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I. INTRODUCTION

The famous Landau-Zener two-state model, introduced
and solved in 1932 by Landau �1�, Zener �2�, Majorana �3�,
and Stückelberg �4� finds many applications in atomic phys-
ics and beyond. This is due to its virtue of describing a
generic case of nonadiabatic transitions in quantum mechan-
ics. The main feature of the exactly solvable quantum model
is the linear dependence of the matrix Hamiltonian on time.
The model allows the derivation of exact expression for the
state-to-state transition probability.

The natural generalization of the two-state model is the
model with arbitrary �but still finite� number of states, N. The
linear dependence of matrix Hamiltonian on time is retained
H�t�=A+Bt, where A and B are time-independent N�N
matrices. Hereafter we show by bold type the operators and
vectors in N-dimensional linear space. The lower case char-
acters are used to denote vectors in this space while the capi-
tal characters denote matrix operators.

Without loss of generality one might assume that the basis
is chosen in such a way that the Hermitian matrix B is diag-
onal, Bjk=� j� jk, where the parameters � have the meaning of
slopes of linear diabatic potential curves. The so chosen basis
is known as the diabatic basis. The nondiagonal elements of
matrix A have the meaning of couplings between the diabatic
states, Ajk=Vjk. The diagonal matrix elements of A play a
different role. It is convenient to introduce for them a special
notation, � j =Ajj �these notations are the same as in our pre-
ceding studies �11,13,14��. The diagonal matrix elements of
the Hamiltonian H�t� are referred to as diabatic potential
curves. In the case of the multistate Landau-Zener model,
they are linear in time, Ej

dia�t�=� jt+� j.
The problem is to solve the nonstationary Schrödinger

equation

i
dc

dt
= H�t�c , �1.1�

and to find S-matrix. Generally speaking the full exact solu-
tion of �1.1� is not available. The known exact solutions

�5–8� refer to special choices of the model parameters � j, � j,
Vjk, such that the quantum interference oscillations do not
appear in the transition probabilities. Furthermore, even in
the case of the most general form of matrix Hamiltonian one
can exactly find two elements of S-matrix which correspond
to survival on the diabatic potential curves with extremal
�maximum or minimum� slopes. The simple formula for such
elements was originally guessed by Brundobler and Elzer �9�
based on numerical calculations. The proof of Brundobler-
Elzer �BE� formula was carried out recently by several dif-
ferent ways. Shytov obtained this formula via treatment
within the contour integration approach �10�. Volkov and Os-
trovsky carried out the proof using nonstationary perturba-
tion theory �11�. However there are some oversights in this
proof, as Dobrescu and Sinitsyn indicated in the comment to
this paper �12�. The comment contains a proof of BE formula
partly based on developments by Volkov and Ostrovsky; at
the crucial step it essentially uses results for the bow-tie
model �6� exactly solved by Ostrovsky and Nakamura.

The objective of the present study is to provide a proof of
the BE formula which is devoid of deficiency of the previ-
ously suggested proof being fully based on analysis of non-
stationary perturbation theory and summation of an entire
perturbative expansion. Compared to the case of a
Hamiltonian Hbound�t� with all the matrix element bounded
��Hbound� jk�t��a for all times t� the case of the multistate
Landau-Zener Hamiltonian provides important specifics. The
emerging integrals typically contain highly oscillating expo-
nential factors that ensure integral convergence. For some
choice of parameters in the integrand the oscillations vanish
which means that the integral is a singular function of pa-
rameters. These singularities are to be treated in the analysis
with proper care; albeit namely the presence of singularities
allows a closed-form evaluation for each term of the entire
series with subsequent analytical summation.

In the main Sec. III we develop an approach to treat the
singularities. The preliminary Sec. II introduces notations
and contains a general description of the perturbative series.
In distinction to the scheme suggested by Dobrescu and Sin-
itsyn �12�, our proof �Sec. III� does not use results of any
exactly solvable model. We believe that such a complete
treatment of the perturbative expansion with analytical sum-
mation of series is of general interest.
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Another goal of our study is to consider some degenerate
cases �Sec. IV�. Here more state-to-state probabilities can be
evaluated, up to the fully degenerate multistate model where
an entire matrix of state-to-state transition probabilities is
found �Sec. IV D�.

II. NONSTATIONARY PERTURBATION THEORY

The well-known formula for transition probability for
two-state linear model was derived by Zener by reducing the
Schrödinger equation to an equation for a hyperbolic cylin-
der function �2�. Majorana �3� used contour integration
method in a complex plane to solve the same problem. Much
later Kayanuma suggested an alternative approach �15,16�
where the nonstationary perturbation theory is used. As dis-
cussed in the Introduction, we in the present paper provide a
generalization of this method to the multistate case.

The nonstationary Schrödinger equation �1.1� might be
written as the set of N coupled first-order differential equa-
tions,

i
dcj

dt
= � jcj + � jtcj + �

k�j

Vjkck, j,k = 1,2, . . . ,N . �2.1�

After phase transformation which eliminates the diagonal el-
ements on the right-hand side of Eqs. �2.1� it takes the form

i
daj

dt
= �

k�j

Vjk exp�i��� j − �k�t +
1

2
�� j − �k�t2�	ak,

j,k = 1,2, . . . ,N . �2.2�

The integral form of this equation

aj�t� = aj�− �� − i

−�

t

dt0�
k�j

Vjk

�exp�i�� j − �k�t0 +
i

2
�� j − �k�t0

2�ak�t0� �2.3�

is convenient for an iterative solution. The successive ap-
proximations, aj

�n��tn�, are found by iterations,

aj
�n+1��tn+1� = aj

�0��− �� − i

−�

tn+1

dtn�
k�j

Vjk

�exp�i�� j − �k�tn + i
1

2
�� j − �k�tn

2�ak
�n��tn� .

�2.4�

We use label 1 for the initially populated state, so that initial
populations aj�−�� are

aj�− �� = � j1. �2.5�

Then transition probability to the jth state is

P1j = � lim
n→�

aj
�n��+ ���2. �2.6�

In the next formula we introduce a vector function of time
f�t�= �f1�t� , f2�t� , . . . , fN�t�, which is a vector in
N-dimensional linear space. The operator T is N�N matrix;
it transforms the vector function f�t� into another vector
function with components,

�T̂f� j�tn+1� � �− i� �
k=1

k�j

N

Vjk

−�

tn+1

dtn

�exp�i�� j − �k�tn +
i

2
�� j − �k�tn

2� fk�tn� .

�2.7�

With respect to the time variable the operator T is an integral
operator. Our equations �2.4� can be written as

a�n+1� = a�0� + T̂a�n�, �2.8�

where dependence on time is implicit. The zero iteration a�0�

is defined by the initial conditions �2.5�, aj
�0�=� j1.

We further introduce the vector d1 in N-dimensional lin-
ear space by a formula describing its components dj

1,

dj
�1��t� � − iVj1


−�

t

dt1 exp�i�� j − �1�t1 +
i

2
�� j − �1�t1

2�,

j � 1. �2.9�

The j=1 component d1
�1� is assumed to be zero by definition.

Similarly, the vector d j
�m��m�2� is given as

dj
�m��t� � �− i�m �

km−1�j

N

Vjkm−1 �
km−2�km−1

N

Vkm−1km−2
¯ �

k2�k3

N

Vk3k2 �
k1�k2

k1�1

N

Vk2k1
Vk11


−�

t

dtm

−�

tm

dtm−1 ¯ 

−�

t2

dt1

�exp�i�� j − �km−1
�tm + i�

i=2

m−1

��ki
− �ki−1

�ti + i��k1
− �1�t1�exp� i

2
�� j − �km−1

�tm
2 +

i

2 �
i=2

m−1

��ki
− �ki−1

�ti
2 +

i

2
��k1

− �1�t1
2� .

�2.10�
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If the couplings are small, then the order of magnitude esti-
mates are T�V, d�m��Vm. Note the important relations be-

tween operator T̂ and vectors d�m�,

T̂d�m� = d�m+1�, m = 1,2, . . . ,

T̂a�0� = d�1�. �2.11�

Using these relations and equation �2.8� we express the nth
iteration to a as

a�n� = a�0� + �
m=1

n

d�m�. �2.12�

Formula �2.12� is the basis for all subsequent analysis. In
order to find some transition amplitude one should evaluate
the corrections �2.10� to all orders m in the limit t→ +�,
then sum up all corrections using Eq. �2.12� with n→ +�.

The sought for probability is given by formula �2.6�.

III. PROOF OF THE BRUNDOBLER-ELZER FORMULA

A. Preliminary transformations: change of variables

Consider the case when the initially populated nondegen-
erated diabatic potential curve has extremal slope, i.e.,
its slope is the largest ��1=maxj � j� or the smallest
��1=minj � j� of all slopes. Here we set out to find the sur-
vival probability on such a potential curve. The general vec-
tor formula �2.12� for the first component reads

a1
�n� = a1

�0� + �
m=1

n

d1
�m� = 1 + �

m=1

n

d1
�m�. �3.1�

The arbitrary term in the sum is given by �2.10� and �2.9�. In
the limit t→� and after reducing the parentheses we obtain

d1
�m���� = �− i�m �

km−1�1

N

V1km−1 �
km−2�km−1

N

Vkm−1km−2
¯ �

k2�k3

N

Vk3k2 �
k1�k2

k1�1

N

Vk2k1
Vk11


−�

�

dtm

−�

tm

dtm−1 ¯ 

−�

t2

dt1

�exp�i�1�tm − t1� + i�
i=1

m−1

�ki
�ti − ti+1��exp� i

2
�1�tm

2 − t1
2� +

i

2 �
i=1

m−1

�ki
�ti

2 − ti+1
2 �� . �3.2�

Let us now introduce integration variables �x1 , . . . ,xm such that

xm = tm, xm � �− �,�� ,

xj = tj+1 − tj, xj � �0,��, j = 1,2, . . . ,m − 1. �3.3�

The important advantage of this transformation is that the ranges of variation of the variables are simple and unambiguous, cf.
discussion in Refs. �12,13�. The Jacobian of the transformation is equal to �−1�m−1, the inverse transformation is given by

tj = xm − �
k=j

m−1

xk, j = 1,2, . . . ,m − 1,

tm = xm. �3.4�

In order to express the integrand in �3.2� in new variables the following formulas are useful:

tm − t1 = �
k=1

m−1

xk,

tm
2 − t1

2 = 2xm�
k=1

m−1

xk − ��
k=1

m−1

xk�2

,

ti
2 − ti+1

2 = 2xm�− xi� + xi�xi + 2 �
k=i+1

m−1

xk�, i = 1, . . . ,m − 2,

tm−1
2 − tm

2 = − 2xmxm−1 + xm−1
2 . �3.5�

In new variables the integral is cast as
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d1
m = �− i�m �

km−1�1

N

V1km−1 �
km−2�km−1

N

Vkm−1km−2
¯ �

k2�k3

N

Vk3k2 �
k1�k2

k1�1

N

Vk2k1
Vk11


−�

�

dxm

0

�

dxm−1 ¯ 

0

�

dx1 exp�i�1�
n=1

m−1

xn − i�
n=1

m−1

�kn
xn�

�exp� i

2
�1�2xm�

n=1

m−1

xn − ��
n=1

m−1

xn�2	�exp� i

2 �
n=1

m−2

�kn�2xm�− xn� + xn�xn + 2 �
j=n+1

m−1

xj�	�
�exp� i

2
�− 2xmxm−1 + xm−1

2 ��km−1	 . �3.6�

The integration over dxm in infinite limits gives a � function. After reducing parenthes in the exponents one obtains

d1
m = �− i�m �

km−1�1

N

V1km−1 �
km−2�km−1

N

Vkm−1km−2
¯ �

k2�k3

N

Vk3k2 �
k1�k2

k1�1

N

Vk2k1
Vk11


0

�

dxm−1 ¯ 

0

�

dx1 exp�i�
n=1

m−1

��1 − �kn
�xn�

�exp�−
i

2 �
n=1

m−1

��1 − �kn
�xn

2 − i�
n=1

m−2

��1 − �kn
�xn �

j=n+1

m−1

xj�2	���
n=1

m−1

��1 − �kn
�xn� . �3.7�

The subsequent analysis of the multiple integral in �3.7� es-
sentially depends on how much of the indices kn are equal
unity. At first we will consider the case when all indices are
different from unity. Subsequently the integral with an arbi-
trary set of indices will be evaluated. Note that in this section
we do not use the condition that the slope �1 is extremal.
However in the next section this assumption becomes essen-
tial.

B. The case with knÅ1 for all n

We carry out a new change of integration variables in
such a way that the argument of the � function in �3.7� de-
pends on a single new variable,

yi = �
n=1

i

��1 − �kn
�xn, i = 1,2, . . . ,m − 1. �3.8�

The integration limits in the new variables has a simple form
due to the fact that �1 has extreme value compared with all
other slopes. For the sake of definiteness we assume that
�1=maxj � j, then

ym−1 � �0,�� ,

yi � �0,yi+1�, i = 1,2, . . . ,m − 2. �3.9�

The modulus of the Jacobian for this transformation is

�J� = �
n=1

m−1
1

��1 − �kn
�
. �3.10�

Let us denote the multiple integral in �3.7� as I. Then in new
variables we have

I = 2	�J�

0

�

dym−1��ym−1�

0

ym−1

dym−2 ¯ 

0

y2

�dy1f�y1,y2, . . . ,ym−2,ym−1� , �3.11�

where f�y1 ,y2 , . . . ,ym−2 ,ym−1� is a regular �smooth� function
of all its arguments. One can see that the integration over
dym−1 with ��ym−1� in the integrand implies that ym−1→0.
This contracts the integration range over all other variables
to zero. Thus, the entire integral I is zero.

C. The case with arbitrary set of indices

Let us assume that �p−1� of indices in �3.7� are equal to
one, where p
m. Taking into account the obvious restric-
tions �k1�1 and km−1�1 and ki+1�ki�, one obtains a limi-
tation for p, p


1
2m for even m and p


1
2 �m−1� for odd m.

In order to evaluate I in this case we need new notations. Let
us introduce a string of integers S= �s1 ,s2 , . . . ,sp−1 that in-
cludes all the labels sj such that ksj

=1. It is an ordered set, so
that si+1�si. The complementary string C= �c1 ,c2 , . . . ,cm−p
includes all labels cj such that kcj

�1 and also is ordered,
ci+1�ci. The multiple integral in �3.7� is
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I = 

0

�

dxc1

0

�

dxc2
¯ 


0

�

dxcm−p
exp�i �

n�C
��1 − �kn

�xn�exp�−
i

2 �
n�C

��1 − �kn
�xn

2 − i �
n�C

n�m−1

��1 − �kn
�xn �

j�n

j�C

xj�
�2	���

n�C
��1 − �kn

�xn�

0

�

dxs1

0

�

dxs2
¯ 


0

�

dxsp−1
exp�− i �

n�C
n�m−1

�
j�n

j�S

��1 − �kn
�xnxj� . �3.12�

The integration variables belonging to S string enter exponent linearly �while other variables provide quadratic terms as well�.
This allows us to carry out integration in semi-infinite interval using the formula



0

�

eikxdk = iP1

x
+ 	��x� . �3.13�

Here P 1
x indicates integration in the principal value sense. After this �3.12� reduces to

I = 

0

�

dxc1

0

�

dxc2
¯ 


0

�

dxcm−p
exp�i �

n�C
��1 − �kn

�xn�exp�−
i

2 �
n�C

��1 − �kn
�xn

2 − i �
n�C

n�m−1

��1 − �kn
�xn �

j�n

j�C

xj�
�2	���

n�C
��1 − �kn

�xn��
j�S �	��− �

n�C
n�m−1

n�j

��1 − �kn
�xn� + iP

1

− �
n�C

n�m−1

n�j

��1 − �kn
�xn� . �3.14�

Now a change of variables �3.8� is conveniently modified to

yi = �
n=1

i

��1 − �kcn
�xcn

, i = 1,2, . . . ,m − p ,

ym−p � �0,�� ,

yi � �0,yi+1�, i = 1,2, . . . ,m − p − 1. �3.15�

The Jacobian modulus is

�J� = �
n�C

1

��1 − �kn
�
. �3.16�

Each of the � functions in formula �3.14� depend only on a
single new variable yi, so that this formula is cast as

I = 2	�J�

0

�

dym−p��ym−p�

0

ym−p

�dym−p−1 ¯ 

0

y2

dy1f�y1,y2, . . . ,ym−p�

��
j=1

p−1 �	��− ysj−j� + iP
1

− ysj−j
� , �3.17�

where f�y1 ,y2 , . . . ,ym−p� is a regular function of all its argu-
ments. As in the preceding section, the integration over
dym−p with � function contracts to one point, namely zero,
the range of integration over all other variables; thus it could

be said that the contribution from the P terms is zero because
of identity



0

y

P1

x
f�x�dx → 0 �3.18�

for y→0 and f�x� nonsingular at x=0. Therefore the entire
integral is different from zero only if the integrand is a sin-
gular function of all its variable. It could be only if the num-
ber of integrals in �3.17� equals the number of � functions in
integrand. This reasoning gives us the condition m− p= p
−1+1, i.e., m=2p. This means that only even terms in the
expansion �3.1� give nonzero contributions. The string S
consists of � 1

2m−1� numbers. Taking into account the in-
equalities ki+1�ki, k1�1, km−1�1 we obtain the necessary
condition for indices in �3.7�,

k2j = 1 for j = 1,2, . . . , 1
2m − 1. �3.19�

In other words the following indices have the value 1,

k2,k4,k6, . . . ,km−4,km−2. �3.20�

D. Summation of nonzero contributions

For an arbitrary term in �3.1� we obtain

d1
2p−1 = 0,
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d1
2p = �− 1�p2	p �

k2p−1�1

N

V1k2p−1
Vk2p−11 ¯

� �
k3�1

N

V1k3
Vk31 �

k1�1

N

V1k1
Vk11

��
j=1

p
1

��1 − �k2j−1
�
0

�

dyp

0

yp

dyp−1 ¯ 

0

y2

dy1

� f�y1,y2, . . . ,yp��
i=1

p

��yi�, p = 1,2, . . . . �3.21�

The product of the � functions in the last expression makes
the integrand to be a symmetrical function with respect to
arbitrary permutations of the integration variables
�y1 ,y2 , . . . ,yp. Besides this, the integrand is an even func-
tion of any of its argument that allows us to extend the limits
of integration,

d1
2p = �− 1�p2	p 1

2p! �
k2p−1�1

N

V1k2p−1
Vk2p−11 ¯ �

k3�1

N

�V1k3
Vk31 �

k1�1

N

V1k1
Vk11�

j=1

p
1

��1 − �k2j−1
�

�

−�

�

dy1

−�

�

dy2 ¯ 

−�

�

dypf�y1,y2, . . . ,yp��
i=1

p

��yi�

=
�− 	�p

p! �
k2p−1�1

N

V1k2p−1
Vk2p−11 ¯ �

k1�1

N

�V1k1
Vk11�

j=1

p
1

��1 − �k2j−1
�

=
1

p!
��

k�1

N
− 	V1kVk1

��1 − �k�
�p

. �3.22�

Here we used the property f�0,0 , . . . ,0�=1.
For the survival amplitude in the limit n→� we have the

exact expression

a1
��� = 1 + �

p=1

�
1

p!
��

k�1

N
− 	V1kVk1

��1 − �k�
�p

= exp�− 	�
k�1

N
V1kVk1

��1 − �k�
� .

�3.23�

Finally, for the survival probability we obtain the BE formula

P11 = �a1����2 = exp�− 2	�
k�1

N
V1kVk1

��1 − �k�
� . �3.24�

IV. EXTENSION OF THE APPROACH TO DIFFERENT
DEGENERATE CASES

In this section we assume the presence of a special prop-
erty of a Hamiltonian compared to the general treatment of
the preceding section. Namely, we presume degeneracy of
the potential curves. As above we consider the situation
when the initially populated state 1 has the largest ��1

=maxj � j� or the smallest ��1=minj � j� of all slopes, except
slopes for the states 1 ,2 , . . . ,n �j�1,2 , . . . ,n�. In other
words, we presume degeneracy of extreme slopes, �1=�2
= ¯ =�n, or, in yet other words, there are n parallel curves
with extreme slope. It is natural also to presume that the
parallel curves are not coupled, i.e., Vij =0 for �i , j
=1,2 , . . . ,n�.

The particular case when two bands of parallel potential
curves cross each other received some attention in the litera-
ture �17–20�.

Subsequently we consider yet more special situation that
the extreme slope curves are not only parallel, but fully de-
generate, i.e., �1=�2= ¯ =�n.

A. The case of parallel diabatic potential curves
with extremal slope

In this section we consider the case of n diabatic potential
curves with the same extreme slope �i=� �i=1,2 , . . . ,n� and
�=maxk�n��k or �=mink�n��k. We also assume that �i

�� j and Vij =0, where �i� j� and �i , j=1,2 , . . . ,n�. Such a
model for n=2 was considered in our previous work �14�,
where transition probability P12 for ��2��1� and for the larg-
est slope was considered; now we concentrate on the survival
probability. We will prove the formula for survival probabil-
ity on the diabatic potential curve with extremal slope for
n=2. The proof for arbitrary n might be carried out similarly.

The survival amplitude a1
m is again given by general for-

mulas �3.1� and �3.7� but the subsequent analysis is a little
more complicated. The string of integers S is introduced as
in the preceding section. Besides this, we introduce a string
of integers R= �r1 ,r2 , . . . ,rg, which includes all labels such
that krj

=2. It is also an ordered set, ri+1�ri. The complemen-
tary string C= �c1 ,c2 , . . . ,cm−p−g includes all labels cj such
that kcj

�1,2 and also is ordered, ci+1�ci. The dimensions
of these strings must satisfy the conditions

p + g 

1
2m for even m ,

p + g 

1
2 �m − 1� for odd m , �4.1�

otherwise one or more of the couplings in �3.7� is zero. The
multiple integral in �3.7� is in this case after integration,
given through the formula �3.13�,
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I = 

0

�

dxc1

0

�

dxc2
¯ 


0

�

dxcm−p−g
exp�i �

n�C
��1 − �kn

�xn�exp�−
i

2 �
n�C

��1 − �kn
�xn

2 − i�
j�C

xj �
n�C

n�j

��1 − �kn
�xn�

�2	���
n�C

��1 − �kn
�xn��

j�S �	��− �
n�C

n�j

��1 − �kn
�xn� + iP

1

− �
n�C

n�j

��1 − �kn
�xn�

��
j�R �	��− �

n�C

n�j

��1 − �kn
�xn + ��1 − �2�� + iP 1

− �
n�C

n�j

��1 − �kn
�xn + ��1 − �2�� . �4.2�

We realize the change of variables by formula �3.15� with the same Jacobian modulus �3.16�, but now the total amount of
variables is �m− p−g�. Note that every � function after such transformation depends on only one variable. In new variables the
multiple integral is given by the expression

I = 2	�J�

0

�

dym−p−g��ym−p−g�

0

ym−p−g

dym−p−g−1 ¯ 

0

y2

dy1f�y1,y2, . . . ,ym−p−g��
j=1

p−1 �	��− ysj−j−�j
� + iP 1

− ysj−j−�j

�
��

j=1

g �	��− yrj−j−�j
+ �1 − �2� + iP 1

− yrj−j−�j
+ �1 − �2

� . �4.3�

Here � j is the number of the elements of the string R which
are less than sj, � j is the number of the elements of string S
which are less than rj and f�y1 ,y2 , . . . ,ym−p−g� is a regular
function of all its arguments. Note that all � functions in the
integral depend on different variables.

The integration over dym−p−g with the � function contracts
to one point, namely zero, the range of integration over all
other variables. Thus it could be said that the contribution
from the P terms is zero because of identity �3.18�. Further-
more the contribution from � functions in the second product
in �4.3� is zero. The multiple integral is different from zero
only if integrand is singular function of every integration
variable. This only happens if the number of integrals in
�4.3� equals the number of � functions in the integrand. This
reasoning give us the condition m− p−g= p−1+1, i.e., m
=2p+g. Note that if g�0 this condition contradicts �4.1�.
Thus, this implies that g=0. Thereby we come to the same
result, m=2p as in the preceding section. Besides this, we
obtain the complementary condition kj�2 for j
=1,2 , . . . ,m−1.

The same calculations as in the nondegenerate case give
us the survival probability,

P11 = �a1����2 = exp�− 2	 �
k�1,2

N
V1kVk1

��1 − �k�
� . �4.4�

For more general case of n-fold degeneracy �n�N� of ex-
treme slope potential curves we similarly obtain

Pjj = �a1����2 = exp�− 2	 �
k�1,2,. . .,n

N
VjkVkj

�� j − �k�
�,

j = 1,2 . . . ,n . �4.5�

In the case when a band of parallel potential curves is
crossed by a single curve �n=N−1� formula �4.5� reproduces
an early result by Demkov and Osherov �5�.

B. The case of merged diabatic potential curves with extremal
slope

Consider the case when we have n diabatic potential
curves with the same slope �i=� �i=1,2 , . . . ,n� and �
=maxk�n��k or �=mink�n��k. As distinct from the preced-
ing section we assume that �i=� �i=1,2 , . . . ,n�. This means
that the potential curves 1 ,2 , . . . ,n are merged. At first we
will obtain expressions for survival probabilities for n=2 and
then will generalize them for arbitrary n.

In the case of two merged diabatic curves with extremal
slope we assume the following conditions for couplings:

V2i = c2V1i �4.6�

with some i-independent constant c2. Acting further as in the
nondegenerate case we obtain restrictions for the coefficients

k2j = 1,2 for j = 1,2, . . . ,
1

2
m − 1. �4.7�

For an arbitrary term in �3.1� we have after integrating,
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d1
2p =

�− 	�p

p! �
k2p−1�1,2

N

V1k2p−1

� �
k2p−2=1

2

Vk2p−1k2p−2
¯ �

k2=1

2

Vk3k2 �
k1�1,2

N

Vk2k1
Vk11

� �
j=1

p
1

��1 − �k2j−1
�
,

d1
2p−1 = 0. �4.8�

Due to the property �4.7�, summations over two terms, �1
2,

emerge here. Now we use condition �4.6� to obtain

�
k2j=1

2

Vk2j−1k2j
Vk2jk2j+1

= Vk2j−11V1k2j+1
+ Vk2j−12V2k2j+1

= �1 + c2
2�Vk2j−11V1k2j+1

. �4.9�

Then formula �4.8� is rewritten as

d1
2p =

�− 	�p

p!
�1 + c2

2�p−1 �
k2p−1�1,2

N

V1k2p−1
Vk2p−11 . . . �

k1�1,2

N

�V1k1
Vk11��

j=1

p
1

��1 − �k2j−1
��

=
1

1 + c2
2� �

k�1,2

N
− �1 + c2

2�	V1kVk1

��1 − �k�
�p

1

p!
,

d1
2p+1 = 0. �4.10�

Obviously, d1
2p are terms in the expansion of an exponent,

1

�1 + c2
2�

exp� �
k�1,2

N
− �1 + c2

2�	V1kVk1

��1 − �k�
� . �4.11�

However, the first term in formula �3.1� is 1, that is different
from the first term in the expansion of expression �4.11�.
This is easily taken into account. For survival probability we
thus obtain

P11 =
1

�1 + c2
2�2�exp�− �1 + c2

2� �
k�1,2

N
	V1kVk1

��1 − �k�
� + c2

2	2

.

�4.12�

This result may be easily generalized to the case of n-fold
degeneracy of the extreme slope potential curves with an
arbitrary n. A simple generalization is possible under condi-
tions

Vkj = ckV1j, j � n, k = 1, . . . ,n , �4.13�

which state that the interaction of degenerate states
1 ,2 , . . . ,n with nondegenerate states �j�n� exhibit the same
j pattern, up to common factors ck. Under these conditions
for an arbitrary term in �3.1� we obtain

d1
2p = �− 1�pC2p−2 �

k2p−1�1,2,. . .,n

N

V1k2p−1
Vk2p−11 ¯ �

k1�1,2,. . .,n

N

�V1k1
Vk11

	p

p!
��

j=1

p
1

��1 − �k2j−1
��

=
1

C2� �
k�1,2,. . .,n

N
− C2	V1kVk1

��1 − �k�
�p

1

p!
,

d1
2p+1 = 0, �4.14�

where C2=�k=1
n ck

2. For survival probability here we have

P11 = C−4�exp�− C2 �
k�1,2,. . .,n

N
	V1kVk1

��1 − �k�
� + C2 − 1	2

.

�4.15�

We now turn to evaluation of transition probabilities be-
tween degenerated states 1 ,2 , . . . ,n. The expansion terms d1

m

�4.14� in fact do not depend on which of the degenerate
states is initially populated. Formally there is subscript 1 in
d1

m that indicates initial population, but it could be replaced
by any j=2,3 , . . . ,n without any other change in formulas,
except for changing couplings V1k2p−1

to Vjk2p−1
.

However, there is difference in the first term of the per-
turbative expansion �3.1� that explicitly indicates the initial
population. Taking this into account, it is easy to write down
the expression for probabilities of transitions within the sub-
manifold of degenerate states,

P1j =
cj

2

C4�exp�− C2 �
k�1,2,. . .,n

N
	V1kVk1

��1 − �k�
� − 1	2

,

j = 2, . . . ,n . �4.16�

C. Alternative derivation via orthogonalization

Now we consider an alternative scheme of derivation for
the case when we have only two diabatic potential curves
with the same slope �1=�2=� and �=maxk��k or �
=mink��k, and �1=�2. As the conditions on couplings we
again use formula �4.6�.

We introduce a new basis with the states �1̃� and �2̃�,

�1̃� = h�c2�1� − �2�� , �4.17�

�2̃� = h��1� + c2�2�� , �4.18�

h = �1 + c2
2�−1/2 �4.19�

instead of states �1� and �2�; all other states coincide in the
new and old bases. Obviously, the new basis is orthonormal.
The nondiagonal elements of the Hamiltonian matrix with

the states �1̃� are all zero,
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�1̃�H�j� = 0, j = 2̃,3,4, . . . ,N; �4.20�

in other words state vector �1̃� is orthogonal to all vectors

H�j�. This means that the state �1̃� is fully decoupled from all
the other states. The diagonal elements of Hamiltonian ma-
trix remain the same in the new basis. In terms of S-matrix
this could be written as

�1̃�S�1̃� = 1, �4.21�

�2̃�S�2̃� = exp�− 	 �
k�1,2

N

��2̃�H�k��2
1

�� − �k�
� = D ,

�4.22�

where we define

D � exp�− 	�1 + c2
2� �

k�1,2

N �V1k�2

�� − �k�
� . �4.23�

Here we used the result �3.23� obtained above for the non-
degenerate case. The desired S-matrix element in the original
basis is

�1�S�1� = h2c2
2�1̃�S�1̃� + h2�2̃�S�2̃� = h2�c2

2 + D� . �4.24�

This gives the state-to-state transition probability

P11 = h4�c2
2 + D�2, �4.25�

which coincides with the earlier obtained result in �4.12�.

D. Fully degenerate multistate model

Consider the case when two fully degenerated bunches of
potential curves cross each other. The Hamiltonian of this
model has the form

H =�
E1 0 ¯ 0 V ¯ V

� � � � �
0 0 ¯ E1 V ¯ V

V V ¯ V E2 ¯ 0

� � � � � �
V V ¯ V 0 ¯ E2

� . �4.26�

Let n be the number of potential curves with energy E1
=�1t and m be the number of potential curves with energy
E2=�2t. The Hamiltonian matrix has dimension �n+m�
� �n+m�. Some transition probabilities for this model can be
written down straight off as particular cases of formulas
�4.15� and �4.16�. The survival probabilities are

Pjj =
1

n2 �pnm/2 + n − 1�2, j = 1, . . . ,n ,

Pjj =
1

m2 �pnm/2 + m − 1�2, j = n + 1, . . . ,n + m .

�4.27�

The intraband transition probabilities are

Pjk =
1

n2 �pnm/2 − 1�2, j � k, j,k = 1, . . . ,n ,

Pjk =
1

m2 �pnm/2 − 1�2, j � k, j,k = n + 1, . . . ,n + m ,

�4.28�

where p is the standard Landau-Zener probability,

p = exp�− 2	�V�2

��1 − �2� � . �4.29�

The remaining �interband� probabilities one can obtain by
using the normalization condition

�
j=1

n+m

Pjk = �
k=1

n+m

Pjk = 1. �4.30�

From general considerations it can be concluded that all in-
terband transition probabilities are equal, i.e.,

Pjk = Pjk�, j = 1, . . . ,n, k,k� = n + 1, . . . ,n + m ,

Pjk = Pjk�, j = n + 1, . . . ,n + m, k,k� = 1, . . . ,n .

�4.31�

Using �4.30� and �4.31� we obtain

Pjk = Pkj =
1

nm
�1 − pnm�, j = 1, . . . ,n,

k = n + 1, . . . ,n + m . �4.32�

Thus in this highly degenerate multistate model there are
only five different state-to-state transition probabilities de-
fined by expressions �4.27�, �4.28�, and �4.32�. This conclu-
sion as well as quantitative results were tested by numerical
calculations.

V. CONCLUSION

In this paper we consider calculation of state-to-state tran-
sition probabilities in the generalized multistate Landau-
Zener model by summation of perturbation theory series.
Due to specifics of generalized Landau-Zener Hamiltonian
�linear growth with time�, some of the integrals emerging in
the pertubative expansions are singular and require special
analysis. The singularities of these integrals are useful in the
sense that they effectively cancel other integrations, such that
the analytical expressions are obtained for each term in the
perturbative expansion. Subsequently, entire infinite series is
summed with the result obtained in closed form. The tech-
nique of such calculations is one of the principal results of
the present study.

The other group of results refers to the degenerate cases.
In the general nondegenerate case we are able to evaluate
only two transition probabilities: the survival probabilities
for diabatic potential curves with maximum and minimum
slope. Such a situation when some state-to-state transition
probabilities are expressed by simple analytical formulas,
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while others remain unknown is quite unconventional, al-
though now we know another similar example: the multistate
Coulomb model �21�. As long as the degeneracy conditions
are introduced, the analytical expressions for some new
state-to-state transition probabilities are obtained. For the
case of extreme degeneracy, when two fully degenerate
bands of diabatic potential curves cross each other, the full
set of state-to-state transition probabilities was derived. Vari-
ous degenerate cases are met in practice, for example, in the

treatment of second order effects in Rydberg H atom in per-
pendicular electric and magnetic fields �22�.

ACKNOWLEDGMENTS

Recently, my co-author and scientific advisor, Valentin N.
Ostrovsky, died prematurely. I would like to express here my
deep gratitude to him for all that he has done for me. The
author �M. V.� is grateful to the Swedish Institute for support.

�1� L. D. Landau, Phys. Z. Sowjetunion 2, 46 �1932�.
�2� C. Zener, Proc. R. Soc. London, Ser. A 137, 696 �1932�.
�3� E. Majorana, Nuovo Cimento 9, 43 �1932�.
�4� E. C. G. Stükelberg, Helv. Phys. Acta 5, 369 �1932�.
�5� Uu. N. Demkov and V. I. Osherov, Zh. Eksp. Teor. Fiz. 53,

1589 �1967� �Sov. Phys. JETP 26, 915 �1968��.
�6� V. N. Ostrovsky and H. Nakamura, Phys. Rev. A 58, 4293

�1995�.
�7� Yu. N. Demkov and V. N. Ostrovsky, Phys. Rev. A 61, 032705

�2000�.
�8� Yu. N. Demkov and V. N. Ostrovsky, J. Phys. B 34, 2419

�2001�.
�9� S. Brundobler and V. Elser, J. Phys. A 26, 1211 �1993�.

�10� A. V. Shytov, Phys. Rev. A 70, 052708 �2004�.
�11� M. V. Volkov and V. N. Ostrovsky, J. Phys. B 37, 4069 �2004�.

�12� B. E. Dobrescu and N. A. Sinitsyn, J. Phys. B 39, 1253 �2006�.
�13� M. V. Volkov and V. N. Ostrovsky, J. Phys. B 39, 1661 �2006�.
�14� M. V. Volkov and V. N. Ostrovsky, J. Phys. B 38, 907 �2005�.
�15� Y. Kayanuma, J. Phys. Soc. Jpn. 53, 108 �1984�; J. Phys. Soc.

Jpn. 53, 118 �1983�.
�16� Y. Kayanuma, Phys. Rev. Lett. 58, 1934 �1987�.
�17� Yu. N. Demkov and V. N. Ostrovsky, J. Phys. B 28, 403

�1995�.
�18� Yu. N. Demkov, P. B. Kurasov, and V. N. Ostrovsky, J. Phys.

A 28, 4361 �1995�.
�19� V. N. Ostrovsky and H. Nakamura, Phys. Rev. A 58, 4293

�1998�.
�20� T. Usuki, Phys. Rev. B 56, 13360 �1997�.
�21� V. N. Ostrovsky, Phys. Rev. A 68, 012710 �2003�.
�22� V. N. Ostrovsky, J. Phys. B 38, 1483 �2005�.

M. V. VOLKOV AND V. N. OSTROVSKY PHYSICAL REVIEW A 75, 022105 �2007�

022105-10


