −117�2� 41.9�6�
7F7/2 927�6� −331�2�
Other 20 −30

Total −1777�14� 2386�13�

TABLE IV. Contributions to the scalar and tensor polarizabil-
ities for the 10D3/2 and 10D5/2 states in cesium in 103 a0

3.

Contribution �0�10D3/2� �2�10D3/2�

11P1/2 −4995�24� 4995�24�
11P3/2 −1379�6� −1103�5�
7F5/2 −425�2� 85.1�4�
8F5/2 2478�16� −496�3�
Other 84 −65

Total −4236�29� 3416�24�

Contribution �0�10D5/2� �2�10D5/2�

11P3/2 −7553�31� 7553�31�
8F5/2 122�1� 140�1�
7F7/2 −386�3� 138�1�
8F7/2 2450�17� −875�6�
Other 51 −89

Total −5316�36� 6867�32�

TABLE V. Comparison of the scalar polarizabilities �0 for the
7D, 9D, and 10D states in cesium with other theory and experi-
ment. The polarizabilities are given in 103 a0

3.

State This work Experiment Reference �13�

7D3/2 −66.8�1.6� −60�8� �12� −65.2

9D3/2 −1403�12� −1450�120� �11� −1400

10D3/2 −4236�29� −4185�4� �10� −4220

7D5/2 −89.0�1.9� −76�8� �12� −87.1

9D5/2 −1777�14� −2050�100� �11� −1770

10D5/2 −5316�36� −5303�8� �10� −5300

TABLE VI. Comparison of the tensor polarizabilities �2 for the
7D, 9D, and 10D states in cesium with other theory and experi-
ment. The polarizabilities are given in 103 a0

3.

State This work Experiment Reference �13�

7D3/2 71.2�1.2� 74.5�2.0� �4� 70.4

66�3� �12�
9D3/2 1190�10� 1183�35� �4� 1190

1258�60� �11�
10D3/2 3416�24� 3401�4� �10� 3410

7D5/2 141.8�1.7� 129�4� �12� 140

9D5/2 2386�13� 2650�140� �11� 2380

10D5/2 6867�32� 6815�20� �10� 6850
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We describe a calculation of the hyperfine constants for the
5D3/2−10D3/2 and 5D5/2−10D5/2 states of 133Cs. Then we
compare the results of the calculation to previously measured
values. The calculation of the hyperfine constants also makes
use of the relativistic all-order method and is done in the
same way as the calculation of the electric-dipole matrix el-
ements and with the same set of the excitation coefficients
�ma, �mv, �mnab, and �mnva �see Eq. �5��. The breakdown of
the correlation correction to the hyperfine constants A for
nD3/2 and nD5/2 states in cesium calculated using the SD
all-order method is given in Table VII. The expressions for
the terms a, c, d, h, n, and p are given in �23�. These terms
are linear or quadratic functions of the excitation coeffi-
cients. The values of the contributions of the dominant terms
and total correlation correction are given in percent relative
to the lowest-order value for each state. The normalization
factor is also listed. We find that the correlation correction is
very large, especially for the D5/2 states, where it is several
times as large as the lowest-order value and has an opposite
sign. Owing to such an enormous correlation correction, we
do not expect our results to be very accurate for the nD5/2
states. The scaling procedure described above or partial ab
initio inclusion of the triple excitation as described in Ref.
�25� can only evaluate corrections to terms c and d, that are
not dominant for any of the states except 5D3/2. Therefore we
cannot make an accurate estimate of the uncertainty of our
values that is independent from experimental measurements.

Our results for the hyperfine constants A �MHz� for the
nD state in Cs are compared with previous experiments in
Table VIII. We list the lowest-order and “dressed” third-

order values together with the SD all-order values. The
“dressed” third-order calculation has all lowest-order matrix
elements replaced by “dressed” matrix elements calculated in
the random-phase approximation �RPA� �27�. We find large
discrepancies between the third-order and all-order results
indicating very large contributions from the fourth- and
higher-order terms. Taking into account the very large size of
the correlation correction and obviously large contributions

TABLE VII. The breakdown of the correlation correction to the hyperfine constants A for the nD3/2 and
nD5/2 states in cesium calculated using the SD all-order method. The expressions for all terms are given in
�23�. The values of the contributions for the dominant terms and total correlation correction are given in
percent relative to the lowest-order value for each state. The total contains contributions from all terms �a
− t�. The normalization factor is also listed.

Contribution 5D3/2 6D3/2 7D3/2 8D3/2 9D3/2 10D3/2

Term a 11% 26% 28% 28% 28% 28%

Term c 127% 57% 36% 28% 23% 21%

Term d 41% 9% 4% 2% 2% 1%

Term h 13% 9% 5% 4% 3% 3%

Term p 19% 13% 11% 10% 9% 9%

Total 214% 118% 87% 75% 69% 65%

Norm 1.10 1.14 1.12 1.10 1.10 1.09

Contribution 5D5/2 6D5/2 7D5/2 8D5/2 9D5/2 10D5/2

Term a −352% −264% −228% −213% −205% −200%

Term c 120% 54% 35% 27% 23% 21%

Term d 37% 8% 3% 2% 2% 1%

Term h −154% −28% −5% 3% 6% 8%

Term n 18% 16% 14% 13% 12% 12%

Term p 13% 10% 9% 8% 8% 8%

Term r −24% −18% −15% −14% −14% −13%

Total −339% −217% −184% −171% −164% −160%

Norm 1.09 1.12 1.10 1.09 1.09 1.08

TABLE VIII. The hyperfine constants A �MHz� for the nD3/2

and nD5/2 states in cesium. The lowest-order, “dressed” third-order
values, and all-order values are compared with previous experi-
ments. The experimental data are taken from �5�.

State DHF Third order All order Experiment �5�

5D3/2 18.2 47.0 52.3 48.78�7�
6D3/2 9.27 21.5 17.8 16.30�15�
7D3/2 4.70 10.1 7.88 7.4�2�
8D3/2 2.65 5.46 4.20 3.94�8�
9D3/2 1.63 3.28 2.51 2.35�4�
10D3/2 1.07 2.12 1.62 1.51�2�
5D5/2 7.47 −32.3 −16.4 −21.24�8�
6D5/2 3.73 −8.15 −3.89 −3.6�10�
7D5/2 1.88 −2.67 −1.42 −1.7�2�
8D5/2 1.06 −1.15 −0.684 −0.85�20�
9D5/2 0.651 −0.592 −0.384 −0.45�10�
10D5/2 0.428 −0.343 −0.238 −0.35�10�
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from higher orders, we find that the agreement of the all-
order calculation with measured values is remarkably good.

We have investigated the issue of the consistency of the
experimental hyperfine data using our calculation. Table VII
demonstrates that the breakdown of the correlation for the
6D–10D states is rather similar, especially for nD3/2 states.
We note that nD3/2 and nD5/2 states have to be considered
separately. The distributions of the correlation for both 5D3/2
and 5D5/2 states are clearly very different from the ones for
the other nD states, and these states are omitted from the
consistency check below. For the nD5/2 states, the relative
contribution of term h changes sign; however, the contribu-
tion from this term is small in comparison with the experi-
mental uncertainty. To cross-check the experimental data, we
take the experimental value for one particular nDJ state and
rescale it for all the other states with the same J using the
theoretical values of the correlation corrections. The correla-
tion correction is calculated as the difference between the
final �experimental or theoretical� number and the lowest-
order DHF value. For example, we take the experimental
value A6D3/2

Expt and determine how much we need to scale our
theoretical correlation correction for the 6D3/2 state to obtain
this value. The scaling factor is defined as

S�6D3/2� =
A6D3/2

Expt − A6D3/2

DHF

A6D3/2

SD − A6D3/2

DHF ,

where ADHF and ASD are the lowest-order and all-order val-
ues from Table VIII for the 6D3/2 state. Next, we take our
theoretical value for another state, for example, 7D3/2, and
rescale its correlation correction contribution using the scal-
ing factor S�6D3/2�:

A�7D3/2� = S�6D3/2��A7D3/2

SD − A7D3/2

DHF � + A7D3/2

DHF . �6�

Then, we calculate A�8D3/2�, A�9D3/2�, and A�10D3/2� using
Eq. �6�. We list these values in the column labeled S�6D3/2�

of Table IX, which indicates that these values were obtained
with the scaling factor S�6D3/2�. We repeat the procedure
using other nD3/2 values to define the scaling factor. The
uncertainty of the rescaled values comes only from the ex-
perimental uncertainty of the initial experimental value AnDJ

Expt.
We find that all results in each row are consistent within the
uncertainties, leading to the conclusion that the experimental
results are internally consistent. We note that such a proce-
dure will not be able to detect a systematic shift of all the
experimental results. Since we cannot accurately evaluate the
uncertainty of the scaling procedure itself, it is unclear if it
can yield data that are more accurate than the corresponding
experimental data, even though some of the rescaled data has
smaller uncertainties than the actual experimental data. The
accuracy of the rescaling is expected to be higher when �n
between the original and scaled state is the smallest.

V. ANALYSIS OF EXPERIMENTAL DATA AND ESTIMATE
OF THE HYPERFINE CONSTANTS

The theoretical calculations of the hyperfine constants de-
scribed in the previous section as well as the experimental
measurements of �5� contained large uncertainties. The scal-
ing procedure seems to indicate that the experimental values
of the review �5�, although taken from different sources, are
consistent with each other. Thus there is an indication that
the scaling procedure could yield slightly more accurate pre-
dictions of hyperfine constants of states in adjacent levels if
the hyperfine constant of one state is known. The experiment
described in Sec. II could provide an independent cross-
check of these findings.

With the tensor polarizabilities calculated in Sec. III, the
simulations described in Sec. II can be used to estimate the
hyperfine constant. First, we calculate a series of simulated
curves, varying those experimental parameters that we can-
not measure precisely, in particular the detuning of the lasers.

TABLE IX. The consistency check of the experimental hyperfine constants A �MHz� values for the nD3/2 and nD5/2 states in cesium. The
actual experimental data from Ref. �5� are listed in the second column. The columns labeled “S�nDJ�,” n=6–10, give data obtained by taking
the experimental value for this particular nDJ state and rescaling it for all the other states using the theoretical values for the correlation
correction as explained in the text. The uncertainty of the rescaled values comes only from the experimental uncertainty of the initial
experimental value nDJ.

State Experiment �5� S�6D3/2� S�7D3/2� S�8D3/2� S�9D3/2� S�10D3/2�

6D3/2 16.30�15� 16.5�5� 16.3�4� 16.2�4� 16.1�3�
7D3/2 7.4�2� 7.33�6� 7.35�16� 7.3�1� 7.25�12�
8D3/2 3.94�8� 3.93�3� 4.0�1� 3.92�7� 3.89�6�
9D3/2 2.35�4� 2.36�2� 2.38�6� 2.36�5� 2.33�3�
10D3/2 1.51�2� 1.53�1� 1.54�4� 1.53�3� 1.52�3�

State Experiment S�6D5/2� S�7D5/2� S�8D5/2� S�9D5/2� S�10D5/2�

6D5/2 −3.6�10� −4.5�5� −4.6�7� −4.4�7� −5.2�1.1�
7D5/2 −1.7�2� −1.3�4� −1.7�4� −1.6�3� −2.0�5�
8D5/2 −0.85�20� −0.6�2� −0.83�10� −0.80�17� −0.97�26�
9D5/2 −0.45�10� −0.34�14� −0.47�6� −0.48�11� −0.56�16�
10D5/2 −0.35�10� −0.21�9� −0.29�4� −0.30�8� −0.28�6�
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When the overall shape of the simulated curve matches the
experiment, the positions of the features depend on the val-
ues of the tensor polarizability �2 and the hyperfine constant
A.

We assume that the tensor polarizabilities calculated in
Sec. III for the 7, 9, and 10D5/2 states of cesium are the most
accurate values available because of the excellent agreement
between the calculated and previously measured values for
the 10D3/2 state of cesium. By fixing the tensor polarizability
at the calculated value in our simulations, we can thus esti-
mate the hyperfine constant A from the level-crossing signals
in Figs. 4–6. Table X summarizes the polarizabilities used in
the simulations and the hyperfine values A obtained after a fit
to the experimental data.

Considering the difficulty in calculating the hfs constants,
the results of the relativistic many-body calculation for the
hyperfine constant A agree reasonably well with the experi-
mental measurements for the 7D5/2 and 9D5/2 states �within
�1.5��. The large discrepancy in the case of the 10D5/2 state
seems problematic, since the calculations should be inter-
nally consistent, if not completely reliable in absolute terms.
This inconsistency could indicate that we slightly underesti-
mated our uncertainties. It is also possible that the self-
consistency check is less reliable in the case of the nD5/2
states because the DHF term and the all order term differ
even in their sign.

VI. CONCLUSION

We obtained new values for the hfs constants A of the 7,
9, and 10D5/2 states. Our values agreed with previously mea-

sured values, but achieved greater precision. The values were
obtained by means of measured level-crossing signals, a de-
tailed theoretical description of these signals, and values for
the tensor polarizability calculated with an all-order relativ-
istic many-body method. We demonstrated the all-order rela-
tivistic many-body method’s reliability even in highly ex-
cited states of 133Cs by comparing scalar and tensor
polarizabilities obtained by this method with previously ex-
perimentally measured values for the 7, 9, 10D3/2 and 7, 9,
10D5/2 states of 133Cs.

Our calculated polarizability values were in good agree-
ment with experiment except for the 7 and 9D5/2 states.
However, the experimental values reported for these states
are called into question by the fact that values reported in the
same works for the 7D3/2 �12� and 9D3/2 �11� states also
disagree with our calculation, whereas more recent measure-
ments of the 7 and 9D3/2 states �4� support our calculation, as
well as previous calculations �13�. The method was further
applied to calculate values for the hyperfine constants A in
the 5–10D3/2 and 5–10D5/2 states. Although the calculation
cannot be considered reliable in absolute terms, nevertheless
they agreed reasonably well in the case of the 7D5/2 and
9D5/2 states. For the 10D5/2 state, the agreement was not as
good.
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