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We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a
transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate con-
nection between entanglement and avoided crossings. In general, entanglement gets exchanged between the
states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest
point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by con-
currence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction
of two-body correlations and distributes entanglement more globally.
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I. INTRODUCTION

Entanglement content in the ground, thermal, and time-
evolving states of various spin models has been an active
subject of recent research �1–13�. While many of the studies
have been on integrable spin chains such as the transverse
Ising and the Heisenberg models, few have explored impli-
cations of nonintegrability and quantum chaos, except for,
e.g., �10,11�. Entanglement itself in these many-body sys-
tems is not characterized by a single number, but rather is
revealed in various measures of multipartite correlations.
Motivated by the rapid developments in quantum-
information theory �14� these studies have revealed a rich
phenomenology including entanglement scaling at zero-
temperature second-order phase transitions and logarithmic
�in number of spins� divergence of subsystem entropy at
quantum critical points �5,6�.

The relationship between quantum chaos and entangle-
ment is a complex one and has also been studied in various
systems �15–24,26,27�. It appears that typically chaos can
enhance entanglement especially of a multipartite kind. Re-
sults suggest that initially unentangled states are capable of
developing large multipartite entanglement under quantum
chaotic evolutions that are persistent in time �10,20�. How-
ever, integrable evolutions can generate large entanglements
for specific initial states at specific times �10�. Early studies
were based on bipartite systems such as coupled tops and
pendula where numerical results �15,16� and random matrix
modeling showed that the entanglement as measured by a
subsystem von Neumann entropy was enhanced in regions of
quantum chaos �16�. Later studies of many-body systems
including spin models and quantum maps showed a subtler
relationship �10,11,23,24�, but there is significant evidence

that multipartite entanglement is enhanced by quantum chaos
�10,20,24�. Related systems are disordered spin chains,
wherein transitions in level statistics with increasing disorder
have been shown to be correlated with decreasing two-body
entanglements, for instance in �25�.

The mechanisms that underlie the correlations between
entanglement and nonintegrability are not entirely explored.
It may simply be that the entanglement content of random
states is reflected in systems with quantum chaos. The criti-
cal requirement of operators for producing large multipartite
entanglement has been explored before �24� and there are
indications that the random distribution of matrix elements,
rather than other characteristics such as the nearest-neighbor
spacing distribution �NNSD�, are needed for generating high
entanglement. On the other hand such a distribution may not
be easily generated. Also connections between localization
and entanglement were noticed earlier �26,27�.

In this paper we point to connections between nonintegra-
bility and entanglement via avoided crossings. One of the
hallmarks of quantum chaos is level repulsion, the tendency
of quantum energy levels to avoid each other �28�. This is
most clearly seen when a parameter of the system is
changed. The resultant energy level dynamics has a typical
behavior for quantum chaotic systems once the levels are
restricted to the same symmetry class. There are no exact or
accidental crossings; levels come close to each other and get
“scattered.” The effect of this is reflected in the most popular
diagnostic of quantum chaos, namely, the nearest-neighbor
spacing statistic. Due to level repulsion this deviates from
the Poisson statistics obtained for integrable systems to the
Wigner distribution typical of quantum chaos �28�.

When two levels approach each other due to the variation
of one parameter, from a theorem of von Neumann and
Wigner we know that generically they will not become de-
generate �29�. The avoided crossing can be very sharp or
broad and may also involve other levels. The natures of the
eigenstates “morph” into one another at an avoided crossing
�30�. As avoided crossings are generically found in noninte-
grable systems, it seems natural to look at the behavior of
entanglement at these points. This has been exploited to
some extent in earlier works that seek to create entangled
states such as the W or Greenberger-Horne-Zeilinger �GHZ�
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state by using the superpositions that develop at avoided
crossings �31–33�; we study this more systematically in a
nonintegrable system. For this same system we show that
there is a close correlation of the NNSD to the extent of
entanglement; the Poisson statistic favors nearest-neighbor
correlations and low multipartite ones, while the Wigner dis-
tribution favors large multipartite entanglements with low
two-body correlations. We show that for time-evolving states
this is reflected in the way an initially maximally entangled
pair of spins evolve and share this entanglement along with
that created by the dynamics. Once again the case when there
is chaos leads to a destruction of two-body correlations along
with enhanced multipartite entanglement.

II. THE MODEL

The Hamiltonian we will use in this study is

H�J,B,�� = J�
n=1

L−1

�n
z�n+1

z + B�
n=1

L

�sin����n
x + cos����n

z� .

�1�

For �=0 the magnetic field is longitudinal, the model is al-
most trivially integrable, and the spectrum is highly degen-
erate. When �=90° the field is transverse and the model is
still integrable thanks to the Jordan-Wigner transform
�34,35� that maps the model to one of noninteracting fermi-
ons. This has been extensively studied both from the original
statistical physics motivation and also recently from the
viewpoint of quantum-information theory. When 0��
�90°, the model is not integrable; when converted using the
Jordan-Wigner transform the resulting fermions are interact-
ing. When the magnetic field is pulsed or kicked, this has
been studied as the “kicked Ising model” and has also been
used to study entanglement �10�. The kicked Ising model is
believed to be quantum chaotic for intermediate tilt angles
�36�. However, the time dependence is not essential in intro-
ducing nonintegrability and we will study the autonomous
Hamiltonian above. It is evidently a very natural generaliza-
tion of the well-studied case of the transverse Ising model
�35�. We have since doing this work noticed that it has ap-
peared in two other recent complementary studies �11,37�.

The antiferromagnetic and ferromagnetic chain spectrums
are related to each other as

��
i=1

L

� �i
y�H�J,B,����

i=1

L

� �i
y� = − H�− J,B,�� . �2�

The ground state of the antiferromagnetic chain is the spin-
flipped version of the most excited state of the corresponding
ferromagnetic chain. We will consider J�0, as we will
mostly deal with the entire spectrum of states. A discrete
symmetry present for all angles is that of interchanging the
spins at the sites i and L− i+1 for all i=1, . . . ,L, a “bit-
reversal” symmetry as the field and interaction do not distin-
guish the spins except for the open boundary condition. If B
represents this reversal

B	s1,s2, . . . ,sN
 = 	sN, . . . ,s2,s1
, �H,B� = 0, �3�

where 	si
 is any single-particle basis state, such as the stan-
dard �Sz� basis states we will use. Since B2=1, the eigen-
states can be classified as odd or even on bit reversal. The
dimensionality of the odd subspace is half the number of
nonpalindromic binary words of length L, while the even
subspace is larger by the number of palindromic words of the
same length. The chain with periodic boundary conditions
naturally has a much larger symmetry group corresponding
to a shift operation. For �=0 the spectrum is highly degen-
erate with eigenstates that can be chosen to be product states.
For the transverse Ising model, �=� /2, the spectrum is
much less degenerate, but the Jordan-Wigner transform con-
verts the problem into one of noninteracting fermions. For
intermediate angles this transform leads to a model of inter-
acting fermions that is not solvable.

In Fig. 1 we show a part of the even subspace of the
energy spectrum for L=8 spins. The fanning out of the en-
ergy eigenvalues from degenerate ones is typical of systems
that lose symmetry and becomes nonintegrable. The apparent
crossings of energy levels are in fact very close avoided
crossings. As the tilt angle increases further the avoided
crossings become more apparent and dense.

A standard unfolding of the spectrum in a given symmetry
class is done by numerically fitting the staircase function
�cumulative density� to high-order polynomials and using
this to map the energies to unfolded ones such that the mean
energy spacing is unity. The NNSD is a commonly used
indicator of quantum chaos �28,43�. In Fig. 2 we show the
NNSD for four angles, three of them fairly close to a purely
transversal field �� /�=99/200,15/32,7 /16�. It is to be
noted that even for small longitudinal fields the NNSD is
close to the Wigner distribution, corresponding to the Gauss-
ian orthogonal ensemble �GOE� of random matrix theory
�RMT� �28,43�, given by

PW�s� =
�

2
s exp�− �s2/4� .
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FIG. 1. Part of the even subspace of the energy spectrum for the
case of L=8 spins. J=B=1.

KARTHIK, SHARMA, AND LAKSHMINARAYAN PHYSICAL REVIEW A 75, 022304 �2007�

022304-2



The solvable pure transverse field case is not apparently
completely desymmetrized by the bit-reversal operator; de-
generacies persist and therefore we do not plot the NNSD in
this case. As the tilt angle is increased further we are tending
toward the solvable purely longitudinal case, with very large
degeneracies. A reflection of this is seen in the NNSD devi-
ating significantly from the GOE distribution even at �
=� /3. The appearance of the GOE distribution indicates a
certain measure of quantum chaos and applicability of ran-
dom matrix ensembles. However, it must be noted that the
Hamiltonian we have considered is “simple” in that there is
no disorder and the interaction is only nearest neighbor. We
will presently quantify the distance of the NNSD from the
Poisson one �PP=exp�−s�� and that of the GOE �PW�s��.

III. ENTANGLEMENT IN THE
STATIONARY STATES

We will use three measures to quantify entanglement.
�1� Entanglement within pure states of a bipartite system

can be measured by the von Neumann entropy of the reduced
density matrices. However, there are many bipartite splits,
given L spins. Generalized entanglement measures have been
constructed and studied based on the entanglement in each of
these possible splits. We will, however, consider only the
entanglement of the first L /2 spins with the remaining L /2
ones for L even, denoted as SL/2. Thus if 	�
 is an L-spin pure
state,

SL/2 = − tr1,. . .,L/2��1,. . .,L/2 ln��1,. . .,L/2�� �4�

where

�1,. . .,L/2 = trL/2+1,. . .,L�	�
��	� . �5�

�2� The state of any two spins, such as nearest neighbors,
is in general a mixed state. For such a state, while the en-
tanglement can be measured as the average entanglement of
its pure-state decompositions, the existence of an infinite
number of such decompositions makes their minimization
over this set a nontrivial task. Wootters and Hill �38� carried
out such a procedure for the case of two spin one-half �qubit�
systems and showed that a new quantity they called concur-

rence was a measure of entanglement. This facilitated the
study of entanglement sharing among many qubits. If �ij is
the reduced density matrix obtained by tracing out all spins
except those at sites i and j, and defining a spin-flip operator,
which takes �ij to

�ij
˜ = ��y � �y��ij

* ��y � �y� , �6�

the concurrence of �ij is defined to be

C��ij� = max��1 − �2 − �3 − �4,0� �7�

where �i are the eigenvalues of the non-Hermitian matrix

�ij�ij
˜ . Wootters �38� showed that the entanglement of forma-

tion of �ij is a monotonic function of its concurrence and
that, as the concurrence varies over its possible range �0,1�,
the entanglement of formation also varies from 0 to 1. We
will use the square of the concurrence, called the two-tangle,
summed over all possible pairs of spins,

�	
 = �
i�j

C2��ij� , �8�

as a measure of two-body correlations in the L-spin state.
�3� The Meyer and Wallach Q measure is also being

widely used as a measure of multipartite entanglement. The
geometric multipartite entanglement measure Q �39� has
been shown to be simply related to one-qubit purities �40�,
which makes their calculation and interpretation straightfor-
ward. If �k is the reduced density matrix of the spin k ob-
tained by tracing out the rest of the spins then

Q��� = 2�1 −
1

L
�
k=1

L

Tr��k
2�� . �9�

In Fig. 3 we show the entanglement content in eigenstates
across a particular spectrum. We see that there is a secular
dependence of the multipartite entanglement on the energy.
We connect this dependence with other grosser features such
as localization of the eigenstates in the computational basis.
Thus, if �k= �k 	�
 is the kth eigenstate component, k
=0, . . . ,2L−1, we measure its spread in the computational
basis as ln�R�=−ln��k	�k	4� or as Ssh=−�k	�k	2 ln�	�k	2�, i.e.,
the logarithms of the participation ratio R and the Shannon
entropy of the states. Both these measures are obviously
single-particle-basis dependent while measures of entangle-
ment are immune to these changes. However, there is a
strong correlation between measures of entanglement such as
Q and these grosser measures of localization, especially in
the nonintegrable regimes. It is also clear from these graphs
that average entanglement over the spectrum will be domi-
nated by states from the central regions, away from the
ground states of the antiferromagnetic chain under consider-
ation, as well as away from the ground state of the ferromag-
netic chain to which the highest excited states correspond.

We now turn to how individual states’ entanglement con-
tents change as the parameter � is varied. Parametric motion
of energy levels has been the subject of several studies in the
past and their connection to quantum chaos is well known.
To be specific we look at three energy levels undergoing
multiple avoided crossings in a range of the parameter, some
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FIG. 2. Nearest-neighbor spacing distribution of the even states
of a chain with L=13 spins at various angles � of tilt of the mag-
netic field. J=B=1.
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of them sharp and some soft. Shown in Fig. 4 are the levels
along with three measures of their entanglement, a sum of all
two-tangles, the Q measure, and the entropy SL/2. The central
state undergoes collisions with its neighbors, while the other
two also undergo collisions with states not shown in the fig-
ure. It is clear from all the measures of entanglement that at
avoided crossings there is an exchange of entanglement. In
particular it is interesting that the highest-energy state shown
has a vanishing entropy SL/2 until it undergoes an avoided
crossing �AC� with the middle level, which subsequently has
zero entanglement, which further gets transferred to the state

with the lowest energy. Thus along with avoided crossings at
which states undergo structural changes, it is reasonable that
entanglement properties get exchanged as well. In the vicin-
ity of an AC the average entanglement of the two states
involved increases sharply in ways that seem to depend on
how sharp the crossing is. However, at an AC, while the
multipartite entanglement increases, the two-body correla-
tions decrease. This is illustrated in Fig. 5, where the total
two-tangle is seen to dip to almost zero at the point of closest
approach of the AC. We note that a fine sweeping of the
parameter in the vicinity of the AC is necessary to pick up
this trend, which is consequently not obvious in a coarser
one such as in Fig. 4.

The facts that at an AC entanglement is enhanced, and
that at the point of closest approach the entanglement is
maximized, have already been used before in the context of
few spins and the GHZ state. However, we see them here in
the context of level dynamics of a nonintegrable system,
showing how generic they are, and that there are tradeoffs
between multipartite and two-body entanglements. It may be
one mechanism by which nonintegrability enhances multi-
partite entanglement. A more detailed study of entanglement
at ACs is called for, especially considering that what happens
at such points is a coherent superposition of orthogonal
states. That superpositions will always cause an increase of
entanglement is of course untrue; however, it could be true
for some large class or measure of states that are relevant to
ACs. A very recent study of entanglement due to superposi-
tions has appeared �41�, and may be relevant to what hap-
pens in the vicinity of an AC.

We add two other numerical results that show the effect of
nonintegrability on entanglement. We calculate the entropy
Sl of the first l spins of the chain. This is known to scale as
log�l� for large l at quantum critical points and tends to a
constant otherwise. However, it is also known that random
states of relevance to quantum chaotic systems have sub-
system entropies that scale as log�D� where D is the dimen-
sionality of the subspace. If we are dealing with collections
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FIG. 3. Natural logarithm of the participation ratio �solid line,
top� and 4Q �dashed line, bottom� versus energy are shown for all
eigenstates of an integrable ��=� /2� and a nonintegrable ��
=7� /16� case in the top panels. In the bottom panels are shown, for
the same cases, the entanglement measures SL/2 versus the Shannon
entropy Ssh of the same states. Notice the apparent lack of correla-
tion for the integrable case as compared with the nonintegrable one.
In all cases L=10 and J=B=1.
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three energy levels from Fig. 1 �J=B=1,L=8� undergoing avoided
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of qubits then D=2l and such subsystem entropies should
scale linearly with l. Indeed in the Ising model under consid-
eration along with a transition to classical chaos we observe
a transition to a linear behavior. We show this in Fig. 6 where
we take data from 100 states at the center of the spectrum to
smooth out state-to-state fluctuations. Since we cannot nu-
merically access very large spin chains we show calculations
based on a chain of 14 spins. The entropy SL/2 shown previ-
ously is a special case of Sl, but also appears to deviate from
the straight lines shown in these graphs, deviations most
likely originating in the symmetry of the spin chain. As a
more direct connection to quantum chaos we quantify the
distance of the spectral NNS distributions from the Poisson
and the GOE distribution of RMT using the Kolmogorov-
Smirnov �KS� goodness-of-fit statistic and correlate this to
entanglement. The KS statistic is defined as the maximum
difference between a cumulative distribution of the data and
that of a hypothesis. As Fig. 7 shows, as the field gets tilted
away from the transverse case, there is an increase in the
entanglement as measured by SL/2, while simultaneously the
NNSD makes a transition to the GOE. This is seen for other
global measures of entanglement such as the Q measure as
well. This quantifies the transition from Poisson to GOE dis-
tributions of the NNS as well as correlates with chain en-
tanglement properties. A similar correlation is seen when the
angle approaches zero and there is once more a deviation
from the GOE.

IV. TIME-EVOLVING STATES

In this section we investigate the dynamics of entangle-
ment for the above model. Our strategy is to start with an
initial state with exactly one maximally entangled pair and
the others in an unentangled state and study its entanglement
properties under time evolution. The initial state 	��0�
 with
given entanglement properties evolves to 	��t�
 with a com-
plicated distribution of entanglement. We investigate how the
entanglement distribution in the chain varies with time by
studying the evolution of nearest-neighbor entanglement
�calculated using the concurrence measure�, and the multi-
partite entanglement using the Q measure in a chain of ten
qubits. We consider a chain of ten qubits with B=1 and J
=1 �units chosen so that 
=1� and with the initial state

	�e�t = 0�
 =
1
2

	�11 + 00�111111
 . �10�

The above state evolves with time and the plots below depict
the distribution of entanglement across the chain as a func-
tion of time.

Figure 8 shows the density plot of the nearest-neighbor
entanglement �calculated using concurrence� as a function of
l, the location of the pair, and time, for a chain of ten qubits
with 	�e
 as the initial state. The darkness of a region is
proportional to entanglement for the given pair. We observe
that entanglement is initially concentrated only between the
first two qubits, but as time progresses it gets distributed
among other nearest-neighbor pairs in the chain. We see that
there is a threshold time which occurs fairly early into the
evolution at which all the nearest-neighbor pairs acquire en-
tanglement. In some other studies that have investigated such
transport, such as for the Heisenberg XY spin chain, the en-
tanglement transport has been a gradual phenomenon �42�
and tends to move as a patch across the chain with a constant
velocity before being dispersed across the chain.

However, in this case there is a sharp increase in the en-
tanglement of the nearest neighbors and it persists for a
while before disappearing. The presence of this feature
across the values of � and number of spins leads us to be-
lieve that it is a robust feature of the Hamiltonian considered.
The dynamics of the Q measure plotted in Fig. 9 also reveals
interesting features. The sudden generation of nearest-
neighbor entanglement initially is accompanied by a steep
rise in the Q measure. Since the Q measure quantifies the
multipartite entanglement in the chain, it is very likely that
this steep rise is due to the nearest-neighbor entanglement
alone. This is followed by a drop in the nearest-neighbor
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entanglement while the Q measure remains at a large value,
indicating that as time progresses the entanglement is exclu-
sively multipartite in nature. Further proof is obtained from
the plot of the average two-body entanglement versus time.
This quantity falls with time, showing that the pairwise cor-
relations are reduced, and therefore we conclude that almost
all the entanglement that survives after the initial phase is
purely multipartite in nature.

We notice a close connection between the nonintegrability
introduced by � and the entanglement dynamics. Specifically,
we notice that for those values of � that result in high non-
integrability for the system, the time taken for the quenching
of two-body entanglement �concurrence� is considerably
less. Here, the degree of nonintegrability is measured by the
closeness of its energy spacing distribution curve to the
Wigner distribution. For �=� /3, the spacing distribution is
very close to Wigner and we observe a quick destruction of
two-body correlations. Concurrence is seen to persist for a
longer time in cases where the spacing distribution is signifi-
cantly different from the Wigner distribution, for, e.g., �
=� /2 or � /6. Further, we also noticed in calculations not

presented here that average tripartite entanglement character-
ized by negativity also falls down faster for systems with
greater nonintegrability though it persists for a somewhat
longer time than the corresponding two-body correlations.
Therefore it seems likely that the presence of nonintegrabil-
ity favors the generation of higher-order correlations at the
expense of lower-order ones.

To summarize, we have studied an Ising spin chain with a
tilted magnetic field of which the well-studied one-
dimensional transverse Ising model is a special case. We
have shown an intimate relationship between the spectral
fluctuations of the Hamiltonian and the entanglement prop-
erties of the eigenstates. In particular, we have shown that
there is a larger multipartite entanglement content when the
spectral fluctuations are described by the Wigner distribution
usually found for nonintegrable systems. At the same time,
such chains are low on the nearest-neighbor two-body corre-
lations such as concurrence. We have also shown that at
avoided crossings, when there is generically a superposition
of “bare” states, multipartite entanglement is enhanced while
the two-body concurrences are lowered. The properties of
stationary states are reflected in those of nonstationary states,
and in particular we have seen that, when the chain is non-
integrable, initially present two-body entanglements are
quickly quenched and are converted to multipartite entangle-
ment, while for integrable chains significant entanglement is
retained in the form of two-body concurrences.
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