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It is known that any positive-energy state of a free Dirac particle that is initially highly localized evolves in
time by spreading at speeds close to the speed of light. As recently indicated by Strauch, this general phenom-
enon, and the resulting “two-horned” distributions of position probability along any axis through the point of
initial localization, can be interpreted in terms of a quantum random walk, in which the roles of “coin” and
“walker” are naturally associated with the spin and translational degrees of freedom in a discretized version of
Dirac’s equation. We investigate the relationship between these two evolutions analytically and show how the
evolved probability density on the x axis for the Dirac particle at any time t can be obtained from the
asymptotic form of the probability distribution for the position of a “quantum walker.” The case of a highly
localized initial state is discussed as an example.
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I. INTRODUCTION

The concept of a quantum random walk �QRW� has been
widely discussed and extended in various directions �1� since
its introduction �2–4� and development �5–13�. Much of the
interest has derived from an expectation that such a math-
ematically attractive idea should have important applications
in quantum information theory �14�, analogous to known ap-
plications of classical random walks �CRW’s� in classical
information science.

On the other hand, CRW’s also have many applications
outside classical information theory, in a wide variety of ar-
eas of science where mathematical modeling is involved, so
it should not be surprising if QRW’s find applications outside
quantum information theory. Here we describe such an ap-
plication to the evolution of states described by the relativ-
istic Dirac equation. This is closely related to recent work by
Strauch �15�, who relates that a connection between these
two apparently quite different processes was already recog-
nized in somewhat different terms by Feynman �16–19,3�.
For another application of QRW’s to relativistic quantum
mechanics, see �20�.

The evolution in time of the state of a free Dirac particle,
starting from a highly localized, positive-energy state, is a
quantum process that has only recently been described fully
�21�. �For earlier related work see �22�.� There has long been
a widespread misapprehension that no relativistic particle
with nonzero rest mass m can be localized much within its
Compton wavelength �C= � /mc, where c is the speed of
light. However, it has been shown �23� that there is no such
difficulty for the Dirac particle if localization is characterized
in terms of the Dirac position operator x, by making �x

=��x2�− �x�2 small while keeping the energy positive, and
not by unrealistic attempts to restrict the wave function—for
example, by requiring its domain to lie within a bounded

region in configuration space or by requiring it to have un-
physical decay rates as �x � →�. Arbitrarily precise localiza-
tion, with �x��C, is indeed possible in the case of the free
Dirac particle with positive energy. When the particle is lo-
calized in such an initial state, it has an associated uncer-
tainty in energy �E�mc2 and the subsequent evolution pro-
duces a probability density that spreads outwards in all
directions at close to speed c. The graph of the evolving
density along any axis through the center of initial localiza-
tion �see Fig. 1 in �21�� shows a striking resemblance to the
two-horned density found for a typical one-dimensional
QRW �4�. For the Dirac particle, the horns are close to dis-
tance ct from the starting point. Our object here is to confirm
by a more detailed analysis than those given previously
�16,3,15� that this is not a coincidence and that the evolution
of any positive-energy state of a free Dirac particle moving
in one dimension can be modeled arbitrarily closely as a
QRW of the type described in detail by Ambainis et al. �4�,
Konno �12,13�, and others.

In addition to providing a somewhat surprising applica-
tion of a QRW to a real process, this connection provides
some insights as to the nature of the quantum walk itself.
Until now the various proposed realization schemes for
QRW’s were typically based on the idea that the coin and
walker degrees of freedom of the walk should be associated
with two distinct quantum systems. These two systems were
to be combined by means of some form of dynamical
coupling-decoupling scheme. The present application shows
that, alternatively, a single quantum mechanical object such
as the free Dirac particle—by its very nature as a relativistic
system with translational and spin degrees of freedom—can
be identified in the course of its time evolution with a quan-
tum random walk. This natural occurrence of a QRW, instead
of some engineered realization, suggests that the question of
its ontological status is still an interesting and open one.

The present work draws attention to two other important
features of QRW’s that have been emphasized by others
�6,24�. The first is that a QRW—at least one that is free of
classical noise �25�—is a unitary evolution; the associated
randomness is of the kind associated with every unitary
quantum evolution. In particular, a QRW is typically revers-
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ible in time, unlike a CRW. The second feature is that a
QRW is typically a ballistic process, associated with spread-
ing at a constant speed, unlike diffusive CRW’s, where
spreading is proportional to the square root of the time.
These two features of a QRW are essential for the application
that we describe below to the free-Dirac-particle evolution,
which is a time-reversible process characterized by spreading
near the speed of light.

In what follows, we relate the evolution of Dirac’s equa-
tion to that of a QRW based on the canonical Heisenberg
algebra extended by the Dirac matrices. �For other interest-
ing connections of Dirac’s equation with CRW’s see
�26,27�.� Then we construct analytically and discuss the lim-
iting probability distribution describing the translational
spreading of an initial state. This provides an independent
analytic derivation of the asymptotic behavior in time of an
initially well-localized state of a free Dirac particle, which
corroborates previous findings �22,23,15�. The work con-
cludes with some speculations about the physical reality of
the quantum walk of the Dirac particle and the possibility of
detecting it experimentally.

II. QRW AND FREE DIRAC EVOLUTION

The free Dirac Hamiltonian operator for a particle with
zero momentum along the y and z directions is

H�p̂� = c�p̂ + mc2�, p̂ = − i � d/dx , �1�

acting on four-component spinor wave functions ��x�. Here
we adopt a representation of the Dirac matrices with

� = 	3 � 	3, � = 	2 � 12, �2�

where 	i, i=1,2 ,3, are the usual Pauli matrices and 12 is the
2
2 unit matrix. In this representation the helicity �spin�
operator associated with rotations about the x axis is �=12
� 	3. From this point onwards we adopt the natural units �
=c=m=1. Recalling that only those solutions of Dirac’s
equation with positive energy describe physical states, we
introduce the orthonormal positive-energy spinors in mo-
mentum space:

u±�p� =
1

2�E�p��E�p� + 1�
	 1 + E�p� ± p

i�1 + E�p� � p�

 � e±, �3�

where e+= �1,0�T, e−= �0,1�T, and E�p�=�p2+1. These
spinors satisfy the relations

u±�p�†u±�p� = 1, u±�p�†u��p� = 0,

H�p�u±�p� = E�p�u±�p�, �u±�p� = ± 1
2u±�p� . �4�

Now we can write an arbitrary positive-energy wave function
�with zero y and z components of momentum� ��x� in terms
of two arbitrary functions f±�p� as

��x� =
1

�2
�

−�

�

eipx�f+�p�u+�p� + f−�p�u−�p�dp . �5�

Then

�
−�

�

��x�†��x�dx = 1 ⇔ �
−�

�

��f+�p��2 + �f−�p��2dp = 1.

�6�

Suppose now that we choose a normalized positive-
energy state with a definite helicity +1/2 and finite mean
energy. Then

f+�p� = f�p�, f−�p� = 0, �
−�

�

�f�p��2dp = 1 �7�

and

�H�p̂�� = �
−�

�

E�p��f�p��2dp = E0 � � . �8�

With f−�p�=0, the action of H�p̂� in the second factor of
the tensor product space in Eqs. �2� and �3� becomes trivial,
as the second spinor remains constant at the value e+. Thus
the second factor space can be ignored, and we can consider
H�p̂� to have the effective form

H�p̂� = 	3p̂ + 	2 �9�

acting in the first factor space. In this first space, we write

�1 0�T = � + � �0 1�T = �− � , �10�

so that the positive-energy spinor u+�p� in Eq. �3� takes the
�effective� form

u+�p� =
1

2�E�p��E�p� + 1�


��1 + E�p� + p�� + � + i�1 + E�p� − p��− � .

�11�

Next we consider a fixed, small time interval �t�1/E0.
The �effective� unitary evolution operator for the Dirac par-
ticle can then be approximated over the time interval �t us-
ing the relations

e−iH�p̂��t = VU + O��E0�t�2� ,

V = e−i�t	3p̂, U = e−i�t	2. �12�

Here we see the appearance of the evolution operator VU for
a one-dimensional QRW �4�, with V enacting a step of length
�t to the left or right along the x axis �the “walker space”�,
depending on the sign of 	3, and with the reshuffling matrix
U representing the “quantum coin toss” after each time in-
terval of duration �t. For a longer time t=n�t, we have from
�12�

e−iH�p̂�t = �VU�n + O�E0�t� , �13�

and we see that the evolution of the state of the Dirac particle
over any finite time t can be obtained arbitrarily accurately
by replacing the exact evolution operator by �VU�n and let-
ting n→� and �t→0 with n�t= t. In other words,
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lim
n→�,�t→0,n�t=t

�e−i�t	3p̂e−i�t	2�n = e−iH�p̂�t, �14�

and we can emulate the Dirac evolution by the evolution of a
QRW. This relationship was established implicitly by Meyer
�3�, building upon observations by Feynman and Hibbs �16�,
and recently has been studied more explicitly by Strauch
�15�. In what follows we investigate the relationship between
these two processes analytically, making it more precise. We
show how the evolved probability density on the x axis for
the Dirac particle at any time t can be obtained from the
asymptotic form of the QRW probability distribution for the
“walker” �4,12,13�.

It is important to note at this point that whereas the exact
Dirac particle evolution operator e−iH�p̂�t obviously preserves
the positive-energy condition imposed upon physically
meaningful initial states, the same is not true of the approxi-
mate, QRW evolution �VU�n. However, Eqs. �13� and �14�
show that in the asymptotic limit described, the positive-
energy condition is respected.

We close this section with the following remark. Rewrit-
ing the evolution operators as

V = � + ��+ �e−i�tp̂ + �− ��− �ei�tp̂, U = e−i�t	2, �15�

we identify the type of quantum walk involved here as a
canonical algebra QRW in the classification of �28�. In con-
trast to the Euclidean QRW, which takes place on the inte-
gers and whose evolution operator is constructed from the
generators of the Euclidean algebra �28–31�, in the present
case the generators of the canonical Heisenberg algebra—
position and momentum operators—are used in the construc-
tion of a discrete walk on the x-coordinate axis. The close
algebraic relationship between these two walks facilitates the
solution of the time evolution in the present case, provided
�as is done in next section� that we carefully discretize the
coordinate-space �generalized� eigenfunctions which, unlike
their Euclidean QRW counterparts, are not orthogonal.

III. ASYMPTOTIC SOLUTIONS AND LOCALIZATION

Let H denote the Hilbert space spanned by all vectors
��� � �± �, corresponding in the coordinate representation to
normalizable two-component wave functions ��x� � ± �. In-
troduce a dense subspace S�H consisting of all finite linear
combinations of suitably regular vectors ��� � �± ��H—say,
all those corresponding to ��x�= P�x�e−�x2

, where P�x� is an
arbitrary polynomial and � is some fixed positive constant.
Then denote by S* the space dual to S and, with the usual
abuse of notation, consider H as a subspace of S*, so that we
obtain the Gelf’and triple �or Rigged Hilbert space �32��

S � H � S*. �16�

The space S* contains in particular the vectors �x�� � �± �,
where �x�� is the generalized eigenvector of the Dirac
x-coordinate operator q̂,

q̂�x�� = x��x�� , �17�

corresponding in the coordinate representation to ��x−x��.

The introduction of the time interval �t as in �12� in turn
defines a length interval �t on the x axis �recall that c=1
now� and a corresponding direct-integral decomposition

S* = � �
−�t/2

�t/2

Vx0
dx0, �18�

where Vx0
�S* is spanned by all vectors of the form

�x0+m�t� � �± �, with x0� �−�t /2 ,�t /2� fixed and m�Z.
We note at once that each Vx0

is invariant under the action of
the QRW evolution operator VU—i.e.,

VUVx0
� Vx0

, �19�

because

V�x0 + m�t� � � ± � = �x0 + �m � 1��t� � � ± � . �20�

In order to describe the QRW evolution more fully, we
now write the initial state with wave function as in Eqs. �5�
and �7�, as an entangled state of the walker and coin sub-
systems,

���� = �
−�

�

�c+�x��x� � � + � + c−�x��x� � �− �dx , �21�

where

c+�x� =
1

�2
�

−�

� 1 + E�p� + p

2�E�p��E�p� + 1�
f�p�eipxdp ,

c−�x� =
i

�2
�

−�

� 1 + E�p� − p

2�E�p��E�p� + 1�
f�p�eipxdp . �22�

Normalization of ���� is satisfied because

�
−�

�

��c+�x��2 + �c−�x��2dx = 1, �23�

as a consequence of Eqs. �4� and �6�. At this point we em-
phasize again that although, as is well known �33�, �x�
� �± � is not a positive-energy �generalized� state, ��� is a
positive-energy state, as a consequence of the particular form
of the coefficients in Eqs. �22�.

The expansion in Eq. �21� can be rewritten as

���� = �
m�Z

�
−�t/2

�t/2

�c+�x0 + m�t��x0 + m�t� � � + �

+ c−�x0 + m�t��x0 + m�t� � �− �dx0, �24�

which is to be compared with Eq. �18�. In view of the invari-
ance of each Vx0

under the action of the QRW evolution, we
can restrict our attention to that action on each substate:

��x0
�� = �

m�Z
�c+�x0 + m�t��x0 + m�t� � � + �

+ c−�x0 + m�t��x0 + m�t� � �− ���t , �25�

with x0 fixed, even though these substates are not normaliz-
able and are not positive-energy states. The point is that the
general form of any such substate is preserved under the
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action of the QRW evolution VU, with no change in the
value of x0. The inclusion of the multiplicative factor ��t in
Eq. �25� is for later convenience with the normalization.

Consider first the action of V on a general substate
��0���Vx0

—say, one with x0=0 for definiteness. We have

V��0�� = �
m�Z

�m�t� � �c+„�m − 1��t…� + �

+ c−„�m + 1��t…�− ���t

= �
m�Z

�
�=±

�c��m�t���m + ���t� � ������t

� �E+ � P+ + E− � P−���0�� , �26�

where

E±�m�t� = ��m ± 1��t�, P±� ± � = � ± �, P�� ± � = 0.

�27�

The action of U on ��0�� is easily seen from �12�, which
implies that

U� + � = cos��t�� + � + sin��t��− � ,

U�− � = cos��t��− � − sin��t�� + � . �28�

Combining Eqs. �26� and �28�, we see that

VU��0�� = �E+ � P+U + E− � P−U���0�� . �29�

If we had taken f+�p�=0, f−�p�= f�p� in Eq. �7�, we would
have written instead

u−�p� =
1 + E�p� − p

2�E�p��E�p� + 1�
� + � + i

1 + E�p� + p

2�E�p��E�p� + 1�
�− � ,

�30�

and we would have obtained

���� = �
−�

�

�c+�x��x� � � + � + c−�x��x� � �− �dx , �31�

where now

c+�x� =
1

�2
� 1 + E�p� − p

2�E�p��E�p� + 1�
f�p�eipxdp ,

c−�x� =
i

�2
� 1 + E�p� + p

2�E�p��E�p� + 1�
f�p�eipxdp . �32�

Then, decomposing ���� into substates ��x0
�� as before, we

would have obtained on a state of this general form—say,
one with x0=0—that

VU��0�� = �E− � P+U + E+ � P−U��0�� . �33�

We will treat here the first case, as the second one can be
treated similarly.

To proceed we choose −��� and set

��/�t� =
1

2
�

m�Z
e−im��m�t� , �34�

so that

E±��/�t� = e±i���/�t�, �m�t� = �
−



eim���/�t�d� .

�35�

Considering the evolution operator VU acting as in Eq. �33�,
but now with E± diagonalized, we have

VU��� = �ei�P+ + e−i�P−�U . �36�

The eigenvalues of this 2
2 matrix with parameter � are

�±��� = cos � cos �t ± i�1 − cos2 � cos2�t . �37�

Suppose that the corresponding eigenvectors are

�v+���� = f++���� + � + f+−����− � ,

�v−���� = f−+���� + � + f−−����− � . �38�

Then the eigenvectors of VU are of the form �� /�t�
� �v±����, with eigenvalues �±���. Expanding ��0�� in terms
of these eigenvectors of VU we get

��0�� = �
−



�g+�����/�t� � �v+����

+ g−�����/�t� � �v−������td� , �39�

where

g±��� = �
m�Z

�c+�m�t�f±+
* ��� + c−�m�t�f±−

* ���eim�.

�40�

Hence

��n� � �VU�n��0�

= �
−



�g+����+���n��/�t� � �v+����

+ g−����−���n��/�t� � �v−������td� . �41�

If we now denote by Xn the random variable defining the
“walker position” after n evolution steps, then we obtain for
the “quantum statistical moment”

��Xn�k� � ���n�q̂k
� 1��n�� = TrS+T���n�����n�q̂k

� 1�

= TrT„�TrS��n�����n��q̂k
… = TrT��T

�n�q̂k� , �42�

where the expectation value has been expressed in terms of
traces over the translational degree of freedom �T� of the
Dirac particle—the walker system in the parlance of QRW—
and its spin �S�—the coin system for the QRW. This has
allowed us to cast the “quantum statistical moment” in terms
of the reduced density operator �T

�n�= �TrS ��n�����n � � which,
as it provides all the necessary statistical information about
the position of the Dirac particle, could have also been the
main object of our mathematical investigation, as in most
studies of QRW’s.

We proceed to determine the statistical moment of the
position variable, which takes the form
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��Xn�k� = �
−



�g+
*����+

*���n�− i���k�g+����+���n

+ g−
*����−

*���n�− i���k�g−����−���n�
d�

2
��t�k+1

�43�

or, equivalently,

��Xn�k� = �n�t�k�
−



��g+����2�− i�+����/�+����k

+ �g−����2�− i�−����/�−����kd�

2
�t + O�n�t�k−1.

�44�

Hence, as n→�, �t→0, with t=n�t large, we have that

��Xn/n�t�k� � �
−



��g+����2�− i�+����/�+����k

+ �g−����2�− i�−����/�−����kd�

2
�t . �45�

This has the following important consequence �34� �see
also �35� and �12��: we can take as a random variable a
function Y from �=S1
 �+,− to the real numbers, with Y
=−i�+���� /�+��� on S1
 �+ and Y =−i�−���� /�−��� on S1


 �−. Here � :�→R is a random variable which projects on
the circle S1 with measure �g+����2�t�d� /2� on S1
 �+
and measure �g−����2�t�d� /2�on S1
 �−. Since in the
above limit all the moments of Xn /n�t agree with all the
moments of Y and the support of Xn /n�t is compact, it fol-
lows that Xn /n�t converges weakly to Y. Hence we have that

lim
n�t=t→�

P�y1 � Xn/n�t � y2�

= P�y1 � Y � y2�

= �
T+

�g+����2�t
d�

2
+ �

T−

�g−����2�t
d�

2
, �46�

where the intervals of integration are T±=y1
� �−i�±���� /�±�����y2. It follows that in order to deter-
mine the long-time position distribution we need only deter-
mine g±��� and �±���.

In addition to calculating the asymptotic position distribu-
tion of the discretized model in this way, it is possible for the
purposes of comparison to derive the asymptotic form of the
wave function solution of the Dirac equation by the method
of stationary phase �see the Appendix� and to construct the
density from the wave function in the usual way. We shall
show in the case of a highly localized initial state that this
leads to the same expression for the density at large times. It
is satisfying if not entirely surprising that the same result can
be obtained by these apparently quite different asymptotic
methods, which point to possibly new ways of obtaining the
asymptotic form of densities associated with other wave
equations.

To construct a highly localized initial state, we take �21�

f�p� = f��p� =
1

���
e−p2/2�2

, �47�

where � is large and positive and quantifies the extent of the
localization of the Dirac particle’s initial state—the larger is
�, the sharper is the initial localization. As � approaches
infinity we have

c+�x� �
1

�2
� �

�
�

0

�

ei�pxe−p2/2dp , �48�

c−�x� �
i

�2
� �

�
�

−�

0

ei�pxe−p2/2dp . �49�

Note that in the limit �→�, �−�
� �c+�x��2dx=�−�

� �c−�x��2dx
=1/2. If we now make ��t small by taking �t small enough,
then

g±��� � i�2�/���t2�e−�2/�2�2�t2�f±+
* ��� �if � � 0�

� �2�/���t2�e−�2/�2�2�t2�f±−
* ��� �if � � 0� .

�50�

We note that

− i�±����/�±��� = ±
sin � cos �t

�1 − cos2 �t cos2 �
� ± h��� ,

�51�

say, and also that �g+����2+ �g−����2=2�e−�2/�2�t2 / ���t2�.
To compute the asymptotic distribution we need to compute
the integrals

I1 = �
i
�

hi
−1�y1,y2�

�g+����2�t
d�

2

=
1

2
�

i
�

y1

y2 1

�h+�„hi
−1�y�…�

�g+„hi
−1�y�…�2�tdy �52�

and

I2 = �
i
�

hi
−1�−y2,−y1�

�g−����2�t
d�

2

=
1

2
�

i
�

y1

y2 1

�h−�„hi
−1�− y�…�

�g−„hi
−1�− y�…�2�tdy , �53�

where the index i labels the local inverses of the function h.
Because of �50�, the only inverse relevant to leading order is
the one that keeps � close to zero. For this inverse, hi

−1�
−y�=−hi

−1�y�. Furthermore, and realizing that �v±����*

= �v��−���, we can show that �g±�−���2= �g±����2. A direct
computation then gives
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I1 + I2 �
�t sin �t

2
�

y1

y2 1

�1 − y2��cos2�t − y2



2�

��t2e−�hi
−1�y��2/�2�t2dy . �54�

If we set y= h���, then for all inverses �i we have cos2�i �
�cos2�t−y2� / cos2�t�1−y2�. Since for our inverse the value
of �i is small, we have

�hi
−1�y��2 = �i

2 � sin2�i = 1 − �cos2�t − y2�/�cos2�t��1 − y2�

= y2sin2�t/cos2�t�1 − y2� . �55�

Taking the limit �t→0 we arrive at the asymptotic distribu-
tion function associated with the random variable Xn /n�t
�Y,

P�y1 � Y � y2� = lim
�t→0

�I1 + I2� = �
y1

y2

F�y�dy ,

F�y� =
1

��

1

�1 − y2�3/2e−y2/�2�1−y2�. �56�

In Fig. 1, for three values of the localization parameter �, we
plot this two-horned probability distribution which we rec-
ognize as the one-dimensional analog of the result obtained
for the Dirac particle in three dimensions in �21�, Eq �3.1�
�see the Appendix below�.

Note that there are two sources of error in taking the
above continuum limit: one is associated with the approxi-
mation �45� and is expected to be O��t / t�, and the other is
associated with the approximation �54� and is expected to be
O��E0�t�2�.

IV. DISCUSSION

It has been shown that the one-dimensional Dirac evolu-
tion of a state with positive energy and definite spin is
equivalent to a QRW in the limit of small positional steps
and a large number of iterations. An initial state that is highly
localized, with all but one momentum component set to zero,
spreads in the remaining direction at a speed that almost
surely approaches the speed of light as the initial localization
increases.

This relationship between the Dirac particle evolution and
a QRW leads to the intriguing speculation that at some small
space-time scale, there may really be a QRW defining the
evolution of states of the relativistic electron and that it is the
Dirac evolution that is only a large-scale approximation. One
way to test this would be to make very precise measurements
of the spreading characteristics of initially highly localized
electron states over short distances. Comparison with the
characteristics that are typical for a QRW, in particular the
shape of the position probability distribution at early times,
may reveal whether or not there is indeed a QRW underlying
an approximate Dirac particle evolution. Note, however, that
the requirement �t�1/E0 requires that �t� � /mc2. For the
electron, � /mc2�10−21 sec, so that the implied discretiza-
tion is extremely small on observable time scales.

It is tempting to speculate further that there may be some
deep relationship between such an underlying QRW and the
Zitterbewegung of the relativistic electron, as first discussed
by Schrödinger �36�. This awaits further study.
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APPENDIX

It is possible to derive the asymptotic form �56� of the
probability density by directly solving the Dirac equation
and then carrying out a stationary phase approximation on
the solution. If the initial positive-energy wave function has
the form, from Eqs. �5� and �6�,

��x� =
1

�2
� eipx��p�dp ,

with ��p�= f�p��d+u+�p�+d−u−�p�� and �d+�2+ �d−�2=1, then
the time-dependent solution reads �with y=x / t�

��x,t� =
1

�2
� ��p�ei�px−E�p�t�dp

=
1

�2
� ��p�eit�py−E�p��dp . �A1�

The phase t�py−E�p�� in this integral is stationary for vari-
able p at just the one point p=y /�1−y2=k, say, and a sta-
tionary phase approximation �37� �with �x� and t large, and y

0.5

1

1.5

2

F

±1 ±0.5 0.5 1

y

FIG. 1. The asymptotic position probability density function,
with localization parameter �=1.9, 2.5, and 2.9. As � increases, the
plots become more sharply peaked near the ends of the interval.
Note that y= ±1 corresponds to x= ± t, labeling points moving
apart, each at the speed of light.
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finite� then leads to the asymptotic form of the solution �21�,

��x,t� �
1
�t

��k�eit�k�−E�k��E�k�3/2e−i/4, �A2�

and hence to the asymptotic form of the position density,

��x,t� = ��x,t�†��x,t� �
1

t
��k�†��k�E�k�3. �A3�

In the special case of a highly localized initial state, with f�p�
as in Eq. �47�, this gives

��x,t�dx �
1

��

1

�1 − y2�3/2e−y2/�2�1−y2�dy , �A4�

where y=x / t, which is the same as in Eq. �56�.
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