
Fast rate estimation of a unitary operation in SU„d…

Jonas Kahn
Université Paris-Sud 11, Département de Mathématiques, Bâtiment 425, 91405 Orsay Cedex, France
�Received 13 March 2006; revised manuscript received 2 October 2006; published 23 February 2007�

We give an explicit procedure based on entangled input states for estimating a SU�d� operation U with rate
of convergence 1/N2 when sending N particles through the device. We prove that this rate is optimal. We also
evaluate the constant C such that the asymptotic risk is C /N2. However, other strategies might yield a better
constant C.
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I. INTRODUCTION

The question that we are investigating in this paper is:
“What is the best way of estimating a unitary operation U?”

By “unitary operation,” we mean a device �or a channel�
that sends a density operator �0 on Cd to another density
operator �=U�0U*, where U�SU�d�, a special unitary ma-
trix.

We immediately stress that the solution to this estimation
problem can be divided into two parts: what is the input
state, and which measurement �POVM, see Def. 1� should
we apply on the output state? Indeed, in order to estimate the
channel U, we have to let it act on a state �the input state�.
And once we have the output state, the problem consists in
discriminating states in the family of possible output states.

This estimation of unitary operation has been extensively
studied over the last few years.

The first invitation was Ref. �1�, featuring numerous spe-
cial cases. In most of those, the unitary U is known to belong
to some subset of SU�2�.

Then Ref. �2� provided the form of an optimal state to be
sent in with non-specified coefficients depending on the cost
function �we give the formula of this state in Eq. �2.2��. In
that paper the authors consider the situation where the uni-
tary operation is performed independently on N systems.
That study applied to any SU�d�, and any covariant loss
function, in particular fidelity, in a Bayesian framework. The
proposed input state uses an ancilla, that is, an auxiliary sys-
tem that is not sent through the unitary channel with Hilbert
space �Cd��N. The state is prepared as a superposition of
maximally entangled states, one for each irreducible repre-
sentation of SU�d� appearing in �Cd��n. We emphasize that
the state is an entangled state of �Cd��N � �Cd��N: we do not
send N copies of an entangled state through the device, but
all the N systems that are sent through the channel together
with the N particles of the ancilla are part of the same en-
tangled state, yielding the most general possible strategy.
There was no evaluation of the rate of convergence, though.

Subsequent works mainly focused on SU�2�, as the case is
simpler and yields many applications, e.g., transmission of
reference frames in quantum communication. Indeed, the lat-
ter is equivalent to the estimation of a SU�2� operation. The
first strategy to be proved to converge �in fidelity� at 1 /N2

rate was not covariant �3�. It made no use of an ancilla. Later,
the same rate was achieved for a covariant measurement with
an ancilla �4� through a judicious choice of the coefficients

left free in the state proposed in Ref. �2�. The optimal con-
stant ��2 /N2 for the fidelity� was also computed. It was al-
most simultaneously noticed �5,6� that asymptotically the an-
cilla is unnecessary. Indeed, what we need is entangling
different copies of the same irreducible representation. Now
each irreducible representation appears with multiplicity in
�Cd��N, most of them with higher multiplicity than dimen-
sion, which is the condition we need. This method was
dubbed “self-entanglement.” The advantage is that we need
to prepare half the number of particles, as we do not need an
ancilla. In all these articles, the Bayesian paradigm with uni-
form prior was used. The same 1/N2 rate was shown to hold
true in a minimax sense, in pointwise estimation �7�. We
stress the importance of this 1 /N2 rate, proving how useful
entanglement can be. Indeed, in classical data analysis, we
cannot expect a better rate than 1/N. Similarly, the 1/N
bound holds for any strategy where the N particles we send
through the device are not entangled “among themselves”
�that is, even if there is an ancilla for each of these N par-
ticles�.

Another popular theme has been the determination of the
phase � for unitaries of the form U�=ei�H. This very special
case already has many applications, especially in interferom-
etry or measurement of small forces, as featured in the re-
view article �8� and references therein. A common feature of
the most efficient techniques is the need for entangled states
of many particles, and much experimental work has aimed at
generating such states. These methods essentially involve ei-
ther manipulation of photons obtained through parametric
down-conversion �for example, Ref. �9��, ions in ion traps
�for example, Ref. �10�� or atoms in cavity QED �for ex-
ample, Ref. �11��.

In recent years, there has been renewed interest in the
SU�d� case. Notably, Ref. �12� takes off from Ref. �2�, al-
lowing for more general symmetries and making explicit for
natural cost functions both the free coefficients—as the co-
ordinates of the eigenvector of a matrix—and the POVM
�see theorem 1 below�. With a completely different strategy,
aiming rather at pointwise estimation �and, therefore, mini-
max theorems�, an input state for U�n was found �13,14�
such that the quantum Fisher information matrix is scaling
like 1/N2, yielding hopes of getting as fast an estimator for
SU�d�. No associated measurement was found in that paper.

Given the state of the art, a natural question is whether we
can obtain, as for SU�2�, this dramatic increase in perfor-
mance when using entanglement for general SU�d�. That is,

PHYSICAL REVIEW A 75, 022326 �2007�

1050-2947/2007/75�2�/022326�8� ©2007 The American Physical Society022326-1

http://dx.doi.org/10.1103/PhysRevA.75.022326


do we have an estimation procedure whose rate is 1 /N2,
instead of 1/N? Neither Ref. �12�, where the asymptotics are
not studied for SU�d�, nor Ref. �13�, where no measurement
is given, answer this question.

In this article, we first prove that we cannot expect a
better rate than 1/N2. This kind of bound based on the laws
of quantum physics, without any a priori on the experimen-
tal device, is traditionally called the Heisenberg limit of the
problem. Then we choose a completely explicit input state of
the form �2.2� �as in Ref. �2��, by specifying the coefficients.
By using the associated POVM, the estimator of a unitary
quantum operation U�SU�d� converges at rate 1 /N2. The
constant is not optimal, but is briefly studied at the end of the
paper. We obtain these results with fidelity as a cost function,
both in a Bayesian setting, with a uniform prior, and in a
minimax setting. Notice that we shall not need an ancilla.

The next section consists in formulating the problem and
restating theorem 2 of Ref. �12� within our framework. Sec-
tion III then shows that it is impossible to converge at a rate
faster than O�N−2�. In Sec. IV, we write a general formula for
the risk of a strategy as described in theorem 1, and in Sec. V
we specify our estimators by choosing our coefficients in �4�.
We then prove that the risk of this estimator is O�N−2�. The
last section �Sec. VI� consists in finding the precise
asymptotic speed of our procedure, that is the constant C in
CN−2. We finish by stating in theorem 2 the results of the
paper.

II. DESCRIPTION OF THE PROBLEM

We are given an unknown unitary operation U�SU�d�
and must estimate it “as precisely as possible.” We are al-
lowed to let it act on N particles, so that we are discriminat-
ing between the possible U�N. We shall work both with
pointwise estimation �as preferred by mathematicians� and
with a Bayes uniform prior �a favorite of physicists�.

Any estimation procedure can be described as follows
�see Fig. 1�: the unitary channel U�N acts as

U�N
� 1:�Cd��N

� K → �Cd��N
� K ,

on the space of the N systems together with a possible an-
cilla. The input state �n�M��Cd��n � Kn� is mapped into an

output state on which we perform a measurement M whose

result is the estimator Û�SU�d�.
Recall that a measurement is mathematically defined by a

positive operator-valued measure:
Definition 1: A positive operator-valued measure �POVM

for short� on a Hilbert space H with values in a probability
space �X ,A� is a collection of operators M�A� on H for A
�A such that:

M�A� is a nonnegative for any A,
M�X�=1H,
for any �Ai�i�N with Ai two by two disjoint,

M��Ai�=�M�Ai�.
In order to evaluate the quality of an estimator Û, we fix

a cost function ��U ,V�. The global pointwise risk of the
estimator is

RP�Û� = sup
U�SU�d�

EU���U,Û�� .

The probability distribution of Û depends on U, and we take
expectation with respect to this probability distribution.

On the other hand, the Bayes risk with uniform prior is

RB�Û� = �
SU�d�

EU���U,Û��d��U� ,

where � is the Haar measure on SU�d�.
As cost function, we choose the fidelity F �or rather 1

−F�, which for an element of SU�d� is defined as

��U,Û� = 1 −
�Tr�U−1Û��2

d2 = 1 −
����U−1Û��2

d2 ,

where �� is the character of the defining representation of
SU�d�, whose Young tableau consists in only one box. In
other words, ���U�=Tr�U�.

Before really addressing the problem, we make a few re-
marks on why this choice of distance is suitable for math-
ematical analysis.

First, this cost function is covariant, i.e., ��U , Û�
=��1Cd ,U−1Û�.

Second, a useful feature within the Bayesian framework is
that � is of the form �2.1�, as required in theorem 1. Indeed

we can rewrite ��U , Û� as 1−���U−1Û���
* �U−1Û� /d2. Now

the conjugate of a character is the character of the adjoint
representation, the product of two characters is again the
character of a possibly reducible representation �. This char-
acter is equal to the sum of the characters of the irreducible
representations appearing in the Clebsch-Gordan develop-
ment of �, in which all coefficients are non-negative. There-
fore, �=1− ����a�����

*� where a���0 and �� runs over all irre-
ducible representations of SU�d�. That is the condition �2.1�
that we shall need for applying Theorem 1, given at the end
of the section.

On the other hand, the theory of pointwise estimation
deals usually with the variance of the estimated parameters
when we use a smooth parameterization of SU�d�. As we
want to use the quantum Cramér-Rao bound �3.4�, we need

U U U U U

� � � � �

� � � � � �

Measurement Apparatus

�

Û

FIG. 1. Most general estimation scheme of U when n copies are
available at the same time, and using entanglement.
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� to be quadratic in the parameters to the first order, and

positive lower bounded for Û outside a neighborhood of U.
As � is covariant, it is sufficient to check this with U=1Cd.
Now an example of a smooth parameterization in a
neighborhood of the identity is U�	�=exp��
	
T
� where

	�Rd2−1 and the T
 are generators of the Lie algebra,
so that Tr�T
�=0. Now Tr�exp��
	
T
��=d+�
	
 Tr�T
�
+O��	�2�, so that the trace minus d and, consequently, �, is

quadratic in 	 to the first order. We shall write ��1 � ��2 for the

tensor representation of two irreducible representations ��1

and ��2.
As stated at the beginning of this section, we are working

with U�N. The Clebsch-Gordan decomposition of the nth
tensor product representation is

U�N = �
��:����=N

U��
� 1CM����

acting on ���:����=NH�� � CM����, where H��=CD���� is the repre-

sentation space of �� , M��� � is the multiplicity of �� in the nth

tensor product representation, and D��� � the dimension of �� .

We refer to CM��� � as the multiplicity space of �� . We have

indexed the irreducible representations of SU�d� by ��

= ��1 , . . . ,�d�, and written ��� �=�i=1
d �i. Notice that this label-

ling of irreducible representations is redundant, but that if

���1�= ���2�, then ��1 and ��2 are equivalent �denoted ��1	��2� if

and only if ��1=��2.
The starting point of our argument will be the following

reformulation of the results of Ref. �12�, with less generality
and without the formula for the risk whose form is not
adapted to our subsequent analysis:

Theorem 1. �Ref. �12�� Let U�SU�d� be a unitary opera-
tion to be estimated, through its action on N particles. We
may use entanglement and/or an ancilla.

Then, for a uniform prior and any cost function of the
form

c�U,Û� = a0 − �
��

a�����
*�U−1Û� , �2.1�

we can find as optimal input state a pure state of the form

��
 = �
��:����=N

c��� �

�D��� �
�
i=1

D����

��i
��
 � ��i

��
 �2.2�

with c��� ��0, and the normalization condition,

�
��

c��� �2 = 1. �2.3�

Moreover, ��i
��
 is an orthonormal basis of H� and ��i

��
 are
orthonormal vectors of the multiplicity space, which may be
augmented by an ancilla if necessary �see remark below on
the dimensions�.

The corresponding measurement is the covariant POVM
with seed = ��
��� given by:

��
 = �
����c�����0

�D��� � �
i=1

D����

��i
��
 � ��i

��
 , �2.4�

that is a POVM whose density with respect to the Haar mea-
sure is given by m�U�=U��
���U* with

U��
 = �
����c�����0

�D��� � �
i=1

D����

U����i
��
 � ��i

��
 .

Remark. We use D��� � orthonormal vectors in the multi-

plicity space of �� . This requires M��� ��D��� �. If this is not
the case, we must increase the dimension of the multiplicity
space by using an ancilla in C�. Then the action of U is
U�N � 1C� whose Clebsch-Gordan decomposition is

�������=NU�� � 1C�M��� �. With big enough �, we have �M��� �
�D��� �. Notice that an ancilla is not necessary if c��� �=0 for

all �� such that D��� ��M��� �.
Another remark is that, as defined, our POVM is not prop-

erly normalized: M�SU�d���1, but is equal to the projection
on the space spanned by the U��
. As this is the only sub-
space of importance, we can complete the POVM �through
the seed, for example� ad libitum.

Our estimator Û is the result of the measurement with
POVM defined by �2.4� and input state of the form �2.2�,
with specific c��� �. Such an estimator is covariant, that is

pU�Û�= p1Cd�U−1Û�, where pU is the probability distribution

of Û when we are estimating U. The cost function is also

covariant, so that EU���U , Û�� does not depend on U. This
implies that the Bayesian risk and the pointwise risk coin-
cide. With the second equality true for all U�SU�d�, we
have

RB�Û� = RP�Û� = EU���U,Û�� . �2.5�

Theorem 1 states that there exists an optimal �Bayes uni-

form� estimator Ûo of this form �corresponding to the opti-

mal choice of c��� ��, so that it obeys �2.5�. From this we first
prove that no estimator whatsoever can have a better rate
than 1/N2.

III. WHY WE CANNOT EXPECT BETTER RATE
THAN 1/N2

For proving this result, we need the Bayesian risk for
prior � other than the uniform prior:

R��Û� = E��EU���U,Û��� .

As Ûo is Bayesian optimal for the uniform prior, we only

have to prove that RB�Ûo�=O�N−2�. This is also sufficient for

pointwise risk as, for any estimator Û, we have RB�Û�
�RP�Û�. Moreover, as EU���U , Ûo�� does not depend on U,

R��Ûo�=RB�Ûo�. It is then sufficient to prove, for a � of our
choice, that
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R��Ûo� = O�N−2� . �3.1�

The idea is to find a Cramér-Rao bound that we can apply
to some �. We shall combine the Braunstein and Caves in-
formation inequality �3.3� and the Van Trees inequality �3.2�
to obtain the desired quantum Cramér-Rao bound, much in
the spirit of Ref. �15�. This bound will yield an explicit rate
through a result of �13�.

Van Trees’ inequality states that given a classical statisti-
cal model smoothly parameterized by 	���Rp, and a
smooth prior with compact support �0��, then for any

estimator 	̂, we have

E��TrV	�	̂��� �
p2

E��TrI�	��� − I�

, �3.2�

where I�	� is the Fisher information matrix of the model at
point 	, I� is a finite �for reasonable �� constant depending
on � �quantifying in some way the prior information�, and

V	�	̂��Mp�R� is the mean square error �MSE� of the esti-

mator 	̂ at point 	 given by

V	�	̂�
,� = E��	
 − 	̂
��	� − 	̂��� .

This form of Van Trees inequality is obtained by setting N
=1, G=C= Id, and �=	 in Eq. �12� of Ref. �15�.

Now the Braunstein and Caves information inequality
�16� yields an upper bound on the information matrix IM�	�
of any classical statistical model obtained by applying the
measurement M to a quantum statistical model. For any fam-
ily of quantum states parameterized by a p-dimensional pa-
rameter 	���Rp, for any measurement M on these states,
the following holds:

IM�	� � H�	� , �3.3�

where H�	� is the quantum Fisher information matrix at
point 	.

Now it was proved in Ref. �13� that for a smooth param-
eterization of an open set of SU�d�, and for any input state,
the quantum Fisher information of the output states fulfills

H�	� = O�N2� .

Inserting in �3.2� together with �3.3�, we get as quantum
Cramér-Rao bound

E��Tr�V	�	̂��� = O� 1

N2� . �3.4�

We now want to apply this bound to obtain Eq. �3.1�.
There are a few small technical difficulties. First of all, we
cannot use the uniform prior for � as SU�d� is not homeo-
morphic to an open set of Rp. We then have to define two
neighborhoods of the identity �0��, allowing to use of the

Van Trees inequality. Now our estimator Ûo need not be in
�, so that we shall in fact apply Van Trees inequality to a

modified estimator Ũ. Finally, this bound is on the variance,
and we must relate it to �.

Our first task consists in restricting our attention to a
neighborhood � of 1Cd. It corresponds to a neighborhood �

�we use the same notation� of 0�Rp through U
=exp��
	
T
�. This holds if the neighborhood is small
enough, so we define it by U�� if and only if ��1Cd ,U�
�� for a fixed small enough �. We define �0 through U
��0 for ��1Cd ,U��� /3, and take a smooth fixed prior �
with support in �0, such that I���.

Now we modify our estimator Ûo into an estimator Ũ

given by Ũ= Ûo for Ûo�� and Ũ=1Cd for Ûo��. Then, by

the triangle inequality, for any U��0, we have ��U , Ûo�
���U , Ũ�.

The fundamental point of the reasoning �used at Eq. �3.5��
is that, as � is quadratic at the first-order, there is a positive
constant c such that, for any U1 ,U2��, corresponding to
	1, 	2, we have ��U1 ,U2��c�
�	


1 −	

2�2.

Finally, we get

R��Ûo� = E��EU���U,Ûo��� � E��EU���U,Ũ��� � cE��V	̃�

= O�N−2� . �3.5�

We have thus proved Eq. �3.1�, and hence our bound on
the efficiency of any estimator.

We now write formulas for the risk of any estimator of the
form given in Theorem 1.

IV. FORMULAS FOR THE RISK

By �2.5�, our risk RP�Û� is equal to the pointwise risk at
1Cd, with which we shall work

�
SU�d�

p1Cd�Û��1 −
����Û��2

d2 �d��Û� . �4.1�

Now we compute the probability distribution of Û for a
given ��
 of the form �2.2�, that is

p1Cd�Û� = ���ÛÛ*��
 = � �
��:����=N

c��� �

D��� �
D��� � �

i=1

D����

��i
���U��i

��
�2

= � �
��:����=N

c��� �����Û��2
,

where we have used the character ��� of �� as the trace of U in
the representation.

Then, using �4.1�, recalling that p1Cd is a probability den-

sity with respect to the Haar measure � on SU�d�, and that
���1���2 =���1���2, we get

RP�Û� = 1 −
1

d2�
SU�d�

� �
��:����=N

c��� �������Û��2
d��Û� .

�4.2�

In order to evaluate the second term, we use the following
orthogonality relations for characters:

�
SU�d�

d��U����1�U����2�U�* = ���1	��2. �4.3�

To do so we need the Clebsch-Gordan series of �� � �,
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�� � � = � 1�i�d��i��i+1��
� + ei, �4.4�

where conventionally �d+1=0. Here we see �� as a
d-dimensional vector and ei as the ith basis vector.

We then reorganize the sum of characters as

�
��:����=N

c��� �������Û� = �
���:�����=N+1

�
i�S�����

c���� − ei������Û� ,

where S����� is the set of i between 1 and d such that �� −ei is

still a representation, that is �i���i+1� . We shall write #S�����
for its cardinality.

Inserting in �4.2� and remembering �4.3�, we are left with

RP�Û� = 1 −

�
���:�����=N+1

� �
i�S�����

c���� − ei��2

d2 . �4.5�

To go any further, we must work with specific c��� �.

V. CHOICE OF THE COEFFICIENTS c„�� … AND PROOF
OF THEIR EFFICIENCY

We now have to choose the coefficients c��� � so that the
right-hand side of �4.5� is small.

It appears useful to introduce subsets of the set of all

irreducible representations. Let PN= �� ��� � =N ;�1� ¯ ��d

�0�. Obviously, if �� �PN+1, then #S��� �=d, and the con-
verse is true. We can see them intuitively as points on a�d
−1�-dimensional surface and, with this picture in mind, we
shall speak of the border of PN �when �i=�i+1+1 for some
i�, or of being far from the border �without precise math-
ematical meaning�.

We are ready to give heuristic arguments on how good
coefficients should behave.

We must try to get the fraction in �4.5� close to one. Now

�
���:�����=N+1

� �
i�S�����

c���� − ei��2

d2

� �
���:�����=N+1

#S�����
d

�
i�S�����

�c���� − ei��2

d

� �
���:�����=N+1

�
i�S�����

�c���� − ei��2

d

� �
��:����=N

�c��� ��2 = 1.

The first inequality was obtained using Cauchy-Schwarz in-

equality for each inner sum. There is equality if c��� −ei� does

not depend on i. From this we deduce that for most �� , the

c��� −ei� must be approximately equal, especially if they are

large. The second inequality follows from #S������d. From

this we deduce that for �� �PN+1, the coefficients c��� −ei�
must be small. Remark that about 1 /N of the ��� such that

���� � =N+1 are not in PN+1, so that if all c��� � were equal,
these border terms would cause our rate to be 1/N. The key

of the third inequality is to notice that each c��� � is appearing
in the sum once for each term in its Clebsch-Gordan series
�4.4�, and that there are at most d terms. Please note that

there are d terms if �� �PN, and if �� is in PN+1, far from the

border, then ���−ei is in PN, far from the border.
The conclusion of these heuristics is that we must choose

coefficients “locally” approximately equal �at most 1 /N
variation in ratio�, and that the coefficients must go to 0
when we are approaching the border of PN.

One weight satisfying these heuristics is the following:

c��� � = N�
i=1

d

pi, �5.1�

where N is a normalization constant to ensure that �2.3� is
satisfied and pi=�i−�i+1. We shall use it below, and prove
that it delivers the 1/N2 rate.

A first remark about these weights is that c��� �=0 if ��

�PN. Now, for any �� �PN, we have D��� ��M��� �, so that
we do not need an ancilla.

Indeed, using hook formulas �see p. 131 and p. 215 of

Ref. �17��, we get M��� � /D��� �=N!�i=1
d ��i+d−i�!

�d−i�! . Now for ��

�PN, we know that �i�0. Under this constraint and ��i
=N, the maximum is attained by �1=N−d+1 and �i=1 for
i�1. We end up with exactly 1.

We shall now use Eq. �5.1� and express the numerator of
�4.5� with our choice of pi. Notice first that if pj characterize

���, then those which characterize ���−ei are given by pj
�i�

= pj +� j,i−1−� j,i. So,

N−1c���� − ei� = �
j=1

d

pj + r����i� ,

with

r����i� = − �
j�i

pj + � j�1� �
j�i−1

pj − �
j�i,i−1

pj� .

Introducing another notation will make this slightly more
compact. For a vector x� with d components and E a subset of
1, . . . ,d�, define

xE = �
j�E

xj . �5.2�

Then,

r����i� = − pi� + � j�1�pi−1� − pi,i−1�� .

Notice now that for �� �PN, there are exactly d irreducible
representations appearing in the Clebsch-Gordan decomposi-

tion of �� � � �4.4�. So that c��� �2 appears exactly d times in

����:��� �=N+1�i�S�����c����−ei�2. We may then rewrite the renor-
malization constant N as
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d−1 �
���:�����=N+1

�
i�S�����

�
j=1

d

pj
�i�2.

Therefore, rewriting the second term in �4.5� with our

values of c��� �, we aim at proving

�
���:�����=N+1

� �
i�S�����

�
j=1

d

pj + r����i��2

d �
���:�����=N+1

�
i�S�����

��
j=1

d

pj + r����i��2 = 1 + O�N−2� .

�5.3�

Let us expand the numerator,

�
���:�����=N+1

� �
i�S�����

�
j=1

d

pj + r����i��2

= Ct�1 + t1 + t2� ,

with

Ct = �
���

�#S������2�
j=1

d

pj
2,

t1 =

2�
���

�
i�S�����

# S�����r����i��
j=1

d

pj

Ct
,

t2 =

�
���
� �

i�S�����

r����i��2

Ct
.

Similarly the denominator can be read as

d �
���:�����=N+1

�
i�S�����

��
j=1

d

pj + r����i��2

= Cu�1 + u1 + u2� ,

with

Cu = �
���

d # S������
j=1

d

pj
2,

u1 =

2d�
���

�
i�S�����

r����i��
j=1

d

pj

Cu
,

u2 =

�
���

d �
i�S�����

r����i�
2

Cu
.

With these notations, we aim at proving the set of esti-
mates given in lemma 1. Indeed they imply

�
���:�����=N+1

� �
i�S�����

�
j=1

d

pj + r����i��2

d �
���:�����=N+1

�
i�S�����

��
j=1

d

pj + r����i��2 = 1 + t2 − u2 + O�N−3� ,

�5.4�

with �t2−u2� of order N−2. By �5.3�, the risk of the estimator
is then u2− t2+O�N−3�. Thus proving lemma 1 amounts to
proving 1/N2 rate.

We shall make use of the notation ��f�, meaning that
there are universal positive constants m and M such that

mf � ��f� � Mf .

Lemma 1. With the above notations,

Cu = Ct = d2 �
���:�����=N+1

��
j=1

d

pj�2

= ��N3d−1� ,

t1 = u1 = O�N−1� ,

t2 = O�N−2� ,

u2 = O�N−2� .

Proof. We first prove the first line.

Indeed for ����PN+1, all i are in S�����, and

��i�S������ j=1
d pj�2=d�i�S������ j=1

d pj
2=d2� j=1

d pj
2. But if ���

�PN+1, there is at least one pj equal to zero, so they do not
contribute to the sum. So that Cu=Ct
=d2����:�����=N+1�� j=1

d pj�2.
We have then equality of the denominators of t1 and u1.

The same argument gives equality of the numerators. On

PN+1, #S��� �=d so that

�
i�S�����

# S�����r����i��
j=1

d

pj = d �
i�S�����

r����i��
j=1

d

pj ,

and outside PN+1, � j=1
d pj =0 so that the equality still holds.

Therefore, t1=u1.
Now pj �N+1 so that � j=1

d pj � �N+1�d and �r����i���2�N
+1�d−1. Moreover, as 1��i�N+1 and �d is known if the

other �i are known, the number of elements �� in PN+1 satis-
fies #PN+1� �N+1�d−1. Thus the numerator of t1 and u1 is
O�N3d−2� and that of t2 and u2 is O�N3d−3�. To end the proof
of the lemma, it is then sufficient to show that Cu
=��N3d−1�.

Let us write N+1=a�1+d�d+1�� /2+b with a and b natu-
ral integers and b� �1+d�d+1��. We then select hi for i=1 to
d such that �hi=a /2. The number of ways of partitioning
a /2 in d parts is � a/2+d−1

d−1
�, and this is ��ad−1�=��Nd−1�. To

each of these partitions, we associate a different ��� in PN+1

through �i= �d− i+1�a+�i=1b+hi. For each of these �� , we
have pj =� j −� j+1�a /2, so that � j=1

d pj
2=��N2d�. We may

JONAS KAHN PHYSICAL REVIEW A 75, 022326 �2007�

022326-6



lower bound Cu by the sum over these ��� of � j=1
d pj

2, so that
we have proved Cu=��N3d−1�. �

VI. EVALUATION OF THE CONSTANT IN THE SPEED OF
CONVERGENCE AND FINAL RESULT

The strategy we study is asymptotically optimal up to a
constant, but a better constant can probably be obtained.

Anything like c��� �= ��pj�
 with 
�1/2 should yield the
same rate, though it would be more cumbersome to prove.
Polynomials in the pj could also bring some improvement.
All the same we give in this section a quick evaluation of the
constant, that may serve as a benchmark for more precise
strategies.

Write pj = �N+1�xj. Then, recalling our notation �Eq.
�5.2��,

�
j=1

d

pj
2 = �N + 1�2d�

j=1

d

xj
2,

r����i� = �N + 1�d−1�− xi� + �i�1xi−1� + O�N−1�� .

Similarly, the set of allowed x� = �x1 , . . . ,xn� may be described
as

SN+1 = ��x��xj�N + 1� � N;�
j=1

d

�d − j + 1�xj = 1� .

We may then rewrite

u2 =

�
x��SN+1

d�
i=1

d

�xi� − �i�1xi−1��2

d2�N + 1�2 �
x��SN+1

�
j=1

d

xj
2

+ O�N−3� ,

t2 =

�
x��SN+1

�xi� − �i�1xi−1��2

d2�N + 1�2 �
x��SN+1

�
j=1

d

xj
2

+ O�N−3� .

Subtracting, we obtain �the first sums being on SN+1�

u2 − t2 + O�N−3� �6.1�

=

�
x�

2d��
i=1

d

�xi��2 − �
i=2

d

xi�xi−1�� − �d + 1��xd��2

n2d2�
x�

�
j=1

d

xj
2

.

�6.2�

Now SN+1 is the intersection S of the lattice in �0,1�d with
mesh size 1/ �N+1� with the hyperplane given by the equa-
tion ��d− j+1�xj =1. Therefore, the points of SN+1 are a
regular paving of a flat �d−1�-dimensional volume, with
more and more points �we know that #SN+1=O�Nd−1��.
Therefore, both denominator and numerator of Eq. �6.1� are
Riemannian sums with respect to the Lebesgue measure,
with a multiplicative constant that is the same for both.
Therefore we have proved

Theorem 2. The estimator Û corresponding to �5.1� has
the following risk:

RB�Û� = RP�Û� = E1Cd���1Cd,Û�� = CN−2 + O�N−3� ,

where C is the fraction

�
S

2d��
i=1

d

�xi��2 − �
i=2

d

xi�xi−1�� − �d + 1��xd��2dx�

d2�
S
� j=1

d
xj

2dx�

.

Up to a multiplicative constant, this risk is asymptotically
optimal, both for a Bayes uniform prior and for global point-
wise estimation.

Numerical estimation, up to two digits, for the low dimen-
sions yields:

10 for d = 2

75 for d = 3

2.7 � 102 for d = 4.

VII. CONCLUSION

We have given a strategy for estimating an unknown uni-
tary channel U�SU�d�, and proved that the convergence
rate of this strategy is 1 /N2. We have further proved that this
rate is optimal, even if the constant may be improved.

The interest of this result lies in that such rates are much
faster than the 1/N achieved in classical estimation and,
though they had already been obtained for SU�2�, they were
never before shown to hold for general SU�d�.

ACKNOWLEDGMENTS

We are indebted to Manuel Ballester for an introduction to
this question and for kindly providing the figure, and to
Mădălin Guţă for numerous suggestions and extensive re-
reading.

FAST RATE ESTIMATION OF A UNITARY OPERATION… PHYSICAL REVIEW A 75, 022326 �2007�

022326-7



�1� M. Childs, J. Preskill, and J. Renes, J. Mod. Opt. 47, 155
�2000�.

�2� A. Acin, E. Jane, and G. Vidal, Phys. Rev. A 64, 050302�R�
�2001�.

�3� A. Peres and P. F. Scudo, Phys. Rev. Lett. 87, 167901 �2004�.
�4� E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A 69,

050303�R� �2004�.
�5� E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A 70,

030301�R� �2004�.
�6� G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi,

Phys. Rev. Lett. 93, 180503 �2004�.
�7� M. Hayashi, Phys. Lett. A 354, 183 �2006�.
�8� V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330

�2004�.
�9� H. S. Eisenberg, J. F. Hodelin, G. Khoury, and D. Bouw-

meester, Phys. Rev. Lett. 94, 090502 �2005�.

�10� D. A. R. Dalvit, R. L. de Matos Filho, and F. Toscano, New J.
Phys. 8, 276 �2006�.

�11� D. Vitali, S. Kuhr, M. Brune, and J. M. Raimond, e-print
quant-ph/0602006.

�12� G. Chiribella, G. M. D’Ariano, and M. F. Sacchi, Phys. Rev. A
72, 042338 �2005�.

�13� M. A. Ballester, e-print quant-ph/0507073.
�14� M. A. Ballester, Ph.D. thesis, available at http://

homepages.cwi.nl/balleste/phdthesis.html
�15� R. Gill, e-print math.ST/0512443, under revision for Annals of

Statistics �2005�.
�16� S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

�1994�.
�17� I. V. Schensted, A Course on the Application of Group Theory

to Quantum Mechanics �Neo Press, Peaks Island, 1976�.

JONAS KAHN PHYSICAL REVIEW A 75, 022326 �2007�

022326-8


