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We prove tight entropic uncertainty relations for a large number of mutually unbiased measurements. In
particular, we show that a bound derived from the result by Maassen and Uffink �Phys. Rev. Lett. 60, 1103
�1988�� for two such measurements can in fact be tight for up to �d measurements in mutually unbiased bases.
We then show that using more mutually unbiased bases does not always lead to a better locking effect. We
prove that the optimal bound for the accessible information using up to �d specific mutually unbiased bases is
log d /2, which is the same as can be achieved by using only two bases. Our result indicates that merely using
mutually unbiased bases is not sufficient to achieve a strong locking effect and we need to look for additional
properties.
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I. INTRODUCTION

We investigate two related notions that are of importance
in many quantum cryptographic tasks: Entropic uncertainty
relations and locking classical information in quantum states.

Entropic uncertainty relations are an alternative way to
state Heisenberg’s uncertainty principle. They are frequently
a more useful characterization, because the “uncertainty” is
lower bounded by a quantity that does not depend on the
state to be measured �1,2�. Recently, entropic uncertainty re-
lations have gained importance in the context of quantum
cryptography in the bounded storage model, where proving
the security of such protocols ultimately reduces to bounding
such relations �3�. Proving new entropic uncertainty relations
could thus give rise to new protocols. Such relations are
known for two �4�, or d+1 �5,6� mutually unbiased measure-
ments �see Sec. II for a definition�. Very little, however, is
known for any other number of measurements �7�.

Here we prove tight entropic uncertainty relations for
measurements in a large number of mutually unbiased bases
�MUBs� in square dimensions. In particular, we consider any
MUBs derived from mutually orthogonal Latin squares �8�,
and any set of MUBs obtained from the set of unitaries of the
form �U � U*�, where �U� gives a set of MUBs in dimension
s when applied to the basis elements of the computational
basis. For any s, there are at most s+1 such MUBs in a
Hilbert space of dimension d=s2. Let B be the set of MUBs
coming from one of these two constructions. We prove that
for any subset T�B of size at least 2 of these bases we have

min
��	



B�T

H�B, ��	� =
�T�
2

log d ,

where H�B , ��	�=−
i=1
d ��� �bi	�2 log ��� �bi	�2 is the Shannon

entropy �9� arising from measuring the state ��	 in the basis
B= ��b1	 , . . . , �bd	�.

Our result furthermore shows that one needs to be careful
to think of “maximally incompatible” measurements as being
necessarily mutually unbiased. When we take entropic uncer-

tainty relations as our measure of “incompatibility,” mutually
unbiased measurements are in fact not always the most in-
compatible when considering more than two observables. In
particular, it has been shown �10� that if we choose approxi-
mately �log d�4 bases uniformly at random, then
min��	�1/ �T��
B�TH�B , ��	�� log d−3. This means that
there exist �log d�4 bases for which this sum of entropies is
very large, i.e., measurements in such bases are very incom-
patible. However, we showed that when d is large, there exist
�d, mutually unbiased bases which are much less incompat-
ible according to this measure. When considering entropic
uncertainty relations as a measure of “incompatibility,” we
must therefore look for different properties for the bases to
define incompatible measurements.

Finally, we give an alternative proof that if B is a set of
d+1 MUBs we have 
B�BH�B , ��	�� �d+1�log��d+1� /2�
�5�. Our proof is based on the fact that such a set forms a
2-design, which may offer new insights.

Locking classical correlations in quantum states is an ex-
citing feature of quantum information �11�, intricately related
to entropic uncertainty relations. Consider a two-party proto-
col with one or more rounds of communication. Intuitively,
one would expect that in each round the amount of correla-
tion between the two parties cannot increase by much more
than the amount of data transmitted. For example, transmit-
ting 2� classical bits or � qubits �and using superdense cod-
ing� should not increase the amount of correlation by more
than 2� bits, no matter what the initial state of the two party
system was. This intuition is accurate when we take the clas-
sical mutual information Ic as our correlation measure, and
require all communication to be classical. However, when
quantum communication is possible at some point during the
protocol, everything changes: There exist two-party mixed
quantum states, such that transmitting just a single extra bit
of classical communication can result in an arbitrarily large
increase in Ic �11�. The magnitude of this increase thereby
only depends on the dimension of the initial mixed state.
Since then, similar locking effects have been observed also
for other correlation measures �12,13�. Such effects play a
role in very different scenarios: They have been used to ex-
plain physical phenomena related to black holes �14�, but
they are also important in cryptographic applications such as
quantum key distribution �15� and quantum bit string com-
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mitment �16,17�. We are thus interested in determining how
exactly we can obtain locking effects, and how dramatic they
can be.

The correlation measure considered here is the classical
mutual information of a bipartite quantum state �AB, which is
the maximum classical mutual information that can be ob-
tained by local measurements MA � MB on the state �AB �18�:

Ic��AB� = max
MA�MB

I�A:B� . �1�

The classical mutual information is defined as I�A :B�
=H�PA�+H�PB�−H�PAB�, where H is the Shannon entropy.
PA, PB, and PAB are the probability distributions correspond-
ing to the individual and joint outcomes of measuring the
state �AB with MA � MB. The mutual information between A
and B is a measure of the information that B contains about
A. This measure of correlation is of particular relevance for
quantum bit string commitments �16,17�. Furthermore, the
first locking effect was observed for this quantity in the fol-
lowing protocol between two parties: Alice �A� and Bob �B�.
Let B= �B1 , . . . ,Bm� with Bt= ��b1

t 	 , . . . , �bd
t 	� a set of m

MUBs in Cd. Alice picks an element k� �1, . . . ,d� and a
basis Bt�B uniformly at random. She then sends �bk

t 	 to
Bob, while keeping t secret. Such a protocol gives rise to the
joint state

�AB =
1

md


k=1

d



t=1

m

��k	�k� � �t	�t��A � ��bk
t 	�bk

t ��B.

Clearly, if Alice told her basis choice t to Bob, he could
measure in the right basis and obtain the correct k. Alice and
Bob would then share log d+log m bits of correlation, which
is also their mutual information Ic��AB�, where �AB is the
state obtained from �AB after the announcement of t. But,
how large is Ic��AB�, when Alice does not announce t to
Bob? It was shown �11� that in dimension d=2n, using the
two MUBs given by the unitaries I�n and H�n applied to the
computational basis, where H is the Hadamard matrix, we
have Ic��AB�= �1/2�log d. This means that the single bit of
basis information Alice transmits to Bob “unlocks”
�1/2�log d bits: Without this bit, the mutual information is
�1/2�log d, but with this bit it is log d+1. It is also known
that if Alice and Bob randomly choose a large set of unitaries
from the Haar measure to construct B, then Ic can be brought
down to a small constant �10�. However, no explicit con-
structions with more than two bases are known that give
good locking effects. Based on numerical studies for spaces
of prime dimension 3�d�30, one might hope that adding a
third MUB would strengthen the locking effect and give
Ic��AB���1/3�log d �11�.

Here, however, we show that this intuition fails us. We
prove that for three MUBs given by I�n, H�n, and K�n where
K= �I+ i�x� /�2 and dimension d=2n for some even integer n,
we have

Ic��AB� = �1/2�log d , �2�

the same locking effect as with two MUBs. We also
show that for any subset of the MUBs based on Latin
squares and the MUBs in square dimensions based on gen-

eralized Pauli matrices �19�, we again obtain Eq. �2�, i.e.,
using two or all �d of them makes no difference at all.
Finally, we show that for any set of MUBs B based on gen-
eralized Pauli matrices in any dimension, Ic��AB�=log d
−min��	�1/ �B��
B�BH�B , ��	�, i.e., it is enough to determine
a bound on the entropic uncertainty relation to determine the
strength of the locking effect.

Although bounds for general MUBs still elude us, our
results show that merely choosing the bases to be mutually
unbiased is not sufficient and we must look elsewhere to find
bases which provide good locking.

II. PRELIMINARIES

Throughout this paper, we use the shorthand notation
�d�= �1, . . . ,d�. We write

H�Bt, ��	� = − 

i=1

d

����bk
t 	�2 log����bk

t 	�2,

for the Shannon entropy �9� arising from measuring the pure
state ��	 in basis Bt= ��b1

t 	 , . . . , �bd
t 	�. In general, we will use

�bk
t 	 with k� �d� to denote the kth element of a basis Bt

indexed by t. We also briefly refer to the Rényi entropy of
order 2 �collision entropy� of measuring ��	 in basis Bt given
by H2�Bt , ��	�=−log
i=1

d ��� �bk
t 	�4 �20�.

A. Mutually unbiased bases

We also need the notion of mutually unbiased bases
�MUBs�, which were initially introduced in the context of
state estimation �21�, but appear in many other problems in
quantum information. The following definition closely fol-
lows the one given in �19�.

Definition 1 MUBs. Let B1= ��b1
1	 , . . . , �bd

1	� and B2

= ��b1
2	 , . . . , �bd

2	� be two orthonormal bases in Cd. They are
said to be mutually unbiased if ��bk

1 �bl
2	�=1/�d, for every

k , l� �d�. A set �B1 , . . . ,Bm� of orthonormal bases in Cd is
called a set of mutually unbiased bases if each pair of bases
is mutually unbiased.

We use N�d� to denote the maximal number of MUBs in
dimension d. In any dimension d, we have that N�d��d+1
�19�. If d= pk is a prime power, we have that N�d�=d+1 and
explicit constructions are known �19,21�. If d=s2 is a square,
N�d��MOLS�s�, where MOLS�s� denotes the number of
mutually orthogonal s�s Latin squares �8�. In general, we
have N�nm��min�N�n� ,N�m�� for all n ,m�N �22,23�. It is
also known that in any dimension, there exists an explicit
construction for three MUBs �24�. Unfortunately, not very
much is known for other dimensions. For example, it is still
an open problem whether there exists a set of seven MUBs in
dimension d=6. We say that a unitary Ut transforms the
computational basis into the tth MUB Bt= ��b1

t 	 , . . . , �bd
t 	� if

for all k� �d� we have �bk
t 	=Ut�k	. Here we are particularly

concerned with two specific constructions of mutually unbi-
ased bases.

1. Latin squares

First of all, we consider MUBs based on mutually or-
thogonal Latin squares �8�. Informally, an s�s Latin square
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over the symbol set �s�= �1, . . . ,s� is an arrangement of ele-
ments of �s� into an s�s square such that in each row and
each column every element occurs exactly once. Let Lij de-
note the entry in a Latin square in row i and column j. Two
Latin squares L and L� are called mutually orthogonal if and
only if ��Li,j ,Li,j� � � i , j� �s��= ��u ,v� �u ,v� �s��. From any s
�s Latin square we can obtain a basis for Cs � Cs. First, we
construct s of the basis vectors from the entries of the Latin
square itself. Let �v1,�	= �1/�s�
i,j��s�Ei,j

L ����i , j	, where EL is
a predicate such that Ei,j

L ���=1 if and only if Li,j =�. Note
that for each � we have exactly s pairs i , j such that Ei,j���
=1, because each element of �s� occurs exactly s times in the
Latin square. Secondly, from each such vector we obtain s
−1 additional vectors by adding successive rows of an s�s
�complex� Hadamard matrix H= �hij� as coefficients to obtain
the remaining �vt,j	 for t� �s�, where hij =�ij with i , j
� �0, . . . ,s−1� and �=e2�i/s. Two additional MUBs can then
be obtained in the same way from the two non-Latin squares
where each element occurs for an entire row or column, re-
spectively. From each mutually orthogonal Latin square and
these two extra squares which also satisfy the above orthogo-
nality condition, we obtain one basis. This construction
therefore gives MOLS�s�+2 many MUBs. It is known that if
s= pk is a prime power itself, we obtain pk+1��d MUBs
from this construction. Note, however, that there do exist
many more MUBs in prime power dimensions, namely d
+1. If s is not a prime power, it is merely known that
MOLS�s��s1/14.8 �8�.

As an example, consider the following 3�3 Latin square
and the 3�3 Hadamard matrix

where �=e2�i/3. First, we obtain vectors

�v1,1	 = ��1,1	 + �2,3	 + �3,2	�/�3,

�v1,2	 = ��1,2	 + �2,1	 + �3,3	�/�3,

�v1,3	 = ��1,3	 + �2,2	 + �3,1	�/�3.

With the help of H we obtain three additional vectors from
the ones above. From the vector �v1,1	, for example, we ob-
tain

�v1,1	 = ��1,1	 + �2,3	 + �3,2	�/�3,

�v2,1	 = ��1,1	 + ��2,3	 + �2�3,2	�/�3,

�v3,1	 = ��1,1	 + �2�2,3	 + ��3,2	�/�3.

This gives us basis B= ��vt,�	 � t ,�� �s�� for s=3. The con-
struction of another basis follows in exactly the same way
from a mutually orthogonal Latin square. The fact that two
such squares L and L� are mutually orthogonal ensures that

the resulting bases will be mutually unbiased. Indeed, sup-
pose we are given another such basis, B�= ��ut,�	 � t ,�� �s��
belonging to L�. We then have for any � ,��� �s� that

��u1,�� �v1,�	�2= ��1/s�
i,j��s�Ei,j
L�����Ei,j

L ����2=1/s2, as there
exists exactly only one pair � ,��� �s� such that

Ei,j
L�����Ei,j

L ���=1. Clearly, the same argument holds for the
additional vectors derived from the Hadamard matrix.

2. Generalized Pauli matrices

The second construction we consider is based on the gen-
eralized Pauli matrices Xd and Zd �19�, defined by their ac-
tions on the computational basis C= ��1	 , . . . , �d	� as follows:

Xd�k	 = �k + 1	, Zd�k	 = �k�k	, ∀ �k	 � C ,

where �=e2�i/d. We say that �Xd�a1�Zd�b1 � ¯

� �Xd�aN�Zd�bN for ak ,bk� �0, . . . ,d−1� and k� �N� is a
string of Pauli matrices.

If d is a prime, it is known that the d+1 MUBs con-
structed first by Wootters and Fields �21� can also be ob-
tained as the eigenvectors of the matrices
Zd ,Xd ,XdZd ,XdZd

2 , . . . ,XdZd
d−1 �19�. If d= pk is a prime power,

consider all d2−1 possible strings of Pauli matrices exclud-
ing the identity and group them into sets C1 , . . . ,Cd+1 such
that �Ci�=d−1 and Ci�Cj = �I� for i� j and all elements of
Ci commute. Let Bi be the common eigenbasis of all ele-
ments of Ci. Then B1 , . . . ,Bd+1 are MUBs �19�. A similar
result for d=2k has also been shown in �25�. A special case of
this construction is the three mutually unbiased bases in di-
mension d=2k given by the unitaries I�k,H�k, and K�k with
K= �I+ i�x� /�2 applied to the computational basis.

B. 2-designs

For the purposes of the present work, spherical t-designs
�see for example Ref. �26�� can be defined as follows.

Definition 2 �t-design�. Let ��	1	 , . . . , �	m	� be a set of state
vectors in Cd. They are said to form a t-design if

1

m


i=1

m

��	i	�	i��� t =

+

�t,d�

Tr 
+
�t,d� ,

where 
+�t ,d� is a projector onto the completely symmetric
subspace of Cd� t and

Tr 
+
�t,d� = d + t − 1

d − 1
� =

�d + t − 1�!
�d − 1�!t!

,

is its dimension.
Any set B of d+1 MUBs forms a spherical 2-design

�26,27�, i.e., we have for B= �B1 , . . . ,Bd+1� with Bt

= ��b1
t 	 , . . . , �bd

t 	� that

1

d�d + 1�
t=1

d+1



k=1

d

��bk
t 	�bk

t ���2 = 2

+

�2,d�

d�d + 1�
.

III. UNCERTAINTY RELATIONS

We now prove tight entropic uncertainty for measure-
ments in MUBs in square dimensions. The main result of �4�,
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which will be very useful for us, is stated next.
Theorem 1 �Maassen and Uffink�. Let B1 and B2 be two

orthonormal bases in a Hilbert space of dimension d. Then
for all pure states ��	

1

2
�H�B1, ��	� + H�B2, ��	�� � − log c�B1,B2� , �3�

where c�B1 ,B2�=max���b1 �b2	� : �b1	�B1 , �b2	�B2�.
The case when B1 and B2 are MUBs is of special interest

for us. More generally, when one has a set of MUBs a trivial
application of Eq. �3� leads to the following corollary also
noted in �7�.

Corollary 1. Let B= �B1 , . . . ,Bm�, be a set of MUBs in a
Hilbert space of dimension d. Then

1

m


t=1

m

H�Bt, ��	� �
log d

2
. �4�

Proof. Using Eq. �3�, one gets that for any pair of MUBs
Bt and Bt� with t� t�

1

2
�H�Bt,�� + H�Bt�,��� �

log d

2
. �5�

Adding up the resulting equation for all pairs t� t� we get
the desired result �4�. �

Here, we now show that this bound can in fact be tight for
a large set of MUBs.

A. MUBs in square dimensions

Corollary 1 gives a lower bound on the average of the
entropies of a set of MUBs. The obvious question is whether
that bound is tight. We show that the bound is indeed tight
when we consider product MUBs in a Hilbert space of
square dimension.

Theorem 2. Let B= �B1 , . . . ,Bm� with m�2 be a set of
MUBs in a Hilbert space H of dimension s. Let Ut be the
unitary operator that transforms the computational basis to
Bt. Then V= �V1 , . . . ,Vm�, where

Vt = �Ut�k	 � Ut
*�l	:k,l � �s�� ,

is a set of MUBs in H � H, and it holds that

min
��	

1

m


t=1

m

H�Vt, ��	� =
log d

2
, �6�

where d=dim�H � H�=s2.
Proof. It is easy to check that V is indeed a set of MUBs.

Our proof works by constructing a state ��	 that achieves the
bound in corollary 1. It is easy to see that the maximally
entangled state

��	 =
1
�s



k=1

s

�kk	 ,

satisfies U � U*��	= ��	 for any U�U�d�. Indeed,

���U � U*��	 =
1

s



k,l=1

s

�k�U�l	�k�U*�l	 =
1

s



k,l=1

s

�k�U�l	�l�U†�k	

=
1

s
TrUU† = 1.

Therefore, for any t� �m� we have that

H�Vt, ��	� = − 

kl

��kl�Ut � Ut
*��	�2 log��kl�Ut � Ut

*��	�2 =

− 

kl

��kl��	�2 log��kl��	�2 = log s =
log d

2
.

Taking the average of the previous equation we get the de-
sired result. �

B. MUBs based on Latin squares

We now consider mutually unbiased bases based on Latin
squares �8� as described in Sec. II. Our proof again follows
by providing a state that achieves the bound in corollary 1,
which turns out to have a very simple form.

Lemma 1. Let B= �B1 , . . . ,Bm� with m�2 be any set of
MUBs in a Hilbert space of dimension d=s2 constructed on
the basis of Latin squares. Then

min
��	

1

m


B�B

H�B, ��	� =
log d

2
.

Proof. Consider the state ��	= �1,1	 and fix a basis Bt
= ��vi,j

t 	 � i , j� �s���B coming from a Latin square. It is easy
to see that there exists exactly one j� �s� such that
�v1,j

t �1,1	=1/�s. Namely this will be the j� �s� at position
�1,1� in the Latin square. Fix this j. For any other �� �s�,
�� j, we have �v1,�

t �1,1	=0. But this means that there exist
exactly s vectors in B such that ��vi,j

t �1,1	�2=1/s, namely
exactly the s vectors derived from �v1,j

t 	 via the Hadamard
matrix. The same argument holds for any such basis B�T.
We get



B�B

H�B, �1,1	� = 

B�B



i,j��s�

��vi,j
t �1,1	�2 log��vi,j

t �1,1	�2

= �T�s
1

s
log

1

s
= �T�

log d

2
.

The result then follows directly from corollary 1. �

C. Using a full set of MUBs

We now provide an alternative proof of an entropic un-
certainty relation for a full set of mutually unbiased bases.
This has previously been proved in �5�. Nevertheless, be-
cause our proof is so simple using existing results about
2-designs we include it here for completeness, in the hope
that if may offer additional insight.

Lemma 2. Let B be a set of d+1 MUBs in a Hilbert space
of dimension d. Then

1

d + 1 

B�B

H2�B, ��	� � logd + 1

2
� .
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Proof. Let Bt= ��b1
t 	 , . . . , �bd

t 	� and B= �B1 , . . . ,Bd+1�. We
can then write

1

d + 1 

B�B

H2�B, ��	� = −
1

d + 1

t=1

d+1

log 

k=1

d

��bk
t ��	�4

� log 1

d + 1

t=1

d+1



k=1

d

��bk
t ��	�4�

= logd + 1

2
� ,

where the first inequality follows from the concavity of the
log, and the final inequality follows directly from the fact
that a full set of MUBs forms a 2-design and ��27�, theorem
1�. �

We then obtain the original result by Sanchez-Ruiz �5� by
noting that H�·��H2�·�.

Corollary 2. Let B be a set of d+1 MUBs in a Hilbert
space of dimension d. Then

1

d + 1 

B�B

H�B, ��	� � logd + 1

2
� .

IV. LOCKING

We now turn our attention to locking. We first explain the
connection between locking and entropic uncertainty rela-
tions. In particular, we show that for MUBs based on gener-
alized Pauli matrices, we only need to look at such uncer-
tainty relations to determine the exact strength of the locking
effect. We then consider how good MUBs based on Latin
squares are for locking.

In order to determine how large the locking effect is for
some set of mutually unbiased bases B, and the state

�AB = 

t=1

�B�



k=1

d

pt,k��k	�k� � �t	�t��A � ��bk
t 	�bk

t ��B, �7�

we must find an optimal bound for Ic��AB�. Here, �pt,k� is a
probability distribution over B� �d�. That is, we must find a
positive operator valued measure �POVM� MA � MB that
maximizes Eq. �1�. It has been shown in �11� that we can
restrict ourselves to taking MA to be the local measurement
determined by the projectors ��k	�k� � �t	�t��. It is also known
that we can limit ourselves to take the measurement MB con-
sisting of rank one elements ��i�i	�i�� only �28�, where
�i�0 and �i	 is normalized. Maximizing over MB then cor-
responds to maximizing Bob’s accessible information ��29�,
Eq. �9.75�� for the ensemble E= �pk,t , �bk

t 	�bk
t ��

Iacc�E� = max
M
− 


k,t
pk,t log pk,t

+

i



k,t

pk,t�i�i��k,t�i	log
pk,t�i��k,t�i	

�i���i	
� ,

�8�

where �=
k,tpk,t�k,t and �k,t= �bk
t 	�bk

t �. Therefore, we have

Ic��AB�=Iacc�E�. We are now ready to prove our locking re-
sults.

A. An example

We first consider a very simple example with only three
MUBs that provides the intuition behind the remainder of
our paper. The three MUBs we consider now are generated
by the unitaries I, H, and K= �I+ i�x� /�2 when applied to the
computational basis. For this small example, we also inves-
tigate the role of the prior over the bases and the encoded
basis elements. It turns out that this does not affect the
strength of the locking effect positively. Actually, it is pos-
sible to show the same for encodings in many other bases.
However, we do not consider this case in full generality as to
not obscure our main line of argument.

Lemma 3. Let U0= I�n, U1=H�n, and U2=K�n, where k
� �0,1�n and n is an even integer. Let �pt� with t� �2� be a
probability distribution over the set S= �U1 ,U2 ,U3�. Suppose
that p1 , p2 , p3�1/2 and let pt,k= pt�1/d�. Consider the en-
semble E= �pt�1/d� ,Ut�k	�k�Ut

†�; then

Iacc�E� =
n

2
.

If, on the other hand, there exists a t� �2� such that pt

�1/2, then Iacc�E��n /2.
Proof. We first give an explicit measurement strategy and

then prove a matching upper bound on Iacc. Consider the
Bell basis vectors ��00	= ��00	+ �11	� /�2, ��01	= ��00	
− �11	� /�2, ��10	= ��01	+ �10	� /�2, and ��11	= ��01	
− �10	� /�2. Note that we can write for the computational ba-
sis

�00	 =
1
�2

���00	 + ��01	� ,

�01	 =
1
�2

���10	 + ��11	� ,

�10	 =
1
�2

���10	 − ��11	� ,

�11	 =
1
�2

���00	 − ��01	� .

The crucial fact to note is that if we fix some k1k2, then there
exist exactly two Bell basis vectors ��i1i2

	 such that
���i1i2

�k1k2	�2=1/2. For the remaining two basis vectors the
inner product with �k1k2	 will be zero. A simple calculation
shows that we can express the two qubit basis states of the
other two mutually unbiased bases analogously: For each
two qubit basis state there are exactly two Bell basis vectors
such that the inner product is zero and for the other two the
inner product squared is 1 /2.

We now take the measurement given by ���i	��i�� with
��i	= ��i1i2

	 � . . . � ��in−1in
	 for the binary expansion of i

= i1 , i2 , . . . , in. Fix a k=k1 ,k2 , . . . ,kn. By the above argument,
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there exist exactly 2n/2 strings i� �0,1�n such that ���i �k	�2

=1/ �2n/2�. Putting everything together, Eq. �8� now gives us
for any prior distribution �pt,k� that

− 

i

��i����i	log��i����i	 −
n

2
� Iacc�E� . �9�

For our particular distribution we have �= I /d and thus

n

2
� Iacc�E� .

We now prove a matching upper bound that shows that
our measurement is optimal. For our distribution, we can
rewrite Eq. �8� for the POVM given by ��i�i	�i�� to

Iacc�E� = max
M
log d

+ 

i

�i

d 

k,t

pt��i�Ut�k	�2 log��i�Ut�k	�2�
= max

M
log d − 


i

�i

d 

t

ptH�Bt, �i	�� .

It follows from corollary 1 that ∀i� �0,1�n and
p1 , p2 , p3�1/2,

�1/2 − p1��H�B2, �i	� + H�B3, �i	�� + �1/2 − p2��H�B1, �i	�

+ H�B3, �i	�� + �1/2 − p3��H�B1, �i	� + H�B2, �i	��

� n/2.

Reordering the terms we now get 
t=1
3 ptH�Bt , �i	��n /2.

Putting things together and using the fact that 
i�i=d, we
obtain

Iacc�E� �
n

2
,

from which the result follows.
If, on the other hand, there exists a t� �2� such that pt

�1/2, then by measuring in the basis Bt we obtain Iacc�E�
� ptn�n /2. �

Above, we have only considered a nonuniform prior over
the set of bases. In �30� it is observed that when we want to
guess the XOR of a string of length 2 encoded in one �un-
known to us� of these three bases, the uniform prior on the
strings is not the one that gives the smallest probability of
success. This might lead one to think that a similar phenom-
enon could be observed in the present setting, i.e., that one
might obtain better locking with three basis for a nonuniform
prior on the strings. In what follows, however, we show that
this is not the case.

Let pt=
kpk,t be the marginal distribution on the basis,
then the difference in Bob’s knowledge between receiving
only the quantum state and receiving the quantum state and
the basis information is given by

��pk,t� = H�pk,t� − Iacc�E� − H�pt� ,

substracting the basis information itself. Consider the post-
measurement state �=
i��i����i	��i	��i�. Using Eq. �9� we
obtain

��pk,t� � H�pk,t� − S��� + n/2 − H�pt� , �10�

where S is the von Neuman entropy. Considering the state

�12 = 

k=1

d



t=1

3

pk,t��t	�t��1 � �Ut�k	�k�Ut
†�2,

we have that

S��12� = H�pk,t� � S��1� + S��2� = H�pt� + S��� � H�pt�

+ S��� .

Using Eq. �10� and the previous equation we get

��pk,t� � n/2,

for any prior distribution. This bound is saturated by the
uniform prior and therefore we conclude that the uniform
prior results in the largest gap possible.

B. MUBs from generalized Pauli matrices

We first consider MUBs based on the generalized Pauli
matrices Xd and Zd as described in Sec. II. We consider a
uniform prior over the elements of each basis and the set of
bases. Choosing a nonuniform prior does not lead to a better
locking effect.

Lemma 4. Let B= �B1 , . . . ,Bm� be any set of MUBs con-
structed on the basis of generalized Pauli matrices in a Hil-
bert space of prime power dimension d= pN. Consider the
ensemble E= �1/ �dm� , �bk

t 	�bk
t ��. Then

Iacc�E� = log d −
1

m
min
��	



Bt�B

H�Bt, ��	� .

Proof. We can rewrite Eq. �8� for the POVM given by
��i�i	�i�� to

Iacc�E� = max
M
log d + 


i

�i

dm

k,t

��i�bk
t 	�2 log��i�bk

t 	�2�
= max

M
log d − 


i

�i

d 

t

ptH�Bt, �i	�� .

For convenience, we split up the index i into i=ab with a
=a1 , . . . ,aN and b=b1 , . . . ,bN, where a� ,b�� �0, . . . , p−1� in
the following.

We first show that applying generalized Pauli matrices to
the basis vectors of a MUB merely permutes those vectors.

Claim 1. Let Bt= ��b1
t 	 , . . . , �bd

t 	� be a basis based on gen-
eralized Pauli matrices �Sec. II� with d= pN. Then ∀ a, b
� �0, . . . , p−1�N, ∀ k� �d� we have that ∃ k�� �d�, such that
�bk�

t 	=Xd
a1Zd

b1 � . . . � Xd
aNZd

bN�bk
t 	.

Proof. Let �p
i for i� �0,1 ,2 ,3� denote the generalized

Pauli matrices �p
0 = Ip, �p

1 =Xp, �p
3 =Zp, and �p

2 =XpZp. Note
that Xp

uZp
v =�uvZp

vXp
u, where �=e2�i/p. Furthermore, define
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�p
i,�x�= I��x−1� � �p

i
� IN−x to be the Pauli operator �p

i applied
to the xth qupit. Recall from Sec. II that the basis Bt is the
unique simultaneous eigenbasis of the set of operators in Ct,
i.e., for all k� �d� and f , g� �N�, �bk

t 	�Bt and cf ,g
t �Ct, we

have cf ,g
t �bk

t 	=�k,f ,g
t �bk

t 	 for some value �k,f ,g
t . Note that any

vector �v	 that satisfies this equation is proportional to a vec-
tor in Bt. To prove that any application of one of the gener-
alized Pauli matrices merely permutes the vectors in Bt is
therefore equivalent to proving that �p

i,�x��bk
t 	 are eigenvectors

of cf ,g
t for any f , g� �k� and i� �1,3�. This can be seen as

follows: Note that cf ,g
t = �n=1

N ��p
1,�n�� fN��p

3,�n��gN for f
= �f1 , . . . , fN� and g= �g1 , . . . ,gN� with fN ,gN� �0, . . . , p−1�
�19�. A calculation then shows that

cf ,g
t �p

i,�x��bk
t 	 = 	 fx,gx,i�k,f ,g

t �p
i,�x��bk

t 	 ,

where 	 fx,gx,i=�gx for i=1 and 	 fx,gx,i=�−fx for i=3. Thus
�p

i,�x��bk
t 	 is an eigenvector of cf ,g

t for all t, f , g, and i, which
proves our claim. �

Suppose we are given ��	 that minimizes 
Bt�TH�Bt , ��	�.
We can then construct a full POVM with d2 elements by
taking ��1/d��ab	�ab�� with �ab	= �Xd

a1Zd
b1 � . . .

� Xd
aNZd

bN�†��	. However, it follows from our claim above
that ∀ a, b, k, ∃ k� such that ��ab �bk

t 	�2= ��� �bk�
t 	�2, and thus

H�Bt , ��	�=H�B , �ab	� from which the result follows. �

Determining the strength of the locking effects for such
MUBs is thus equivalent to proving bounds on entropic un-
certainty relations. We thus obtain as a corollary of theorem
2 and lemma 4 that, for dimensions which are the square of
a prime power d= p2N, using any product MUBs based on
generalized Pauli matrices does not give us any better lock-
ing than just using 2 MUBs.

Corollary 3. Let S= �S1 , . . . ,Sm� with m�2 be any set of
MUBs constructed on the basis of generalized Pauli matrices
in a Hilbert space of prime �power� dimension s= pN. Define
Ut as the unitary that transforms the computational basis into
the tth MUB, i.e., St= �Ut�1	 , . . . ,Ut�s	�. Let B
= �B1 , . . . ,Bm� be the set of product MUBs with Bt= �Ut

� Ut
*�1	 , . . . ,Ut � Ut

*�d	� in dimension d=s2. Consider the en-
semble E= �1/ �dm� , �bk

t 	�bk
t ��. Then

Iacc�E� =
log d

2
.

Proof. The claim follows from theorem 2 and the proof of
lemma 4 by constructing a similar measurement formed from

vectors �̂âb̂	=Ka1b1 � Ka2b2
* ��	 with â=a1a2 and b̂=b1b2,

where a1, a2 and b1, b2 are defined like a and b in the proof
of lemma 4 and Kab= �Xd

a1Zd
b1 � . . . � Xd

aNZd
bN�† from above.�

The simple example we considered above is in fact a spe-
cial case of corollary 3. It shows that if the vector that mini-
mizes the sum of entropies has certain symmetries, such as
for example the Bell states, the resulting POVM can even be
much simpler.

C. MUBs from Latin squares

At first glance, one might think that maybe the product
MUBs based on generalized Paulis are not well suited for

locking just because of their product form. Perhaps MUBs
with entangled basis vectors do not exhibit this problem. To
this end, we examine how well MUBs based on Latin
squares can lock classical information in a quantum state. All
such MUBs are highly entangled, with the exception of the
two extra MUBs based on non-Latin squares. Surprisingly, it
turns out, however, that any set of at least two MUBs based
on Latin squares does equally well at locking as using just
two such MUBs. Thus such MUBs perform equally “badly,”
i.e., we cannot improve the strength of the locking effect by
using more MUBs of this type.

Lemma 5. Let B= �B1 , . . . ,Bm� with m�2 be any set of
MUBs in a Hilbert space of dimension d=s2 constructed on
the basis of Latin squares. Consider the ensemble E
= �1/ �dm� , �bk

t 	�bk
t ��. Then

Iacc�E� =
log d

2
.

Proof. Note that we can again rewrite Iacc�E� as in the
proof of lemma 4. Consider the simple measurement in the
computational basis ��i , j	�i , j � i , j� �s��. The result then fol-
lows by the same argument as in lemma 1. �

V. CONCLUSION AND OPEN QUESTIONS

We have shown tight bounds on entropic uncertainty re-
lations and locking for specific sets of mutually unbiased
bases. Surprisingly, it turns out that using a more mutually
unbiased basis does not always lead to a better locking ef-
fect. It is interesting to consider what may make these bases
so special. The example of three MUBs considered in lemma
3 may provide a clue. These three bases are given by the
common eigenbases of ��x � �x ,�x � I , I � �x�, ��z � �z ,�z

� I , I � �z�, and ��y � �y ,�y � I , I � �y�, respectively �19�.
However, �x � �x, �z � �z, and �y � �y commute and thus
also share a common eigenbasis, namely the Bell basis. This
is exactly the basis we will use as our measurement. For all
MUBs based on generalized Pauli matrices, the MUBs in
prime power dimensions are given as the common eigenbasis
of similar sets consisting of strings of Pauli matrices. It
would be interesting to determine the strength of the locking
effect on the basis of the commutation relations of elements
of different sets. Perhaps it is possible to obtain good locking
from a subset of such MUBs where none of the elements
from different sets commute.

It is also worth noting that the numerics of �11� indicate
that at least in dimension p using more than three bases does
indeed lead to a stronger locking effect. It would be interest-
ing to know whether the strength of the locking effect de-
pends not only on the number of bases, but also on the di-
mension of the system in question.

Whereas general bounds still elude us, we have shown
that merely choosing mutually unbiased bases is not suffi-
cient to obtain good locking effects or high lower bounds for
entropic uncertainty relations. We thus have to look for dif-
ferent properties.
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