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Bounds on the concurrence of the superposition state in terms of the concurrences of the states being
superposed are found in this paper. The bounds on concurrence are quite different from those on the entangle-
ment measured by von Neumann entropy �Linden et al., Phys. Rev. Lett. 97, 100502 �2006��. In particular, a
nonzero lower bound can be provided if the states being superposed are properly constrained.
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Most recently, Linden et al. �1� have raised a problem,
i.e., for two given bipartite �A and B� states ��� and ���,
what is the relation between their entanglement and that of
their superposed state ���=����+����, with ���2+ ���2=1.
They found upper bounds on the entanglement ��� in terms
of the entanglement of ��� and ���, where the entanglement
measure they employed is the von Neumann entropy of the
reduced state of either of the parties �2� defined by

E��� = S�TrA������� = S�TrB������� .

Since the entanglement measure for pure states is not
unique, it is natural to ask whether the bounds obtained in
Ref. �1� only exist for von Neumann entropy. And what is the
lower bound on the entanglement of superposition? Moti-
vated by this question, in this paper we employ concurrence
�3–5� as the entanglement measure to study how the concur-
rence of ��� is bounded in terms of the concurrence of ���
and ���. The result shows that even though the form of the
bounds for concurrence are something like those given in
Ref. �1�, they are quite different. For example, for two bior-
thogonal states, Ref. �1� has shown an elegant bound on the
von Neumann entropy of their superposition, i.e., an equality
bound, while we do not find explicit constraints for the two
states such that the concurrence of their superposition has
equality bounds. It is most important that a nonzero lower
bound on the concurrence of a superposition state can be
provided if the states being superposed satisfy some condi-
tions which include the constraints on the concurrence of the
states and their proportions in the superposition state and so
on. The paper is organized as follows. First, we introduce a
variational but equivalent expression for concurrence; then
we study the concurrence of superposition by analogous
logic to that of Ref. �1�; the conclusion is drawn finally.

In this paragraph, we first introduce the concurrence
and derive the variational form of concurrence which
will simplify our presentation. As we know, ���AB of
two parties A and B defined in �n1�n2� dimensions
can, in general, be considered as a vector, i.e., ���AB
= �a00,a01, . . . ,a0n2

,a10,a11, . . . ,an1n2
�T with the superscript T

denoting transpose operation, while throughout the paper we
confine all the pure states to matrix notation, i.e.,

� =�
a00 a01 ¯ a0n2

a10 a11 ¯ a1n2

] ] � ]

an10 an11 ¯ an1n2

	 . �1�

With the matrix notation, one can easily find that the reduced
density matrix

�B = ��†. �2�

Consider the eigenvalue decomposition of �B, one can have

�B = ��† = �M�†, �3�

where the columns of � correspond to the eigenvectors of �B
and M is a non-negative diagonal matrix with its diagonal
entries corresponding to the eigenvalues of �B or the square
of the singular values of �.

The concurrence for an arbitrary dimensional bipartite
pure state ��� is defined �4� by

C����� = 
2�− Tr��r
2�� , �4�

which turned out to be the length of the concurrence vector
obtained by Wootters �6�, where �r=Tr������� denotes the
reduced density matrix tracing over either of the two parties.
Substituting Eq. �3� into Eq. �4�, we have �up to a constant�

C����� = 
1 − �
i

	i
4 �5�

=
�
i�j

	i
2	 j

2, �6�

where 	i, �i	i
2=1, is one singular value of � where the nor-

malized � is always implied. Equations �5� and �6� are the
so-called variational forms for concurrence to be used in the
paper.

Theorem 1 (biorthogonal states). If two pure states �1 and

1 defined in �n�m� dimensions are biorthogonal, i.e., sat-
isfy �1
1

†=�1
†
1=0, the concurrence of their superposed

states �1
+=��1+�
1 with ���2+ ���2=1 obeys*Electronic address: hssong@dlut.edu.cn
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���2C��1� + ���2C�
1�
2

� C���1 + �
1�

�
���2C̃��1,�� + ���2C̃�
1,��

2
,

�7�

where

C̃��1,�� =
C2��1� +
���4

���4
+ 2

���2

���2
, �8�

with ���2=1− ���2.
That we say �1 and 
1 are defined in the same dimension

implies that the two states have been properly adjusted. Note
that �1 and 
1 may be defined in the Hilbert space with
different dimensions. However, one can always add some
zero entries to �1 and 
1 such that �1 and 
1 are defined in
the same dimension. What is more, one can find that �1
1

†

=0 is equivalent to the conditions given in Ref. �1� for bior-
thogonal states after simple algebra.

Proof. As we know, for any two Hermitian matrices H and
K defined in Cn�n,

i�H� + 1�K� � i�H + K� � i�H� + n�K� �9�

holds, where i�·� denotes the eigenvalues in increasing or-
der �7� �see Theorem 4.3.1 in Ref. �7��.

Since �1�1
† and 
1
1

† are both Hermitian and defined in
�n�n� dimensions, one has

���2i��1�1
†� + ���21�
1
1

†� � i����2�1�1
† + ���2
1
1

†� .

�10�

Because �1
1
†=0,

i����2�1�1
† + ���2
1
1

†� = i��1
+��1

+�†� . �11�

Substituting Eq. �11� into eq. �6�, we have

��
i�j

n

����2i��1�1
†� + ���21�
1
1

†��

�����2 j��1�1
†� + ���21�
1
1

†��1/2

= ����4C2��1� + �n − 1����21�
1
1
†�

��2���2 + n���21�
1
1
†���1/2

�
�
i�j

n

i��1
+��1

+�†� j��1
+��1

+�†� = C��1
+� . �12�

Substituting Eq. �11� into Eq. �5�, we have

C��1
+� =
1 − �

i

n

i
2��1

+��1
+�†�

� ����4�1 − �
i

n

i
2��1�1

†� + ���4�1 − n1
2�
1
1

†��

+ 2���2���2�1 − 1�
i

n

i��1�1
†��1/2

= ����4C2��1� + ���4�1 − n1
2�
1
1

†��

+ 2���2���2�1 − 1�
1
1
†���1/2. �13�

Simplifying Eqs. �12� and �13� by considering a positive
semidefinite 

†, the two equations can be rewritten by

���2C��1� � C���1 + �
1� � 
���4C2��1� + ���4 + 2���2���2.

�14�

Considering the analogous relation to Eq. �9� by exchanging
H and K and a positive semidefinite ��†, based on the above
procedure one can also obtain

���2C�
1� � C���1 + �
1� � 
���4C2�
1� + ���4 + 2���2���2.

�15�

Therefore, Eqs. �14� and �15� can be given in a symmetric
form by

���2C��1� + ���2C�
1�
2

� C���1 + �
1�

�
���2C̃��1,�� + ���2C̃�
1,��

2
,

�16�

which completes the proof. �
Theorem 2 (orthogonal states). If �n�m�-dimensional

pure states 
2 and �2 are orthogonal, i.e., Tr�2
2
†=0, the

concurrence of their superposed state �2
+=��2+�
2 with

rank r satisfies,

2 max����2l��,�2,
2�, ���2l��,
2,�2��

� C��2
+� � 2 min����2f��,�2,
2�, ���2f��,
2,�2�� ,

�17�

where

l��,�2,
2� = �max�0,C2��2� − r
���4

���4
n

2�
2
2
†�

− 2
���2

���2
n�
2
2

†� +
1 − 4���4

4���4 �1/2

and

f��,�2,
2� = �C2��2� + r
���2

���2
n�
2
2

†�

��1 + �r − 1�
���2

���2
n�
2
2

†��1/2

.
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Proof. Construct matrix D2 such that

D2 = ���2
2
2
† + ���2�2�2

†.

The inequality �10� holds in this case, too, i.e.,

���2i��2�2
†� + ���21�
2
2

†� � i�D2�

� ���2i��2�2
†� + ���2n�
2
2

†� .

�18�

D2 can also be rewritten as

D2 =
1

2
�2

+��2
+�† +

1

2
�2

−��2
−�†, �19�

with �2
−=��2−�
2. In terms of inequality �9�, Eq. �19� im-

plies that

1

2
i���2

+���2
+�†� +

1

2
1��2

−��2
−�†�

� i�D2��
1

2
i��2

+��2
+�†� +

1

2
n��2

−��2
−�†� . �20�

Comparing Eq. �18� with Eq. �20�, one has

1

2
i��2

+��2
+�†� +

1

2
1��2

−��2
−�†� � ���2i��2�2

†� + ���2n�
2
2
†�

�21�

and

1

2
i��2

+��2
+�†� +

1

2
1��2

−��2
−�†� � ���2n��2�2

†� + ���2i�
2
2
†� .

�22�

Due to the positive semidefinite �2
−��2

−�†, 1��2
−��2

−�†��0.
Equations �21� and �22� can be rewritten by

1

2
i��2

+��2
+�†� � ���2i��2�2

†� + ���2n�
2
2
†� �23�

and

1

2
i��2

+��2
+�†� � ���2n��2�2

†� + ���2i�
2
2
†� . �24�

Substitute Eqs. �23� and �24� into Eq. �6�, we arrive at

1

2
C��2

+� � ���2f��,�2,
2� �25�

and

1

2
C��2

+� � ���2f��,
2,�2� . �26�

Rewriting Eqs. �25� and �26� in a symmetric form, it follows
that

C��2
+� � 2 min����2f��,�2,
2�, ���2f��,
2,�2��

� ����2f��,�2,
2� + ���2f��,
2,�2�� . �27�

According to Eqs. �5� and �23�, we have

1

2
C��2

+� =
1

4
−

1

4�
i

i
2��2

+��2
+�†� �
max�0,

1

4
− �

i

����2i��2�2
†� + ���2n�
2
2

†��2� = ���2l��,�2,
2� . �28�

Analogously, we can also obtain

1

2
C��2

+� � ���2l��,
2,�2� . �29�

Hence, one can obtain the symmetric form

1

2
C��2

+� � max����2l��,�2,
2�, ���2l��,
2,�2��

�
1

2
����2l��,�2,
2� + ���2l��,
2,�2�� . �30�

�
From Eq. �28�, it is obvious that if and only if

C2��2� � 1 −
1

4���4
−

1

r
,

n�
2
2
†� � �0,−

1

r

���2

���2
�1 − �� �31�

with

� =
1 + r�C2��2� +
1

4���4
− 1 ,

then

l��,�2,
2� � 0.

From Eq. �29�, one can also obtain a similar constraint to Eq.
�31� for l�� ,
2 ,�2��0, which we omit here.

Theorem 3 (arbitrary states). For any two normalized �n
�m�-dimensional pure states �3 and 
3 with ���2+ ���2=1,
the concurrence of the superposed state �3

+=��3+�
3 with
rank r is bounded as
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max����2l̃��,�3,
3�, ���2l̃��,
3,�3��

�
��3

+�2

2
C��3

+� � min����2f��,�3,
3�, ���2f��,
3,�3��

�32�

where

l̃��,�3,
3� = �max�0,C2��3� − r
���4

���4
n

2�
3
3
†�

− 2
���2

���2
n�
3
3

†� +
��3

+�4 − 4���4

4���4 �1/2

,

and � · � denotes the l2 norm �7�.
Proof. Analogous to Theorem 2, consider the matrix

D3 = ���2�3�3
† + ���2
3
3

†. �33�

D3 can be rewritten as

D3 =
��3

+�2

2
�̃3

+��̃3
+�† +

��3
−�2

2
�̃3

−��̃3
−�†, �34�

with �3
±=��3±�
3 and �̃3

±=�3
± / ��3

±�. Based on Eq. �9�, we
have

��3
+�2

2
i���̃3

+���̃3
+�†� +

��3
−�2

2
1��̃3

−��̃3
−�†�

� i�D3� � ���2i��3�3
†� + ���2n�
3
3

†� . �35�

Following a similar procedure to that of Theorem 2, based on
Eq. �35� one can obtain

��3
+�2

2
C��3

+� � min����2f��,�3,
3�, ���2f��,
3,�3��

�
1

2
����2f��,�3,
3� + ���2f��,
3,�3�� .

�36�

Note that C��3
+� means the concurrence of the normalized

��3+�
3, i.e., C��̃3
+�. From Eqs. �5� and �35� again, one has

��3
+�2

2
C��3

+� =
��3
+�4

4
−

��3
+�4

4
i

2���̃3
+���̃3

+�†� �
max�0,
��3

+�4

4
− �

i

����2i��3�3
†� + ���2n�
3
3

†��2� = ���2l̃��,�3,
3� .

�37�

In a symmetric form, the bound on concurrence can be given
by

1

2
����2l̃��,�3,
3� + ���2l̃��,
3,�3��

� max����2l̃��,�3,
3�, ���2l̃��,
3,�3�� �
��3

+�2

2
C��3

+� .

�38�

Equations �35� and �36� complete the proof. �
Analogously, if and only if

C2��3� � 1 −
��3

+�4

4���4
−

1

r
,

n�
3
3
†� � �0,−

1

r

���2

���2
�1 − �� �39�

with

� =
1 + r�C2��3� +
��3

+�4

4���4
− 1 ,

then

l̃��,�3,
3� � 0.

The constraints on l̃�� ,
2 ,�2��0 are similar.
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FIG. 1. The upper and lower bounds and concurrence of �0 vs
���2. The dash-dotted line corresponds to the upper bound, and the
dotted line corresponds to the lower bound, while the solid line
between them is the concurrence of �0. Units are dimensionless.
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In order to illustrate the bounds intuitionally, we directly
provide a simple example for the superposition of two arbi-
trary states, i.e., that stated in Theorem 3. However, due to
the constraint conditions given by the theorems �Eqs. �31�
and �39��, we know that not all the pairs of given pure states
can lead to good bounds. In this sense, we consider two such
states: one is the maximally bipartite entangled state of qu-
bits, i.e., 
0= 1


2
� 10

01
�; the other is a bipartite entangled state

randomly generated by MATLAB; here �0= � 0.7594 0.2067
0.1583 0.5962

� is our
choice. An intuitional demonstration of the upper and lower
bounds and the concurrence of �0=�
0+��0 vs ���2 is
shown in Fig. 1. In fact, we have also studied some super-
positions of a pair of higher-dimensional entangled states �a
maximally entangled state and a random one�; analogous fig-
ures to Fig. 1 can also be obtained, but are omitted here.

In summary, we have given the bounds on the concur-
rence of superposition states, which are very different from

those in Ref. �1�. A lower bound can also be provided if the
states being superposed are constrained as mentioned. How-
ever, it seems to be difficult to present a useful lower bound
for two arbitrary states by the current approach. This result
can be readily extended to the superposition of more than
two terms by repeating our procedure based on Eq. �9�. One
can easily see that if the current bound on concurrence is
converted into that on the square of the concurrence �it is
only simple algebra�, the generalization to the case of more
than two terms will be straightforward. What is more, one
will see that if the negativity �8� is employed as the entangle-
ment measure, it is also difficult to find useful �upper and
lower� bounds based on the current approach.
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