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We generalize an already proposed protocol for quantum state transfer to spin chains of arbitrary spin. An
arbitrary unknown d-level state is transferred through a chain with rather good fidelity by the natural dynamics
of the chain. We compare the performance of this protocol for various values of d. A by-product of our study
is a much simpler method for picking up the state at the destination as compared with the one proposed
previously. We also discuss entanglement distribution through such chains and show that the quality of en-
tanglement transition increases with the number of levels d.
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I. INTRODUCTION

Since the proposal of Bose �1� for transferring quantum
states via natural evolution of quantum spin one-half chains,
there have been many types of extensions of this idea in
various directions. For example, it has been shown that per-
fect transfer is possible for a special class of Hamiltonians,
called mirror-periodic �2,3�. It has also been shown that one
can achieve better fidelities either by using multiple chains
�4� or by allowing the parties to have access to more than one
site of the chain �5� or by using chains with longer range
interaction than nearest neighbor �6�. The effect of thermal
fluctuations �7� and decoherence �8,9� have also been taken
into account. Some other aspects of this protocol have been
studied in �10–12�.

However, to our knowledge there has been no attempt to
generalize this proposal to chains of particles of arbitrary
spin. The aim of this paper is to extend this proposal in this
new and fundamental direction. There are good reasons why
such an extension is worthwhile. First, until a particular ex-
perimental proposal for qubit quantum computer is widely
accepted as the platform for implementation of quantum
computers, we have to formulate various theoretical proto-
cols for particles with arbitrary number of levels, the so-
called qudits. In fact, for this reason, various protocols of
quantum computation and information, like cloning �13,14�,
cryptography �15�, and teleportation �16,17� have been gen-
eralized to d-dimensional systems. Second, from a purely
theoretical point of view, we will learn very much in devel-
oping a particular scheme like quantum state transfer in a
way such that the role of dimensionality can be studied in
detail. In fact the work of Bose �1� can be rephrased in a way
which demands such an extension in a quite natural way: It is
well known that a quantum state can be transferred perfectly
through a chain by sequential application of the swap opera-
tor defined as P�� ,��= �� ,��. However this method requires
control on every qubit throughout the chain. Instead in �1� a
state is coupled to left-hand side of a spin one-half chain,
governed by a ferromagnetic Heisenberg Hamiltonian

H = − J�
i

Si · Si+1 + B�
i=1

N

Siz,

where Si= �1/2��i, �i’s are the Pauli operators, J�0 is the
coupling constant, and B is the magnetic field. Then the natu-
ral evolution of this chain will transfer the state to the right-
hand side, with a good fidelity provided that the state is
extracted at an optimal time. This method can be named
random swapping of a state. The reason is that using the
identity

P =
1

2
�I + �� · �� � ,

where P is the permutation operator �P�� ,��= �� ,���, and a
suitable redefinition of constants, H can be rewritten as

H = − J�
i

Pi,i+1 + B�
i=1

N

Siz. �1�

On the sector with fixed total spin Sz, the evolution operator
is equivalent to U=eiJt�iPi,i+1, where we have set �=1 and
ignored an overall phase. Thus for an infinitesimal time step
�, we have

���t + ��� = ���t�� + �
i

iJ�Pi,i+1���t�� ,

which shows that the state ���t+��� is obtained by adding to
���t�� an equal superposition of states in which the spins of
two adjacent sites have been swapped, hence the name ran-
dom swapping. Thus the result of �1� can be rephrased in the
following form: For qubits, random swapping achieves a fi-
delity which is reasonably good compared to that of sequen-
tial swapping �for which U=�iPi,i+1�. In particular, when the
length of the chain is 4, the results of �1� imply that sequen-
tial and random swapping attain almost equal fidelity. Once
interpreted in this way, we can ask naturally what form this
comparison takes for states of arbitrary dimensions.

We should note that the Hamiltonian �1� can always be
expressed in terms of nearest-neighbor scalar spin interaction
terms although in each dimension it takes a specific form, for
example in dimension d=3, it takes the form
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H = − J�
i

�Si · Si+1 + �Si · Si+1�2� + B�
i=1

N

Siz.

We will find that, for a fixed distance, the fidelity decreases
with dimension d, but reaches a saturated value depending
on the distance and when the sender and the receiver are four
sites apart, nearly perfect transfer is possible for any dimen-
sion d. As a by-product of our study, we will propose a much
simpler method for state transfer, one in which the magnetic
field is kept to a vanishingly small value, instead of tuning it
to a distance-dependent value as in the original protocol of
�1�. The structure of this paper is as follows. In Sec. II we
introduce the basic protocol in d dimensions, and derive the
basic relations that we need in the sequel. In Sec. III we
study the problem of entanglement distribution in such
chains. In Sec. IV we conclude with a discussion.

II. QUANTUM STATE TRANSFER IN CHAINS OF QUDITS

Originally the problem of state transferring was consid-
ered for an open chain �1�. However, in that same work it
was shown that in a ring of size 2N one can as efficiently
transfer states as in an open chain as long as the distance
between the sender and the receiver is not longer than N. To
use the advantage of simplicity of eigenfunctions of the
Hamiltonian, we consider a periodic chain of length N,
where each site comprises a state of a d level system with
basis states �	�, 	=0,1 , . . . ,d−1. The evolution of the chain
is governed by the Hamiltonian,

H =
− J

2 �
i=1

N

�Pi,i+1 − 1� + B�
i=1

N

Siz, �2�

where the operator Pi,i+1 is the permutation operator on sites
i and i+1, and Siz is a diagonal operator acting on the states
of site i as, Sz�	�=	�	�, for 	=0,1 , . . . ,d−1. Note that Sz,
when shifted suitably, plays the role of the third component
of the spin operator. Thus B plays the role of a magnetic field
in the z direction. The Hamiltonian �2� reduces to the Heisen-
berg Hamiltonian for spin-1 /2 states, and to the bilinear-
biquadratic Hamiltonian for spin 1. For other spins it con-
tains high power of the term �Si ·Si+1�. We assume that B is
positive.

The ground state of this Hamiltonian is given by �0�
= �0��N with energy Eg=0.

The reason is the following. Since the permutation opera-
tor has the property P2= I, its eigenvalues are ±1, and the
operator J�1− Pi,i+1� will be a positive operator with eigen-
values 0 and 2J. Therefore in the absence of magnetic field,
the Hamiltonian, being a sum of positive operators, is posi-
tive and since the states �	��, 	=0, . . . ,d−1 all have zero
energy, they form the degenerate ground state of H�B=0�.
The magnetic field only removes the degeneracy and lowers
the energy of the state �0��N, with respect to others �note that
in our notation �0� has the lowest value of spin component.�
Since the Hamiltonian commutes with Sz, and H�B=0� can
be diagonlaized in sectors with fixed z component of spin,
this argument is valid for all values of the magnetic field B.

We should stress that in the absence of magnetic field, the
phase diagram �i.e., the character and long range order in the
ground state� of Eq. �2�, may be quite complicated. This will
then affect crucially the quality of state transfer in such
chains, a problem which has been recently investigated for
spin 1 chains in �18�. In the presence of magnetic field how-
ever, the ground state has a simple ferromagnetic order given
by the ground state �0��N.

Let us denote a state in which the ith site has been exited
to the level 	 by �	i�, i.e.,

�	i� = �0,…,0,	,0,…,0� .

The permutation operators in H only displace this state
through the chain and hence the Hamiltonian can be diago-
nalized in each sector in which the number and type of ex-
cited local states is fixed. This is a consequence of a number
of conservation laws, namely

�H,Qm� = 0, Q�m�
ª �

i=1

N

�Sz,i�m

for m=1,2 , . . . ,d−1. In d=2 dimensions only the Q�1�

charge is conserved. These conservation laws imply for ex-
ample that a state like, �1,1,…,0,0,0� can not evolve to a state
like �2,0,0,…,0,0,0�, since although their Q�1� charge are
equal they have different Q�2� charges.

The states with only one site excited are called one par-
ticle states and the subspace spanned by these vectors com-
prise the one-particle sector of the full Hilbert space. Let us
denote by V1

�	� the one particle sector with Q�1� charge equal
to 	. The whole one particle sector is

V1 = V1
�1�

� V1
�2�

� ¯V1
�d−1�.

The Hamiltonian can be diagonalized in V1
�	� with eigenvec-

tors given by

�E	
m� =

1
	N

�
k=1

N

ei2
km/N�	k�, m = 1,2, . . . ,N ,

with energy given by Em
	 =J−J cos�2
m /N�+B	. For quan-

tum state transferring we can consider site s as the sender of
the system and site r as a receiver. The initial state that
should be sent is

��s� = �
	=0

d−1

a	�	� .

So the initial state of the system �the site s plus the chain� is

���0�� = ��s� � �0� = a0�0� + �
	=1

d−1

a	�	s� .

In view of the fact that H�0�=0, the state at time t will be
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���t�� = a0�0� + �
	=1

d−1

a	e−iHt�	s�

= a0�0� + �
k=1

N

�
	=1

d−1

fksa	e−iB	t�	k� .

In deriving this formula we have used the fact that �Sz , H̃
ª�iPi,i+1�=0 and the conservation laws which restricts the
evolution to the one particle sector of fixed Q�1� charges. We
have also defined

fks ª 
	k�e−iH̃t�	s� ,

which is indeed independent of 	 and hence can be taken
outside the sum.

The state of site r which is acting as the receiver will be
generally mixed, so is denoted by �r�t� and is obtained by
tracing out the other sites

�r�t� = trr̂���t��
��t��

= �1 − �
	=1

d−1

�a	�2�frs
	 �2��0�
0� + �

	=1

d−1

a0a	
* frs

	*�0�
	�

+ �
	=1

d−1

a0
*a	frs

	 �	�
0� + �
	,�=1

d−1

a	a�
*frs

	 frs
�*�	�
�� .

Rearrangement of the right-hand side yields

�r�t� = �1 − P��0�
0� + P��
� ,

where

P = �frs�2�1 − �a0�2� + �a0�2

and

�� =
1

	P
�a0�0� + frs�

	=1

d−1

a	e−iB	t�	�� .

Alternatively we can say that the input state �s�0� is mapped
to the output state �r�t� by the positive map

�r�t� = �
	

A	�s�0�A	
† ,

where the so-called Kraus operators A	 are given by

A0 = �0�
0� + �
	=1

d−1

frs
	 �	�
	�, A	 = 	1 − �frs

	 �2�0�
	� ,

	 = 1, . . . ,d − 1. �3�

The fidelity between the received state �r�t� and the initial
state �s�0�= ��s�
�s� is defined by F= �
�s��r�t���s��2 which
turns out to be

F�t� = �a0�2 + �
	=1

d−1

�a0�2�a	�21 − �1 − frs
	 �2�

+ �
	,�=1

d−1

�a	�2�a��2frs
	 frs

�*.

In the sequel we should maximize this fidelity when it is
uniformly averaged over the input states. The average is de-
fined by


F�t�� =� F�t�dU ,

where dU is an invariant �Haar� measure over the SU�d�
group, normalized such that �dU=1. The reason for this
choice of measure is as follows. Let us fix a basis, like
�0� , �1� , . . . , �d−1��. We take a fixed reference state like �0�
and note that every arbitrary state ��� can be obtained from
�0� by the action of a unitary operator U, i.e., ���=U�0�, for
some nonunique U�SU�d�. However, any two unitary ma-
trices U and Ug, where g�SU�d−1� leaves �0� invariant,
lead to the same state ���. Therefore a proper measure that
prevents this multiple counting is a measure over
U�d� /U�d−1�. However, since every state is multiply
counted equally �by a factor which is exactly the volume of
the group SU�d−1��, this does not affect the final averaging
and we can use the simple measure over U�d�. Invariance of
this measure under left multiplication, i.e., dU=d�gU� guar-
antees uniformity of the measure over the space of all states.
In two dimensions one can avoid multiple counting in a
simple way, since in this case U�2� /U�1��SO�3� /SO�2�
�S2 and, therefore, one can use the measure over the two-
dimensional �Bloch� sphere to count every state once. This is
the measure used by Bose in �1�.

For a d-dimensional normalized state ���=�	=0
d−1 a	�	� an

invariant measure yields trivially 
�a	�2�= �1/d�∀	. To cal-
culate the other averages we use ���=U�0� and write


�a	�4� = 
�a0�4� =� �U00�4dU =
2

d�d + 1�
, ∀ 	 ,

where for the last equality we have used a result from �19� on
invariant integration on unitary groups. We can now calcu-
late 
�a	�2�a��2� for 	��. In view of the normalization of the
state, we have

1 = �
	,�


�a	�2�a��2� = �
	


�a	�4� + �
	��


�a	�2�a��2�

= d
2

d�d + 1�
+ d�d − 1�
�a	�2�a��2� .

Thus we find


�a	�2�a��2�	�� =
1

d�d + 1�
.

Using these results we can now calculate the average of fi-
delity over a uniform ensemble of input states
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F�t�� =
1

d
+

1

d�d + 1� �	=1

d−1

�frs
	 + f*

rs
	 � +

1

d�d + 1� �
	,�=1

d−1

frs
	 f*

rs
� .

�4�

In order to write 
F�t�� in a simple form we note that

��
	=1

d−1

frs
	� = ��

	=1

d−1

e−i	Btfrs� = �frs��d�Bt� ,

where

�d�Bt� ª
sin

�d − 1�Bt

2

sin
Bt

2

and

�
	=1

d−1

�frs
	 + f*

rs
	 � = 2 cos��rs −

dBt

2
��d�Bt� ,

where frs= �frs�ei�rs. Inserting these in Eq. �4� we find that


F�t�� =
1

d
+

2

d�d + 1�
�frs�cos��rs −

dBt

2
��d�Bt�

+
1

d�d + 1�
�frs�2�d

2�Bt� . �5�

For d=2 we recover the formula of �1�.
It remains to calculate the explicit expression for the am-

plitudes frs
	 . We note that

frs = 
	r�e−iH̃t�	s� = �
k=1

N


	r�e−iH̃t�Ek
	�
Ek

	�	s�

=
e−iJt

N
�
k=0

N−1

eiJt cos�2
k/N�ei2
k�r−s�/N.

For large N, a closed formula for frs can be obtained by
writing the right-hand side as an integral. Thus

frs �
e−iJt

2

�

0

2


eiJt cos���+i��r−s�

= e−i�Jt−�
/2��r−s��Jr−s�Jt�, large N ,

where Jn is the Bessel function of the first kind of order n. It
now remains to follow a definite strategy for picking up the
state at the destination point r. As is clear from Eq. �5�, there
is a distinctive difference between dimension d=2 and any
other dimension, since in d=2 we have �2�Bt�=1 and the
magnetic field enters only in one single term, namely the
argument of cosine function. �Note that we can always res-
cale the other coupling constant J to 1.� Thus in d=2 there is
rather a unique strategy, first suggested in �1�: At any given
time t one finds the magnitude of B=B�t� which maximizes
the cosine function to unity and then searches among the
values of time t to determine the optimal time topt for picking
up the state. This will then determine the optimal value of the
magnetic field through the relation Bopt=B�topt�. Note that

since topt depends on the distance r−s between the sender
and the receiver, the optimal value of the magnetic field also
depends on this distance. This is an inconvenient feature of
this strategy.

A by-product of the present work is that a much simpler
strategy can be used: Namely, tune the magnetic field to a
vanishingly small value, then the optimal time for picking up
the state is almost independent of the magnetic field. To see
this we note that for higher values of d, the magnetic field
enters in two different ways in the final formula for the av-
erage fidelity, namely in the argument of the cosine function
as in d=2 and in the function �d�Bt�. These two functions
may have incompatible properties so that they may not be
maximized simultaneously. The latter function is maximized
when its argument Bt goes to zero, while the former function
has a complicated dependence on t and B separately. Thus
one can follow two different strategies for picking up the
states at point r, the first one is exactly the same as in �1�,
explained above. We can also follow a second much simpler
strategy, which has the advantage of no need for distance-
dependent tuning of the magnetic field. We simply apply a
vanishingly small magnetic field �Bt�1� for all the times
involved in the transfer process. On the other hand B should
not be vanishing so that we have a unique ferromagnetic
ground state. This maximizes the function �d�Bt� to ��d
−1�. We are now left with a function which is entirely a
function of t and can find for any distance r−s, the optimal
time and the maximum average fidelity.

In Fig. 1, we show the average fidelity for transferring d
=2, 3, and 4 level states through half way distances in closed
rings, using this strategy and compare it with the original
Bose strategy. Thus when r−s=20, we are using a ring of
size N=40.

There are a few interesting features. First it is seen that
the average fidelity is almost the same in both strategies,
which implies that we can always, even for d=2, use the
second method which is much simpler and does not rely on
distance-dependent tuning of magnetic fields. Second we
note that the strong similarity of the fidelity curves in various
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FIG. 1. �Color online� The average fidelity for transferring d
=2, 3, and 4 level states for two different strategies explained in the
text. In each case the distance between the sender �s� and the re-
ceiver �r� is half the length of the chain �N�.
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dimensions. To see the reason of this universality, we note
that for very small magnetic fields, Bt�1, where �d�Bt�
��d−1�, the average fidelity behaves as


F�t�� �
1

d
+

2�d − 1�
d�d + 1�

�frs�cos��rs� +
�d − 1�2

d�d + 1�
�frs�2. �6�

The curves in Fig. 1 show the fidelities at the optimal time
topt where 
F�topt�� becomes a maximum, obtained by nu-
merical searches in a time span t� �0,400�. Let us now sup-
pose that the optimal time is the time where cos��rs��1.
Since frs is independent of d, we can obtain a universal re-
lation for optimal fidelities from the above equation by re-
writing it as follows. First we note from the above equation
that

Fopt
*

ª lim
d→�


Fopt� = �frs�2.

Rearranging the terms of Eq. �6� after setting cos �rs�1, we
find

	d�d + 1�
Fopt� − d − 1

d − 1
= 	Fopt

* , �7�

which is a constant. To check this assumption and the result-
ing universality, we draw in Fig. 2 the left-hand side of Eq.
�7� �as obtained from numerical searches for the optimal
time, leading to Fig. 1 and not by setting cos �rs�1� for
several values of d. The universal behavior is now com-
pletely evident.

Finally, we note that almost perfect state transfer of any
d-level state is possible when �r−s�=1,2 ,4. This possibility
of almost perfect state transfer was first noticed in �1� for d
=2 level states. We now see that this is a general and curious
feature of random swapping for any d-level state. We know
that by sequential swapping at any two consecutive sites, one
can perfectly transfer an unknown state through a chain.
However, this requires a multitude of control operations at
all sites of the chain. The above result about perfect transfer

over distances of four sites by random swapping �induced by
the natural Hamiltonian dynamics�, means that one can trans-
fer states perfectly over long distances in a chain by a
smaller number of control operations, namely by 1/4 of the
number of sites of the chain.

Figure 3 shows average fidelities for three different dis-
tances, namely �r−s�=4,7 ,14, as functions of the number of
levels d. It is seen that the average fidelity decreases with d
and saturates to a constant value, depending on the distance.
Plots �a� and �b� refer to two different strategies discussed
above.

III. ENTANGLEMENT DISTRIBUTION

One of the major problems of quantum information sci-
ence and technology is the distribution of entangled pairs
over long distances. For flying qubits, such pairs in the form
of polarization-entangled photons have been distributed to
various long distances through optical fibers and free air
�20–25�. For small distances in a quantum computer, for
which we supposedly will be dealing with solid state devices
or ion traps in the future, one needs to distribute entangled
pairs through such chains of qubits. In �1� a method was
proposed for such a task, when the particles have spin-1 /2 or
have two levels �qubits�. Here we generalize this idea to
d-level states or qudits. We will see here that the quality of
entanglement transfer is better for higher values of d.

Suppose that a maximally entangled state is prepared be-
tween sites 0 �not coupled to the chain� and site s of the
chain. We want to use the natural dynamics of the chain to
transfer this entanglement through the chain. In particular we
want to see what will be the entanglement between sites 0
and r at time t. The initial states is
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FIG. 2. �Color online� The universal relation for optimal fideli-
ties, explained in Eq. �7�.
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FIG. 3. �Color online� The average fidelity for three different
distances, namely �r−s�=4,7 ,14, as functions of the number of
levels d. Plots �a� are for the strategy of Bose �1� and plots �b� are
for our strategy.
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��ME�0,s =
1
	d

�
	=0

d−1

�		� . �8�

At time t, the joint state of sites 0 and r can be determined by
the extension of the map �3� to one acting on the chain and
the external site 0:


�0,r�t�� = �
	=0

d−1

�I � A	���ME�
�ME��I � A	
† � . �9�

Insertion of the Kraus operators A	 from Eq. �3� in Eq. �9�
gives

�0r�t� =
1

d��00�
00� + �
	=1

d−1

frs
	*�00�
		� + �

	=1

d−1

frs
	 �		�
00�

+ �
	,�=1

d−1

frs
	 frs

�*�		�
��� + �
	=1

d−1

�1 − �frs
	 �2��	0�
	0�� .

We use logarithmic negativity �LN� �26� as a measure of
entanglement of the state �0r which is defined as

LN��12� = log2���12
T2��, �O� = tr	O†O , �10�

where, by the superscript T2, the partial trace over the second
space is implied. Logarithmic negativity is an entanglement
monotone which is additive and does not increase on the
average under all partial transpose preserving operations
�27�. For a pure maximally entangled state like Eq. �8�, Eq.
�10� yields LN���ME��=log2 d.

In order to calculate logarithmic negativity we need ei-
genvalues of �0r

Tr†�0r
Tr. Straightforward calculations shows that

�0r
Tr†�0r

Tr =
1

d2��00�
00� + �
	=1

d−1

�frs
	 �2�	0�
	0� + �

	=1

d−1

�frs
	 �2�0	�

�
0	� + �
	,�=1

d−1

�frs
	 �2�frs

� �2�	��
	��

+ �
	=1

d−1

�1 − �frs
	 �2�2�	0�
	0� + �

	=1

d−1

�1 − �frs
	 �2�frs

	 �	0�

�
0	� + �
	=1

d−1

�1 − �frs
	 �2�frs

	*�0	�
	0�� .

It is readily seen that this operator is the direct sum of two-
dimensional matrices of the form

1

d2� �frs
	 �2 �1 − �frs

	 �2�frs
	*

�1 − �frs
	 �2�frs

	 1 − �frs
	 �2 + �frs

	 �4
�

in the subspaces spanned by �	0� and �0	� �with eigenvalues
1/d2 , �frs

	 �2 /d2� and a diagonal matrix spanned by the rest of
basis vectors. Putting these together we find the spectrum of
the matrix 	�0r

Tr†�0r
Tr as follows:

1

d
, d ,

�frs
	 ��frs

� �
d

, �d − 1�2,

�frs
	 �2

d
, d − 1,

where the number in front of each eigenvalue denotes its
degeneracy. Therefore, the logarithmic negativity of the final
state between sites 0 and r can be computed easily. It is
found that

LN��0r�t�� = log2�1 +
1

d
�

	,�=1

d−1

�frs
	 ��frs

� � +
1

d
�
	=1

d−1

�frs
	 �2�

and because �frs
	 � is independent of 	 so we can simplify the

above formula, LN��0r�t��=log21+ �frs�2�d−1��. This equa-
tion shows that with increasing d the logarithmic negativity
and hence the entanglement increases and indeed approaches
its maximum value for continuous variable states. We can
define the efficiency of entanglement distribution as a mea-
sure of the percentage of entanglement that is gained after
distribution of the maximally entangled state through the
chain, so we introduce the efficiency as

E =
LN2

LN1
=

log21 + �frs�2�d − 1��
log2d

= logd1 + �frs�2�d − 1�� .

Figure 4 shows the efficiency of entanglement of sites 1 and
30 in a ring of size N=60 as a function of time for three
different values of d. It is seen that the optimal time for
picking up the states is independent of d and the efficiency is
increased by increasing the dimension d.

IV. SUMMARY

We have generalized the protocol of �1� for quantum state
transfer of qubits to transfer of d-level states. On the theo-

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

E

d = 2
d = 3
d = 4

FIG. 4. �Color online� Entanglement transition through a chain.
The efficiency of transmission of maximally entangled pairs
through a distance of 30 sites in a chain of length 60 for different
d-level states. The curves from bottom to top correspond to d=2,
d=3, and d=4.
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retical side, we can consider the results of �1� and the present
paper as an answer to the following question: With what
fidelity can a quantum state be transferred through a chain if
we use random swapping instead of sequential swapping?
The latter method is known to achieve unit fidelity but re-
quires local control at every site of the chain. We have shown
that �1� the fidelity decreases with the dimension d, but
reaches a saturated value depending on the distance, and �2�
that when the sender and the receiver are four sites apart,
nearly perfect transfer is possible for any dimension d. A
by-product of our study is that we have proposed a much
simpler method for state transfer, one in which the magnetic
field is kept to a vanishingly small value, instead of tuning it

to a distance-dependent value as in the original protocol of
�1�.

Furthermore, the concept of entanglement distribution has
been studied for d-level states and the interesting result is
that the quality of entanglement distribution will be im-
proved by increasing the dimension d.
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