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We propose a modified protocol of atomic state teleportation for the scheme proposed by Bose et al. �Phys.
Rev. Lett. 83, 5158 �1999��. The modified protocol involves an additional stage in which quantum information
distorted during the first stage is fully recovered by a compensation of the damping factor. The modification
makes it possible to obtain a high fidelity of teleported state for cavities that are much worse than that required
in the original protocol, i.e., their decay rates can be over 25 times larger. The improvement in the fidelity is
possible at the expense of lowering the probability of success. We show that the modified protocol is robust
against dark counts.

DOI: 10.1103/PhysRevA.75.022317 PACS number�s�: 03.67.Hk

I. INTRODUCTION

Quantum teleportation �1� is considered to be a perfect
way of transferring qubits over long distances. It is particu-
larly important to teleport qubits represented by the atomic
states, which can store quantum information for sufficiently
long time as to make it available for further quantum pro-
cessing. However, in contrast to the teleportation of photonic
states, the teleportation of atomic states over long distances
is a difficult task. As yet, the longest distance achieved ex-
perimentally for atomic states is of the order of micrometers
�2,3� while for photonic states is of the order of kilometers
�4�. It is obvious that the distance of atomic states teleporta-
tion has to be orders of magnitude greater to make the tele-
portation useful in quantum communication. In order to
make this distance greater, it is necessary to employ photons,
which are the best long distance carriers of quantum infor-
mation, to establish quantum communication between the re-
mote atoms and complete the atomic state teleportation. Such
a scheme of atomic state teleportation has been presented by
Bose et al. �5�. They have proposed an additional stage of
teleportation protocol—the preparation stage, in which the
state of sender atom is mapped onto the sender cavity field
state and therefore can be teleported in the next stage using
well known linear optics techniques. The possibility of oper-
ating on atomic qubits with linear optics elements is the rea-
son why a combination of atomic states and cavity field
states has been recently suggested in many proposals, not
only in proposals of teleportation protocols �6–8� but also in
other schemes of quantum information processing �9–15�.
Unfortunately, the state mapping and whole preparation stage
is not perfect because of a destructive role played by cavity
decay. The cavity decay reduces the fidelity of teleported
state and the probability of success. Bose et al. �5� have
suggested a way to minimize a destructive role of this im-
perfection by assuming very small cavity decay rate. How-
ever, the value of cavity decay rate required by their protocol
is two orders of magnitude below of what is currently avail-
able �16–23�.

Here, we present a protocol that reduces the effect of cav-
ity decay on the fidelity. This protocol makes it possible to
use cavities with larger decay rates without worsening the
fidelity but at the expense of lowering success rates.

II. MODEL

The teleportation protocol that we propose in this paper is
designed for the same device which Bose et al. �5� consider
in their scheme. The device is depicted in Fig. 1. It is com-
posed of two cavities CA and CB, a 50-50 beam splitter, two
lasers LA and LB, and two single-photon detectors D+ and D−.
The receiver, Bob, has the cavity CB and the laser LB. The
other elements of the device are at the side of the sender—
Alice. Inside each cavity there is one trapped atom, modeled
by a three-level � system with two stable ground states �0�
and �1�, and one excited state �2� as shown in Fig. 2. Only the
excited state decays spontaneously, therefore the ground
states are ideal candidates for an atomic qubit. The sponta-
neous decay rate of the excited state is denoted by �. Opera-
tions on the qubit coded in the superposition of both ground
states are possible using two transitions: �0�↔ �2�and
�1�↔ �2�. First of the transitions is coupled to the cavity
mode with the coupling strength g while the second transi-
tion is coupled to a classical laser field with the coupling
strength �. Since we want a population of the excited state
to be negligible, the laser field and the cavity mode are de-
tuned from the corresponding transition frequencies by �.
Beside the spontaneous decay of the excited atomic state
there is another decay mechanism. One mirror in each cavity
is partially transparent and therefore photons leak out of the

FIG. 1. �Color online� Schematic representation of the setup to
realize long distance teleportation of atomic states via photons.
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cavities through these mirrors at a rate �. The evolution of
each atom-cavity system is governed by the effective non-
Hermitian Hamiltonian ��=1 here and in the following�

H = �� − i���22 + ���21 + ga�20 + H.c.� − i�a†a , �1�

where a denotes the annihilation operator for Alice’s cavity
mode �aA� or Bob’s cavity mode �aB�. In Eq. �1� we intro-
duce the flip operators �ij ��i��j�. Both our protocol as well
as the Bose et al. protocol work in the low saturation limit
�g2 /�2, �2 /�2�1� and therefore the excited atomic state
can be adiabatically eliminated �24–31�. Either of them re-
quire small values of the spontaneous decay rate ���� and
�g2 /�2, ��2 /�2��� �32� which makes it possible to ne-
glect � as a first approximation. Finally, we assume the con-
dition �=gwhich leads to a very simple form of the Hamil-
tonian

H = − ��11 − �a†a�00 − ��a�10 + H.c.� − i�a†a , �2�

where �=g2 /�. The evolution described by Eq. �2� is inter-
rupted by collapses. Photon decays registered by detectors
correspond to the action of the collapse operator

C = 	��aA + i	aB� , �3�

where 	 is equal to 1 for photon detection in D+ and equal to
−1 for photon detection in D−.

The simple form of the Hamiltonian �2� allows for ana-
lytical solutions of the nonunitary Schrödinger equation and
get expressions for the time evolution of quantum states
which are used in both protocols. To give the expressions a
more compact form we use the notation �jn���j�atom
� �n�mode to describe the state of the atom-cavity system.
During the whole teleportation process the time evolution of
the system is restricted to the subspace spanned by the states:
�00�, �10�, and �01�. The state �00� experiences no dynamics
because there is no operator in the Hamiltonian �2� which
can change this state. Time evolution of the other two states
is described by

e−iHt�10� = ei�te−�t/2
i
2�

��

sin���t

2
��01� + 
cos���t

2
�

+
�

��

sin���t

2
���10�� ,

e−iHt�01� = ei�te−�t/2
i
2�

��

sin���t

2
��10� + 
cos���t

2
�

−
�

��

sin���t

2
���01�� , �4�

where ��=	4�2−�2. There are two important local opera-
tions we can perform on the system state via e−iHt. First of
them is to map the atomic state onto the cavity mode and
second is the generation of the maximally entangled state of
the atom and the cavity mode. The atomic state mapping one
can obtain by turning the laser on for time tA is given by

�10� → iei�tAe−�tA/2�01� , �5�

where tA= �2/����
−arctan��� /���. In order to create the
maximally entangled state the laser should be turned on for
time tB= �2/���arctan��� / �2�−���

�10� → ei�tBe−�tB/2 2�

��

sin���tB

2
���10� + i�01�� . �6�

When the laser is turned off then �=0, and the Hamil-
tonian goes over into H=−�a†a�00− i�a†a. Then all the
terms of the Hamiltonian correspond to the diagonal ele-
ments in matrix representation, and the nonunitary
Schrödinger equation can be easily solved. The evolution of
the states �10� and �01�, when the laser is turned off, are thus
given by

e−iHt�10� = �10� ,

e−iHt�01� = ei�te−�t�01� . �7�

III. TELEPORTATION PROTOCOL

Both protocols start with the same initial state—the un-
known state that Alice wants to teleport, which is stored in
her atom. Bob’s atom is prepared in the state �1� and the field
modes of both cavities are empty, so we have

���A = ��00�A + 
�10�A, �8�

���B = �10�B. �9�

The teleportation protocol with improved fidelity consists of
five stages: �A� the preparation stage, �B� the detection stage
I, �C� the compensation stage, �D� the detection stage II, and
�E� the recovery stage.

A. Preparation stage

The preparation stage is necessary because the quantum
information encoded initially in Alice’s atom is teleported by
performing joint measurement on the field state of both cavi-
ties. Before of the detection stage Alice has to map the quan-
tum information onto her cavity field state while Bob has to
create the maximally entangled state of his atom and his
cavity field. Alice and Bob achieve their goals by switching
their lasers on for times tA and tB, respectively. After the

FIG. 2. Level scheme of the � atom interacting with the classi-
cal laser field and the quantized cavity mode.
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preparation stage the state of Alice’s atom-cavity system is
given by

��˜�A = ��00�A + iei�tAe−�tA/2
�01�A, �10�

and Bob’s system state becomes

��˜�B = e−�tB/2 2�

��

sin���tB

2
���10�B + i�01�B� . �11�

This first stage is successful only under the absence of pho-
ton detection event. The probability that no collapse occurs
during Alice’s operation is given by the squared norm of the
state vector

PA = ���2 + e−�tA�
�2. �12�

Similarly, we can obtain appropriate expression for the prob-
ability of no collapse during Bob’s operation

PB = e−�tB
8�2

��
2 sin2���tB

2
� . �13�

It is evident that the state mapping is not perfect because of
the damping factors that appear in expression �12� for PA and

in expression �10� for the state ��˜�A. These damping factors
reduce both the probability that the state mapping is success-
ful and the fidelity of this operation. The quantum informa-
tion after the mapping operation is also modified by the
phase factor iei�tA but, in contrast to damping factors, the
phase factors can later be easily compensated for and there-
fore they do not reduce the fidelity. In order to make the
probability PA and the fidelity close to unity Bose et al.
assume that ����, which means that both � and tA values
are small and the damping factor e−�tA/2 is close to unity.
Generally, however, the damping factor is not unity even for
very small � and tA and, in consequence, the fidelity of the
teleported state is diminished. Since high fidelities are re-
quired by quantum computation algorithms, we will show
how to compensate for this factor in the next stages of the
protocol.

B. Detection stage I

When the quantum information is mapped onto the state
of Alice’s cavity field and the maximally entangled state of
Bob’s cavity field and the target atom is created, then the
joint measurement of both cavity fields can be performed.
During this stage Alice and Bob perform the joint measure-
ment just by waiting with their lasers turned off. The telepor-
tation is successful if the detectors register one and only one
photon. In successful cases the joint state of Alice’s and
Bob’s systems becomes

��˜�td�� = �i	��00�B + ei�tAe−�tA/2
�10�B��00�A

+ iei�t1e−�t1/2
e−�tdei�td

���01�B�00�A + i	�00�B�01�A� , �14�

where td is the time of this detection stage. Until now the
operations in both protocols are exactly the same. In the

protocol of Bose et al. it is assumed that time td is much
longer than �−1 and thus all unwanted states in expression
�14� can be neglected. Finally, after removing a phase factor,
the state of Bob’s atom is given by � �0�B+e−�tA/2
 �1�B. It is
obvious that the fidelity of teleported state will never reach
unity because of the factor e−�tA/2. Moreover, in the protocol
of Bose et al. the fidelity of teleported state decreases with
increasing �. In our protocol, we use one of the unwanted
states to compensate for the factor e−�tA/2. This compensation
can be done if we choose the time of this detection stage
such that ei�td =−1. Then expression �14� can be rewritten as

��˜�td�� = i	��00�B�00�A + ei�tAe−�tA/2
e−�td	�00�B�01�A

+ ei�tAe−�tA/2
��10�B − ie−�td�01�B��00�A. �15�

C. Compensation stage

In the compensation stage Bob compensates for the factor
e−�tA/2 by turning his laser on for time tc. During the opera-
tion Alice’s laser remains turned off. On condition that no
photon detection occurs during time tc, the unnormalized
joint state at the end of this stage is given by

��˜�tc�� = ei��tA+tc�e−�tA/2
e−��td+tc�	�00�B�01�A

− iei��tA+tc�
e−��tA+tc�/2��tc��01�B�00�A

+ ei��tA+tc�
e−��tA+tc�/2��tc��10�B�00�A

+ i	��00�B�00�A, �16�

where

��tc� = e−�tdcos���tc

2
� −

2� + �e−�td

��

sin���tc

2
�,

��tc� = cos���tc

2
� +

� + 2�e−�td

��

sin���tc

2
� . �17�

It is seen that this operation transfers population from the
state �01�B �00�A, which is unwanted, to the state �10�B �00�A.
Of course, we want the transfer to compensate for the factor
e−�tA/2 and therefore tc has to fulfill the condition

e−��tA+tc�/2��tc� = 1. �18�

D. Detection stage II

The population of one of the two unwanted states is al-
ready reduced after the previous stage, but it cannot be ne-
glected yet. Moreover, the population of the second un-
wanted state is still considerable. Presence of the two
unwanted states decreases the teleportation fidelity, so in the
fourth stage of the protocol Alice and Bob have to eliminate
them. All they have to do to achieve this goal is simply to
wait for a finite time tD��−1. After time tD the populations
of both unwanted states are negligible and unnormalized
joint state can be very well approximated by

��˜�tD�� = �i	��00�B + ei��tA+tc�
�10�B��00�A. �19�
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E. Recovery stage

Finally, Bob has to remove the phase shift factor
i	e−i��tA+tc� to recover the original Alice’s state. To this end
Bob adds to the state �1�atomB an extra phase shift with re-
spect to the state �0�atomB using the Zeeman evolution �5�.
After this operation the state of Bob’s atom is exactly the
same as the initial state of Alice’s atom, i.e., � �0�atomB
+
 �1�atomB, and thus the teleportation fidelity of this protocol
can be very close to unity. This completes the teleportation
protocol.

Now it is time to explain in detail how to choose the time
td. The condition ei�td =−1 leads to many solutions given by
td=
�2m+1� /�, where m is a nonnegative integer. However,
we cannot set m arbitrary because ��tc� and the probability
of success in second stage are functions of td. It is obvious
that the probability of observing one photon during detection
time td increases with increasing td. On the other hand, we
cannot choose this detection time too long because the popu-
lation of unwanted state �01�B �00�A can then be too small to
compensate for the factor e−�tA/2. Thus, td is limited by some
time td max. Let us now estimate td max. Expression
e−��tA+tc�/2��tc�takes its maximal value for the time of the
compensation stage given by

tc max =
2

��

arctan� 2���e−�td

��
2 + ��� + 2�e−�td�� . �20�

The factor e−�tA/2 can be compensated for only under the
condition that e−��tA+tc max�/2��tc max��1. Since both ��tc� and
tc max depend on td, we can estimate the value of td max by
finding numerically td satisfying the condition

e−��tA+tc max�/2��tc max� = 1. �21�

The problem of choosing td is much simpler when we
want to compensate for the factor e−�tA/2 for as large � as
possible. From Fig. 3 one can see that the limit td max de-
creases with increasing �. Therefore, we should choose the
smallest value of td by setting m to zero.

IV. NUMERICAL RESULTS

Let us now compare both protocols. For this purpose we
compute the average probability of success and the average
fidelity of teleported state for the same values of the detuning
and both coupling strengths as in Ref. �5�, i.e.,
�� ;� ;g� /2
= �100;10;10� MHz. It is necessary to take av-
erage values over all input states because the probability of
success in both protocols as well as the fidelity in the Bose et
al. protocol all depend on the unknown moduli of the ampli-
tudes � and 
 of the initial state. The fidelity in our protocol
seems to be independent of the amplitudes of initial state and
should be equal to unity. However, this is only true for the
simplified model for which the excited state is eliminated. In
more general model described by the Hamiltonian �1� the
population of the excited state has a nonzero value during the
evolution given by Eq. �4� even if the atom is initially pre-
pared in its ground state. However, the population of the
excited state remains zero for the initial state �00� of atom-
cavity system because the state experiences no dynamics. If
the initial state is a superposition given by Eq. �8� then the
population of the excited state depends on the moduli of the
amplitudes � and 
. Since the population of the excited state
reduces the fidelity, it is also necessary to average the fidelity
in our protocol over all input states.

We compute all the averages numerically using the
method of quantum trajectories �33,34� together with the
Monte Carlo technique. Each trajectory starts with a random
initial state and evolves according to a chosen teleportation
protocol. If measurement indicates success then we calculate
the fidelity of teleported state at the end of the protocol.
Otherwise, we reject a trajectory as unsuccessful. After gen-
erating 20 000 trajectories we average the fidelity over all
trajectories and calculate the average probability of success
as a ratio of the number of successful trajectories to the num-
ber of all trajectories.

There are some problems that appear when we use the
Hamiltonian �1� to simulate performance of our protocol.
First, the fidelity is sensitive to the inaccuracy in calculations
of phase shift factors. The compensation of the factor e−�tA/2

requires the phase shift of the state �01�B �00�A relative to the
state �10�B �00�A to be equal to −i as shown in Eq. �15�.
Therefore the time td of the detection stage I has to satisfy
the condition ei�td =−1. However, the analytical expression
for � is derived from the Hamiltonian �2� and thus exp�i�td�
is only an approximation to the real phase shift factor. Un-
fortunately, the population transfer that takes place in the
compensation stage leads to an unknown extra phase shift in
the final state �19� when the phase shift between states
�01�B �00�A and �10�B �00�A differs from the expected value−i.
Of course, this unknown phase shift cannot be compensated
for in the recovery stage, which means that the fidelity in our
protocol can even be smaller than the fidelity in the Bose et
al. protocol. To overcome this problem we use a numerical
optimization procedure which finds, for the more general
model, such td that the joint state of Alice’s and Bob’s sys-
tems becomes as close to the expected state given by Eq.
�15� as possible.

Second, a question arises: how to estimate the biggest
value of � for which the compensation is still possible? This
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FIG. 3. The value of td max as a function of � for
�� ;� ;g� /2
= �100;10;10� MHz calculated numerically using
condition �21�.
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value is very important because we want to know how good
�or rather bad� cavities can be used for effective high fidelity
teleportation. In the simplified model of our protocol gov-
erned by the Hamiltonian �2� this value can be computed
from Eq. �21� and is about � /2
�0.17 MHz. However, the
population of the excited atomic state changes this value
because of the transfer of population from the state
�20�B �00�A to the state �10�B �00�A in the compensation stage.
To estimate the acceptable value of �, we plot the average
fidelity and the average probability of success as functions of
�. The population of the excited atomic state changes also
the time tc for which the improvement of the fidelity in our
protocol is the best one and thus the value of tc calculated
from Eq. �18� can be used only as a starting point in the
numerical computation of this time. From numerical results
presented in Fig. 4 we find that there is a plateau in the
fidelity of the modified protocol up to � /2
�0.25 MHz af-
ter which the fidelity jumps down. We consider the value of
� at the jump as the biggest value of �.

Third, the population of the excited atomic state oscil-
lates. Since the population of the excited state diminishes the
fidelity of operations periodically, it is necessary to compute
numerically, for all operations, such times that minimize the
population simultaneously maximizing the fidelity. Until
now we have assumed that times tA and tB can be calculated
analytically as in the Bose et al. protocol. However, the ana-
lytical expressions are functions of �, so, for different values
of � the population of the excited state and the fidelities of
operations take different values. If we want to stabilize the
average fidelity at a high level for different values of � then
we have to compute tA and tB numerically.

To begin with our calculations, we set the spontaneous
decay rate of excited state to zero because we want to know
how close to unity is the fidelity in the ideal case in which
there is no possibility of photon emission to modes other
than the cavity modes. Figure 4 shows that the modified
protocol really stabilizes the fidelity of teleported state at a
high level. The fidelity is reduced only by the nonzero popu-
lation of the excited state and does not decrease with increas-
ing � until � /2
 is about 0.25 MHz. The fidelity of tele-
ported state in the protocol of Bose et al. is reduced by
the population of excited state as well as by the factor

exp�−�tA /2� and, as expected, it decreases with increasing �.
It is seen from Fig. 4 that there are discontinuous jumps of
the fidelity values. The discontinuities come from the nu-
merical procedure finding such tA for which the mapping
fidelity is maximal. The time tA of the mapping operation is
a function of �, and the mapping fidelity reaches its maximal
value when the population of the excited state reaches its
minimal value. Since the population of the excited state os-
cillates the numerically calculated tA jumps, as � increases,
from one value for which the population of the excited state
is minimal after the mapping operation to the next such
value. Thus, the factor exp�−�tA /2� and the fidelity of the
teleported state also exhibit discontinuous behavior. Figure 5
shows that the probability of success in the protocol with
improved fidelity is always less than the probability of suc-
cess in the protocol of Bose et al. Fortunately, there is only a
small difference between the probabilities of both protocols
for the biggest cavity decay rate for which compensation is
still possible, i.e., for � /2
�0.25 MHz.

So far we have assumed that there is no possibility of
photon emission to modes other than the cavity mode.
Let us now relax this assumption and investigate the influ-
ence of the spontaneous emission decay rate of the excited
state on both teleportation protocols. The spontaneous atomic
emission destroys the quantum information which Alice
wants to teleport to Bob. Such runs of the teleportation
protocols are unsuccessful and should be rejected. However,
an event of spontaneous atomic emission cannot be detected
in both schemes and therefore the spontaneous decay rate of
excited state reduces the average fidelities. We can only sup-
press this imperfection by taking �g2 /�2, ��2 /�2�� �32�.
The biggest � for which the compensation is still possible
allows for the choice of � /2
=1 MHz. We have generated
20 000 trajectories to compute the average fidelities and the
average probabilities for the parameters �� ;� ;g ;� ;�� /2

= �100;10;10;1 ;0.265� MHz. As a result we have obtained
the average fidelity of 0.972 and the average probability of
0.36 for the Bose et al. protocol and the average fidelity of
0.978 and the success rate of 0.31 for the modified protocol.
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FIG. 4. The average fidelity of teleportation in the new protocol
�diamonds� and in Bose et al. protocol �open squares� as functions
of the cavity decay rate for �� ;� ;g ;�� /2
= �100;10;10;0� MHz.
The averages are taken over 20 000 trajectories.
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FIG. 5. The average probability of successful teleportation as a
function of the cavity decay rate. The diamonds show the average
probability of success in the new protocol. The open squares corre-
spond to the average probability in Bose et al. protocol. The aver-
ages are taken over 20 000 trajectories. The parameters regime is
�� ;� ;g ;�� /2
= �100;10;10;0� MHz.
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The results indicate that the inability to distinguish the runs
of protocols, in which spontaneous emission occurs, reduces
only slightly the average fidelities when � /2
=1 MHz. The
average probabilities of success remain unchanged.

Other two important imperfections, which we have to take
into account, are a finite detection quantum efficiency and
the presence of dark counts. It is necessary to include such
sources of noise in our numerical calculations because they
are introduced by all real detectors. So far we have assumed
in our analysis perfect detectors that are able to register all
collected photons and do not produce any signal in the ab-
sence of photons. In practice, this assumption is not valid.
The probability that a single photon reaching the detector is
converted into the measurable signal, which is called the
quantum efficiency and denoted by �, is less than unity for
all real detectors �33,35�. Moreover, there are clicks, for all
real detectors, even in the absence of light. They are called
dark counts. These imperfections lead to lowering the aver-
age fidelity in both teleportation protocols because of ran-
domness which they introduce to the measurement outcome.
There is no way to distinguish the unsuccessful case of two
photon emissions from the desired case of one photon emis-
sion when only one of the two emitted photons is detected. It
is also not possible to recognize the unsuccessful case of no
emission if one dark count occurs during the detection stage.
The quantum information that Alice wants to teleport is
destroyed in the unsuccessful cases. If one cannot reject such
cases then the average fidelity is reduced. Therefore it is
necessary to use detectors with very high efficiency � and a
low enough dark count rate. As far as we know, the highest
detector efficiency has been reported by Takeuchi et al. �36�
and is equal to �=0.88. To study the effect of the detector
inefficiency on the protocols under discussion, we have per-
formed numerical calculations under the assumption that
there are not dark counts first. We have used the same pa-
rameters as previously, i.e., �� ;� ;g ;� ;�� /2
=
�100;10;10;1 ;0.265� MHz and we have found that both
protocols are sensitive to the detector inefficiency. The aver-
age fidelity is reduced to 0.894 in the Bose et al. protocol
and to 0.905 in the modified protocol. Success rates remain
almost unchanged—0.353 in the Bose et al. protocol and
0.306 in the modified protocol. It is obvious that the reliable
teleportation requires detectors efficiency �=0.88 or higher.
Unfortunately, the dark count rate of the detector increases
roughly exponentially with the efficiency �36� and is as high
as 20 kHz at the highest efficiency reported by Takeuchi et
al. �36�, i.e., �=0.88. The high efficiency of the detector
means also the high rate of dark counts, which are not good
for teleportation. To clarify the situation, we have also inves-
tigated the influence of the dark count rate on both telepor-
tation protocols. Surprisingly, the protocol with improved fi-
delity has appeared to be less sensitive to this imperfection
than the Bose et al. protocol. The average fidelity in the Bose
et al. protocol appeared to be equal to 0.801 while the aver-
age fidelity in the modified protocol to be equal to 0.897, for
the parameters �=0.88 and the dark count rate 20 kHz. The
difference between the two protocols is quite impressive, but
it has a simple explanation. In either protocol there is only
one stage when the detection of one photon is expected—the
detection stage in the Bose et al. protocol and the detection

stage I in the modified protocol. Only in these two stages
occurrence of the dark count can be erroneously accepted as
a successful measurement event because all other stages re-
quire no photon detection to be successful. Thus one can
easily understand why the influence of the dark counts on
both protocols is different by comparing the times of the two
crucial stages—the time of the detection stage of the Bose et
al. protocol �in our calculations we set tD=10�−1� that is
much longer than the time of the detection stage I �td
=
�−1� of the modified protocol. This means that there are
many more rejected dark counts in the modified protocol
than in the Bose et al. protocol. A bigger number of rejected
runs with the dark count events leads to an increased average
fidelity and at the same time to a decreased success rate.
Therefore, the success rate is reduced more significantly in
the modified protocol �0.237� than in the Bose et al. protocol
�0.331�.

Finally, we generalize our calculations to include losses in
the mirrors and during the propagation. The absorption in the
mirrors can be taken into account by making the replacement
�=��+�� in the Hamiltonian �1�, where �� is the decay rate
corresponding to the photon transmission through the mirror
and �� is the photon loss rate due to absorption in the mir-
rors. The evolution of the system is conditional, so we need
also the collapse operators corresponding to the absorption
of photons in the mirrors. The additional collapse operators
are given by CA=	2��aA and CB=	2��aB. As before, the
collapse operators describing photon detections are given by
Eq. �3� but with � replaced by ��. So, we now have two extra
collapse operators describing evolution of the system. How-
ever, it can be checked that such evolution can be described
without using the extra collapse operators when we make the
replacement �=��+�� in the collapse operators given by Eq.
�3� and multiply the probability of photon detection by �a
= ��� /��, which is the probability that a photon is detected
despite the fact that there is absorption in the mirrors. The
probability of detection in the presence of absorption is then
PD� =�aPD. The presence of absorption means effectively
lower efficiency of the detector.

In the same way, we easily can take into account all pho-
ton losses during the propagation between the cavities and
the detectors �5,37�. All we need to include such losses into
consideration is to introduce additional efficiency factor �p.
Multiplying all the factors, we find the overall detection ef-
ficiency ��=�a�p�. To visualize the effect of such losses, we
have plotted the average fidelity and the average probability
for both protocols as functions of the overall detection inef-
ficiency, i.e., as functions of 1−��. In order to make the
average values reliable, we have generated 100 000 trajecto-
ries for each ��. From Fig. 6 it is clear that with increasing
photon losses the average fidelity is reduced for both proto-
cols. However, the advantage of the modified protocol to be
less sensitive to the dark counts and the compensation for the
factor e−�tA/2 result in the fidelity improvement that is clearly
visible for almost all values of ��. The difference between
both protocols disappears only for such a small �� that most
of the trajectories for which measurement indicates success
are unsuccessful cases due to dark counts. Of course, in such
a case the final state of Bob’s atom is random and the aver-
age fidelity is 0.5.
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From Fig. 7 it is visible that higher fidelity can be
achieved by accepting lower success rates. The average
probability of success in the modified protocol is always less
than the average success rate in the Bose et al. protocol. This
is the price we have to pay for higher fidelity.

V. CONCLUSIONS

We have presented the teleportation protocol for the de-
vice proposed by Bose et al. that improves the fidelity of
teleported state. The improvement is obtained by compensat-
ing for the factor e−�tA/2 which appears in the teleportation
protocols. We have shown that this compensation makes it

possible to stabilize the fidelity at a high level despite the
increase in the cavity decay rate. The fidelity is stabilized
until � /2
�0.25 MHz. This means that the high fidelity
teleportation can be performed for the values of the cavity
decay rates over 25 times larger than the values assumed by
Bose et al. The price we have to pay for more realistic values
of the cavity decay rates is that we have to accept lower
success rates. We have also shown that the modified protocol
is less sensitive to the dark counts of detectors than the origi-
nal protocol of Bose et al.
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