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A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection
operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from
quantum information theory and from the theory of positive maps, we derive a class of correlated projection
superoperators that take into account in an efficient way statistical correlations between the open system and its
environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly
non-Markovian quantum processes in structured environments.
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I. INTRODUCTION

The theoretical description of relaxation and decoherence
processes in open quantum systems often leads to a non-
Markovian dynamics which is determined by pronounced
memory effects �1�. Strong system-environment couplings
�2,3�, correlations and entanglement in the initial state �4,5�,
interactions with environments at low temperatures and with
spin baths �6�, finite reservoirs �7,8�, and transport processes
in nanostructures �9� can lead to long memory times and to a
failure of the Markovian approximation.

A systematic approach to non-Markovian dynamics is
provided by the projection operator techniques �10–12�
which are extensively used in nonequilibrium thermodynam-
ics and statistical mechanics �13�. These techniques are
based on the introduction of a certain projection superopera-
tor P which acts on the states of the total system. The super-
operator P is the mathematical expression for the idea of the
elimination of degrees of freedom from the complete de-
scription of the states of the total system: If � is the full
density matrix of the composite system, the projection P�
represents a certain approximation of � which leads to a
simplified effective description of the dynamics through a
reduced set of variables. The projection P� is therefore re-
ferred to as the relevant part of the density matrix.

With the help of the projection operator techniques one
derives closed dynamic equations for the relevant part of the
density matrix. The equation of motion for P� can either be
the Nakajima-Zwanzig equation �10,11�, an integrodifferen-
tial equation with a retarded memory kernel, or else the time-
convolutionless master equation, which is a time-local differ-
ential equation of first order involving a time-dependent
generator �14�. In most cases these equations are used as a
starting point for the derivation of effective master equations
through a systematic perturbation expansion with respect to
the strength of the system-environment coupling.

In the standard approach to the dynamics of open systems
one chooses a projection superoperator which is defined by
the expression P�=�S � �0, where �S=trE � represents the
reduced density matrix of the open system, trE denoting the
trace over the environmental Hilbert space, and �0 is some
fixed environmental state. A superoperator of this form

projects the total state � onto a tensor product state, i.e., onto
a state without any statistical correlations between system
and environment. We emphasize that this ansatz does not
imply �as is sometimes claimed� that one completely ignores
all system-environment correlations. It only presupposes that
all correlations which are present in the initial state or are
generated during the time evolution can be treated as pertur-
bations within the framework of the projection operator tech-
niques.

The projection onto a tensor product state is widely used
in studies of open quantum systems. It is often applicable in
the case of weak system-environment couplings. Usually, the
perturbation expansion is restricted to the second order
�known as Born approximation�, from which one derives,
with the help of certain further assumptions, a Markovian
quantum master equations in Lindblad form �15–17�. In this
paper the quantum dynamics of an open system is said to be
non-Markovian if the time evolution of its reduced density
matrix cannot be described �to the desired degree of accu-
racy� by means of a closed master equation with a time-
independent generator in Lindblad form.

A possible approach to large deviations from Markovian
behavior consists in carrying out the perturbation expansion
to higher orders in the system-environment coupling �several
examples are discussed in Ref. �1��. However, this approach
is often limited by the increasing complexity of the resulting
equations of motion. Moreover, the perturbation expansion
may not converge uniformly in time, such that higher orders
only improve the quality of the approximation of the short-
time behavior, but completely fail in the long-time limit �18�.

There is, however, a further promising strategy: To treat
highly non-Markovian processes in a more efficient way one
can replace the tensor product state used in the standard Born
approximation by a certain correlated system-environment
state. This approach has been proposed by Esposito and Gas-
pard �19,20� and by Budini �21� to derive effective master
equations within second-order perturbation theory that de-
scribe strong non-Markovian effects. It has been demon-
strated in Ref. �22� that this idea can be formulated in terms
of a positive projection superoperator P which projects any
state onto a correlated system-environment state, i.e., onto a
state that contains statistical correlations between certain sys-
tem and environment states. This formulation allows an im-
mediate application of the projection operator techniques to
correlated system-environment states, and to carry out the
perturbation expansion to higher orders in a systematic way.*Electronic address: breuer@physik.uni-freiburg.de
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An example is discussed in Ref. �22�, where the master equa-
tions of second and of fourth order corresponding to a cor-
related projection superoperator have been constructed.

The application of a correlated projection superoperator
implies that the relevant part P� can no longer be expressed
in terms of the reduced density matrix alone. Hence, employ-
ing a correlated projection superoperator one enlarges the set
of relevant variables to capture those statistical correlations
that are responsible for strong non-Markovian effects.

In the present paper we discuss this idea of using corre-
lated projection superoperators in the analysis of non-
Markovian dynamics. On the basis of certain general physi-
cal conditions, we derive in Sec. II a representation theorem
for a class of correlated projection superoperators that are
appropriate for the application of the projection operator
techniques.

A central problem of the theory of non-Markovian pro-
cesses is the formulation of appropriate master equations that
preserve the normalization and the positivity of the density
matrix �see, e.g., the discussion in Refs. �23–26��. In Sec. III
we develop the general structure of such master equations
which results form the application of a correlated projection
superoperator. Given a superoperator that projects onto a
separable quantum state one can construct an embedding of
the underlying dynamics into a Lindblad dynamics on a suit-
ably extended state space. Employing this embedding we
derive a general class of physically acceptable master equa-
tions which represents a generalization of the Lindblad
theory to the regime of highly non-Markovian quantum dy-
namics. Section IV contains some conclusions.

II. CORRELATED PROJECTION SUPEROPERATORS

A. General conditions

The Hilbert spaces of the open system S and of its envi-
ronment E are denoted by HS and HE, respectively. The state
space of the composite system is given by the tensor product
H=HS � HE. States of the composite system are represented
by density matrices � on H satisfying ��0 and tr �=1,
where tr is the trace taken over the total state space. The
reduced density matrix �S of subsystem S is given by the
partial trace taken over the Hilbert space HE, i.e., �S=trE �.
Correspondingly, the partial trace over HS will be denoted by
trS.

A superoperator P is a linear map O�PO which takes
any operator O on the total state space H to an operator PO
on H. We consider here superoperators with the following
properties:

�1� The map P is a projection superoperator:

P2 = P . �1�

It is this formal property that allows the application of the
projection operator techniques. For an efficient performance
of these techniques the projection P� should represent a suit-
able approximation of �. A natural minimal requirement is
therefore that for any physical state � the projection P� is
again a physical state, i.e., a positive operator with unit trace.
This means that P is a positive and trace preserving map,

namely, ��0 implies P��0, and tr�P��=tr �.
�2� We consider projection superoperators of the follow-

ing general form:

P = IS � � , �2�

where IS denotes the unit map acting on operators on HS, and
� is a linear map that takes operators on HE to operators on
HE. A projection superoperator of this form leaves the sys-
tem S unchanged and acts nontrivially only on the variables
of the environment E. As a consequence of the positivity of
P and of condition �2� the map � must be NS positive, where
NS is the dimension of HS �see, e.g., Ref. �27��. In the fol-
lowing we use the stronger condition that � is completely
positive, because completely positive maps allow for a
simple mathematical characterization �see Sec. II B�.

We discuss the implications of these conditions. From
Eqs. �1� and �2� we understand that � itself must be a pro-
jection, namely �2=�. Moreover, since P is trace preserv-
ing, the map � must also be trace preserving. Hence, we find
that � represents a completely positive and trace-preserving
map �CPT map, or quantum channel� which operates on the
variables of the environment and has the property of a pro-
jection. A further physically reasonable consequence of the
positivity of � and of Eq. �2� is that P maps separable �clas-
sically correlated� states to separable states, which means
that the projection does not create entanglement between
system and environment.

An important goal is, of course, the determination of the
reduced density matrix �S of the open quantum system. Us-
ing Eq. �2� and that � is trace preserving we obtain the
relation

�S � trE � = trE�P�� . �3�

This relation connects the density matrix of the reduced sys-
tem with the projection of a given state � of the total system.
It states that, in order to determine �S, we do not really need
the full density matrix �, but only its projection P�. Thus,
P� contains the full information needed to reconstruct the
reduced system’s state.

B. Representation theorem

We derive a representation theorem for the projection su-
peroperator P from the basic conditions formulated in Sec.
II A �see Eq. �12� below�. Since � is supposed to be a CPT
map, one could use, of course, the Kraus-Stinespring repre-
sentation �28,29� for completely positive maps. However, for
our purposes another representation is much more appropri-
ate, which will be derived now.

We will use the following fact from linear algebra. Con-
sider a linear operator L :V�V which acts on some Hilbert
space V and has the property L2=L. Then there exist linear
independent vectors �f i	 and linear independent vectors �ei	
such that 
f i �ej	=�ij and

L�v	 = �
i

�f i	
ei�v	 �4�

for all �v	�V. Conversely, given two linear independent sets
��f i	� and ��ei	� of vectors in V with 
f i �ej	=�ij, then Eq. �4�
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defines a linear operator with the property L2=L. Note that
we neither require that the �f i	 or the �ei	 are orthogonal, nor
that L is Hermitian.

Let us apply this fact to linear maps on the Hilbert-
Schmidt space, i.e., we take V to be the vector space of
operators on HE with the scalar product

�X,Y� � trE�X†Y� .

Then we find that any linear map � can be represented in the
form

�X = �
i

Bi�Ai,X� = �
i

trE�Ai
†X�Bi,

with two sets �Ai� and �Bi� of linear independent operators on
HE, and that the condition �2=� is satisfied if and only if
�Bi ,Aj�=�ij. Since � preserves the Hermiticity of operators,
the operators Ai and Bi can be chosen to be Hermitian.
Hence, we obtain the representation

�X = �
i

trE�AiX�Bi, �5�

where �Ai� and �Bi� are two sets of linear independent Her-
mitian operators satisfying

trE�BiAj� = �ij . �6�

The condition that � is trace preserving takes the form

�
i

�trE Bi�Ai = IE. �7�

Finally, we have to formulate the condition of the com-
plete positivity of the map �. A given map � is completely
positive if and only if

�IE � �����	
��� � 0, �8�

where

��	 = �
�

��	 � ��	

is a maximally entangled vector in HE � HE, and ���	� is an
orthonormal basis for HE. To evaluate condition �8� we first
note that

�IE � �����	
��� = �
��

��	
�� � ����	
��� . �9�

On using the representation �5� one finds

����	
��� = �
i


��Ai��	Bi = �
i


��Ai
T��	Bi, �10�

where Ai
T denotes the transpose of the operator Ai with re-

spect to the given basis ���	�. Inserting Eq. �10� into Eq. �9�
we obtain

�IE � �����	
��� = �
i

�
��

��	
��Ai
T��	
�� � Bi = �

i

Ai
T

� Bi.

We conclude that a necessary and sufficient condition for �
to be completely positive is given by the inequality

�
i

Ai
T

� Bi � 0. �11�

Employing Eqs. �5� and �2� we obtain the following rep-
resentation for the projection superoperator P,

P� = �
i

trE�Ai�� � Bi. �12�

Given observables Ai and Bi that satisfy Eqs. �6�, �7�, and
�11�, this equation defines a projection superoperator which
fulfills the general conditions formulated in Sec. II A. Con-
versely, given a projection which fulfills the conditions of
Sec. II A, there exist observables Ai and Bi satisfying Eqs.
�6�, �7�, and �11� such that Eq. �12� holds. There are in gen-
eral many different sets of operators Ai, Bi that represent a
given P. If we have a particular set of such operators, then
the operators

Ai� = �
j

uijAj, Bi� = �
j

vijBj ,

represent the same projection, where u= �uij� and v= �vij� are
real, nonsingular matrices related by uTv= I.

C. Examples

Within the standard approaches one considers a projection
superoperator of the form

P� = �trE �� � �0, �13�

where �0 is any fixed environmental density matrix. Using a
projection of this form one assumes that the states of the total
system may be approximated by certain tensor products, de-
scribing states without statistical dependencies between sys-
tem and environment. The projection �13� naturally fits
into the general scheme developed above if we take a single
A= IE and a single B=�0. The conditions �6�, �7�, and �11� are
then satisfied and Eq. �12� obviously reduces to Eq. �13�

In the general case, a projection P� of the form of Eq.
�12� does not represent a simple product state. We therefore
call such P correlated projection superoperators. They
project onto states that contain statistical correlations be-
tween the system S and its environment E. In the following
we will consider the case that one can find a representation
of the projection with positive operators Ai�0 and Bi�0.
Equation �11� is then trivially satisfied. Without restriction
we may assume that the Bi are normalized to unit trace, such
that condition �7� reduces to the simple form �iAi= IE. Under
these conditions P projects any state � onto a state which can
be written as a sum of tensor products of positive operators.
In the theory of entanglement �see, e.g., Ref. �30�� such
states are called separable or classically correlated �31�. Us-
ing a projection superoperator of this form, one thus tries to
approximate the total system’s states by a classically corre-
lated state. The general representation of Eq. �12� includes
the case of projection superoperators that project onto in-
separable, entangled quantum states. We will not pursue here
this possibility further, and restrict ourselves to positive Ai
and Bi in the following.

A straightforward example for a separable projection su-
peroperator is obtained through the following construction
�19,21,22�. We take any orthogonal decomposition of the
unit operator IE on the state space of the environment, i.e., a
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collection of ordinary projection operators �i on HE which
satisfy

�i� j = �ij� j, �
i

�i = IE.

Then we choose

Ai = �i, Bi =
�i�0�i

trE��i�0�
.

It is easy to verify that with this choice the conditions �6�,
�7�, and �11� are satisfied. The explicit form of the projection
superoperator is given by

P� = �
i

trE��i�� �
�i�0�i

trE��i�0�
. �14�

D. Relevant states and observables

Given a projection superoperator we define the relevant
states as the states in the range of P, i.e., for which the
relation

P�rel = �rel

holds. We see that these states are of the form

�rel = �
i

�i � Bi,

where the �i may be any positive matrices such that
�i trS �i=1. Hence, the manifold of the relevant states is de-
termined by the operators Bi.

One can transfer this concept from states �Schrödinger
picture� to observables �Heisenberg picture�. A Hermitian op-
erator Orel on the total state space is said to be a relevant
observable if the relation

tr�Orel�P��� = tr�Orel��

holds true for all states �. This means that the expectation
value of a relevant observable in any state of the composite
system is left unchanged under the application of the projec-
tion superoperator P.

Introducing the adjoint map P† �defined with respect to
the Hilbert-Schmidt scalar product for operators on the total
state space�, we can reformulate this condition as

P†Orel = Orel.

Hence, the relevant observables are those observables which
are invariant under the application of the adjoint projection.
From the representation �12� we obtain

P†O = �
i

trE�BiO� � Ai, �15�

from which we infer that the relevant observables must be of
the form

Orel = �
i

OS
i

� Ai, �16�

where the OS
i are arbitrary observables of the subsystem S.

The structure of the relevant observables is thus determined
by the operators Ai.

III. DYNAMICS

A. General formulation

The dynamics of the total system is given by

��t� = U�t���0�U†�t� , �17�

where U�t� denotes the unitary time-evolution operator.
Given a projection superoperator of the form of Eq. �12� one
introduces the dynamical variables

�i�t� = trE�Ai��t�� . �18�

Since the Ai are positive operators, we have �i�t��0, and by
use of Eq. �3� and of the normalization trE Bi=1, we find that
the reduced density matrix is obtained from

�S�t� = �
i

�i�t� .

The normalization condition reads

trS �S�t� = �
i

trS �i�t� = 1. �19�

Hence, the state of the reduced system is determined by a
certain set of unnormalized density matrices �i�t�.

We consider initial conditions of the following form,

��0� = P��0� = �
i

�i�0� � Bi. �20�

This equation means that the initial state belongs to the
manifold of the relevant states. As a consequence there is no
inhomogeniety in the Nakajima-Zwanzig or the time-
convolutionless master equation, although ��0� describes a
correlated system-environment state. On using Eqs. �17�,
�18�, and �20� we obtain

�i�t� = �
j

trE�AiU�t�� j�0� � BjU
†�t�� . �21�

To be specific we assume that the index i takes on the
values i=1,2 , . . . ,n. We define a vector � whose compo-
nents are given by the dynamical variables �i,

� = ��1,�2, . . . ,�n� . �22�

Equation �21� then defines a dynamical transformation of the
form

Vt:��0� � ��t� ,

i.e., we obtain a one-parameter family of dynamical maps
�Vt � t�0�, where V0 is equal to the identity map. For each
fixed t the map Vt transforms any initial vector ��0� with
positive components �i�0��0 into some vector ��t� with
positive components �i�t��0. Of course, this transformation
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also preserves the normalization condition �19�.
It is important to emphasize that Vt is not a quantum dy-

namical map in the conventional sense of the theory of open
systems, simply because it is not an operation on the space of
states of the reduced system, but rather a map on the space of
vectors �. The transition from ��0� to the reduced density
matrix �S�0�=�i�i�0� is connected with a loss of information
on the initial correlations, such that from the mere knowl-
edge of �S�0� the dynamical behavior cannot be recon-
structed, in general. In other words, the evolution from �S�0�
to �S�t� for t	0 is not a map, i.e., there is no prescription
which assigns to each �S�0� a unique �S�t�.

B. Structure of non-Markovian master equations

The application of the time-convolutionless projection op-
erator technique leads to a closed dynamic equation for the
relevant part of the density matrix:

d

dt
P��t� = Kt

„P��t�… ,

where Kt is a linear generator which depends, in general,
explicitly on time. If one uses a projection of the form of Eq.
�12� this yields a system of equations of motion for the den-
sities �i�t�,

d

dt
�i = Ki

t��1, . . . ,�n�, i = 1,2, . . . ,n ,

with an explicitly time-dependent generator Ki
t for each i

which depends linearly on the input arguments �1 , . . . ,�n.
Let us suppose that these generators may be approximated by
time-independent generators such that we can write

d

dt
�i = Ki��1, . . . ,�n� . �23�

The family Vt then represents a semigroup of dynamical
transformations. Of course, this semigroup assumption for Vt
does not imply that the dynamics of the reduced density
matrix yields a semigroup.

A typical situation in which the semigroup assumption is
valid is given by a projection superoperator of the form of
Eq. �14�, where the �i project onto certain energy bands of
the environment, describing a structured reservoir. The semi-
group assumption then presupposes that all intra- and inter-
band transitions may be described by means of time-
independent rates obtained from Fermi’s golden rule
�19,21,22�.

Our aim is to determine the general structure of the gen-
erators Ki. To this end, we demand that Eq. �23� preserves
the positivity of all components �i, i.e., given positive initial
data �i�0��0 the corresponding solution satisfies �i�t��0
for all times. A convenient way of formulating the dynamical
transformation is the following. We introduce an auxiliary
Hilbert space Cn and an orthonormal basis ��i	� for this space.
Then we can identify the vector � introduced in Eq. �22�
with a density matrix on the extended space HS � Cn,

� = �
i

�i � �i	
i� . �24�

This density matrix can be regarded as a block diagonal ma-
trix with blocks �i along the main diagonal. Moreover, the
reduced density matrix �S is obtained by the partial trace of
� taken over the auxiliary space. Hence, the auxiliary space
represents an additional degree of freedom which expresses
the statistical correlations introduced through the projection
superoperator P.

The dynamical transformation Vt can be viewed as a CPT
operation on the extended space that preserves the block di-
agonal structure. To guarantee the conservation of positivity
we therefore impose the condition that there exists a Lind-
blad generator L on the extended space which also preserves
the block diagonal structure, i.e., which has the property

L��
i

�i � �i	
i� = �
i

Ki��1, . . . ,�n� � �i	
i� . �25�

If such a Lindblad generator exists, the solution of Eq. �23�
can be written as

�
i

�i�t� � �i	
i� = eLt��
i

�i�0� � �i	
i� . �26�

This implies the required conservation of positivity of the
components �i�t� for all times t�0. In mathematical terms,
Eq. �26� can be interpreted as an embedding of the non-
Markovian dynamics into a Lindblad dynamics on the ex-
tended state space. We now demonstrate that the simple con-
dition expressed by Eq. �25� fixes the structure of the
generators Ki to a large extend.

Theorem. A Lindblad generator L on the extended state
space with the property �25� exists if and only if the genera-
tors Ki are of the special form

Ki��1, . . . ,�n� = − i�Hi,�i� + �
j

�R


ij� jR

ij† −

1

2
�R


ji†R

ji,�i� ,

�27�

with Hermitian operators Hi and arbitrary system operators
R


ij.
Proof. Assume that a Lindblad generator L on the ex-

tended state space with the property �25� is given. As for any
Lindblad generator we have

L��� = − i�H,�� + �



�R
�R

† −

1

2
�R


†R
,�� , �28�

were H=H† and the R
 are operators on the extended state
space. These operators can always be written as sums over
tensor products:

H = �
ij

Hij
� �i	
j� ,

R
 = �
ij

R

ij

� �i	
j� .

Substituting these relations into Eq. �28� and using the ex-
pression �24� for �, one easily shows that
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L��� = �
ik

Dik
� �i	
k� ,

where

Dik = − i�Hik�k − �iH
ik�

+ �
j

�R


ij� jR

kj† −

1

2
R


ji†R

jk�k −

1

2
�iR


ji†R

jk . �29�

Hence, in order for condition �25� to be satisfied we must
have Dik=0 for all i�k, and, in particular, Dii=Ki. Setting
i=k in Eq. �29� we obtain the form �27� for the generator Ki,
where Hii=Hi is Hermitian.

Suppose now that Ki is of the form of Eq. �27�. Then we
define operators on the extended state space through

H = �
i

Hi
� �i	
i� ,

S

ij = R


ij
� �i	
j� ,

where H is Hermitian. With the help of these operators we
define a Lindblad generator by means of

L��� = − i�H,�� + �
ij


�S

ij�S


ij† −
1

2
�S


ij†S

ij,�� .

It is easy to check that this Lindblad generator indeed has the
required property �25�. This proves the theorem.

C. Discussion

Inserting Eq. �27� into Eq. �23� we obtain the master
equation

d

dt
�i = − i�Hi,�i� + �

j

�R


ij� jR

ij† −

1

2
�R


ji†R

ji,�i� . �30�

Under the condition of the existence of an embedding into a
Lindblad dynamics on the extended state space �see Eq.
�26��, this is the general form for the equations of motion of
the dynamical variables �i�t�, where the Hi are arbitrary Her-
mitian operators, and the R


ij are arbitrary system operators.

1. Examples

Several master equations proposed recently in the litera-
ture are of the general form of Eq. �30�. The simplest special
case of this equation is obtained if we have only a single
component �1=�S such that we can omit the indices i and j.
The master equation �30� then obviously reduces to an ordi-
nary master equation for the reduced density matrix in Lind-
blad form. Thus, Eq. �30� can be viewed as a generalization
of the Gorini-Kossakowski-Sudarshan-Lindblad theorem
�15,16�.

If we choose R

ij =�ijR


i the master equation �30� takes the
form

d

dt
�i = Li��i� .

Hence, we obtain an uncoupled system of equations of mo-
tion with a Lindblad generator Li for each component �i.

Although each component �i�t� follows its own Markovian-
type dynamics, the dynamics of the reduced density matrix
�S�t� is generally highly non-Markovian. Master equations of
this uncoupled form have been derived by Budini and ap-
plied to various models for the dynamics of open systems in
structured reservoirs �21�.

In the general case an equation of the form �30� involves
a coupling between the components �i. An example of such
an equation has been derived in �22� from a specific micro-
scopic system-environment model. The model describes a
two-state system with ground state �0	, excited state �1	, and
level distance �E, which is coupled to an environment �7�.
The environment consists of a large number of energy levels
arranged in two energy bands of width �� �see Fig. 1�. The
lower energy band contains N1 levels, the upper band N2
levels.

The total Hamiltonian of the model is taken to be

H = HS + HE + V . �31�

HS=�E+− is the free system Hamiltonian, where ± de-
note the usual raising and lowering operators of the two-state
system. The free Hamiltonian of the environment is given by

HE = �
n1

��

N1
n1�n1	
n1� + �

n2

��E +
��

N2
n2�n2	
n2� ,

and the system-environment interaction is described by

V = 
 �
n1,n2

c�n1,n2�+�n1	
n2� + H.c.

The index n1 labels the levels of the lower energy band and
n2 the levels of the upper band. The overall strength of the
interaction is parametrized by the constant 
. The coupling
constants c�n1 ,n2� are independent and identically distrib-
uted complex Gaussian random variables with zero mean
and unit variance.

We employ a projection superoperator of the form �22�

P� = trE��1�� �
1

N1
�1 + trE��2�� �

1

N2
�2

� �1 �
1

N1
�1 + �2 �

1

N2
�2, �32�

where �1 ��2� denotes the projection onto the lower �upper�
environmental energy band. This is a projection of the form

∆E

|1〉

|0〉

Π2

Π1

⊗
V

FIG. 1. �Color online� A two-state system which is coupled to an
environment consisting of two energy bands.
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given in Eq. �14�. It projects onto a state in which the envi-
ronmental state �i /Ni is correlated with the system state
�i / trS �i. The second order of the time-convolutionless pro-
jection operator technique leads to the master equation �writ-
ten in the interaction picture�

d

dt
�1 = �1+�2− −

�2

2
�+−,�1� , �33�

d

dt
�2 = �2−�1+ −

�1

2
�−+,�2� , �34�

where �1,2=2�
2N1,2 /��. This is a coupled system of first-
order differential equations for the two unnormalized density
matrices �1 and �2. It can be written in the form of Eq. �30�
by taking Hi=0, R11=R22=0, R12=��1+, and R21=��2−.
As has been demonstrated in Ref. �22� through a comparison
with numerical simulations of the full Schrödinger equation,
this master equation yields an excellent approximation of the
reduced system’s dynamics.

The second term on the right-hand side of Eq. �33� de-
scribes changes of �1 which are due to downward transitions
of the two-state system. These are only possible if the lower
band of the environment is populated, i.e., if the environment
is in the state �1 /N1 which is correlated with �1. For this
reason the second term of Eq. �33� involves the density �1.
Correspondingly, the first term on the right-hand side of Eq.
�33� describes changes of �1 caused by excitations of the
two-state system. Such excitations are only possible if the
environment is in the state �2 /N2, which is correlated with
�2. Therefore, it is the density �2 that enters the first term of
Eq. �33�. Analogous statements hold for Eq. �34�. Hence, we
see that the transitions described by Eqs. �33� and �34� ex-
actly conserve the total number of excitations �see Sec.
III C 2�.

Let us investigate the behavior of the excited state popu-
lation pe�t� which is defined by the expression

pe�t� = 
1��1�t� + �2�t��1	 .

Equations �33� and �34� lead to

d

dt
pe�t� = − ��1 + �2�pe�t� + �1pe�0�

+ �2
1��2�0��1	 + �1
0��2�0��0	 . �35�

This equation exhibits a strong non-Markovian character be-
cause the initial data appear as inhomogeneous terms on its
right-hand side. These terms express a pronounced memory
effect: They imply that the dynamics never forgets its initial
condition, i.e., that the process is governed by an infinite
memory time. A further remarkable feature of Eq. �35� de-
rives from the fact that the initial data on its right-hand side
cannot be expressed solely in terms of the matrix elements of
the reduced density matrix. This means that at any time t,
and even in the limit t→�, the process is strongly influenced
by the statistical correlations of the initial state. Hence, the
influence of the initial correlations never dies out and is
present even in the stationary state.

Recently, Esposito and Gaspard �19,20� have derived a
master equation from a microscopic system-reservoir model
within second order perturbation theory, which is also of the
form of Eq. �30�. In their derivation the index i plays the role
of the energy � of the reservoir. The corresponding density
matrix �i��� describes a system state which is correlated
with a certain reservoir state of energy �. If the open system
represents again a two-state system, the master equation of
Esposito and Gaspard can be written as �33�

d

dt
�� = − i�H�,��� + �

��

��1��,���+���−

−
�2���,��

2
�+−,��� + �2��,���−���+

−
�1���,��

2
�−+,��� .

Here, �1,2�� ,��� are certain transition rates which are deter-
mined by the parameters of the microscopic model, and H� is
the system Hamiltonian including an �-dependent Lamb-type
energy renormalization. One easily checks that this master
equation can indeed be brought into the general form of Eq.

�30� by taking R1
���=��1�� ,���+ and R2

���=��2�� ,���−.
A master equation of the general form �30� has been de-

rived recently by Budini �32�. This author suggests introduc-
ing an extra degree of freedom U which modulates the inter-
action between the reduced system S and its environment E.
Under the assumptions that E may be treated as a Markovian
reservoir and that the dynamics of the populations decouples
from the dynamics of the coherences of U, one arrives at the
master equation �30�. In a certain sense the introduction of an
additional degree of freedom U corresponds to the extended
state space HS � Cn used in Sec. III B to construct the em-
bedding into a Lindblad dynamics. An advantage of the
present formulation is that it avoids the use of a microscopic
model for the extra degree of freedom and that it clearly
shows the basic physical condition underlying the master
equation �30�: This condition is the existence of an effective
representation of the dynamics through a projection onto
separable, classically correlated quantum states.

What are the physical conditions under which the use of a
standard projection onto a tensor product state is not suffi-
cient to correctly describe the reduced system’s dynamics for
a given system-environment model? While this important
question seems to be difficult to answer in full generality and
certainly deserves further investigations, important hints can
be obtained already by an investigation of the time-
convolutionless perturbation expansion �1,14�. If the two-
point environmental correlation functions do not decay rap-
idly in time the second order of the expansion cannot, of
course, be expected to give an accurate description of the
dynamics. For instance, this situation arises for the spin star
model discussed in Ref. �18�, where the second-order gen-
erator of the master equation increases linearly with time
such that the Born-Markov approximation simply does not
exist. The example investigated in Ref. �22� demonstrates
that there are even cases in which the standard Markov con-
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dition is satisfied although the product-state projection com-
pletely fails if one truncates the expansion at any finite order.
In such cases strong non-Markovian dynamics is induced
through the behavior of higher-order correlation functions.
Hence, one can judge the quality of a given projection su-
peroperator only by an investigation of the structure of
higher orders of the expansion. The standard projection and
the corresponding Lindblad equation are not reliable if
higher orders lead to contributions that are not bounded in
time, signifying the nonuniform convergence of the pertur-
bation expansion �22�.

2. Conservation laws and relevant observables

For many physical models one knows certain quantities C
which are exactly �or at least approximately� conserved un-
der the time evolution. A great advantage of the formulation
by means of the master equation �30� is that it allows the
implementation of the corresponding conservation laws. For
instance, the master equation derived in Ref. �19� reflects the
conservation of the �uncoupled� total system energy.

To formulate the conservation of C one chooses the op-
erators Ai in such a way that C is a relevant observable �see
Sec. II D�. According to Eq. �16� this means that C can be
written in the form

C = �
i

CS
i

� Ai.

Then we have the exact relation

tr�C��t�� = tr�CP��t�� = �
i

trS�CS
i �i�t�� .

Hence, we can express the conservation of C on the level of
the master equation by means of the conservation law

d

dt
�

i

trS�CS
i �i�t�� = 0.

By use of the master equation �30� this yields a relation
between the operators Hi and R


ij:

i�Hi,CS
i � + �

j

�R


ji†CS
j R


ji −
1

2
�R


ji†R

ji,CS

i � = 0.

Thus, known conserved quantities lead to constraints on the
choice of the operators that enter the master equation.

An example is given by the quantity C=+−+�2 which
counts the total number of excitations for the model dis-
cussed in Sec. III C 1. This quantity is exactly conserved
under the evolution generated by the Hamiltonian �31�. Writ-
ing

C = +− � �1 + �+− + IS� � �2,

we see that C is indeed a relevant observable for the projec-
tion �32�, i.e., we have P†C=C. The corresponding conser-
vation law takes the form

pe�t� + trS �2�t� = const.

This fact can be used to motivate the projection superopera-
tor: With the choice of Eq. �32� one ensures that the projec-

tion superoperator leaves invariant the conserved quantity
and that the effective description respects the corresponding
conservation law.

IV. CONCLUSIONS

We have discussed the theoretical description of non-
Markovian quantum dynamics within the framework of the
projection operator techniques. It has been shown that an
efficient modeling of strong non-Markovian effects is made
possible through the use of correlated projection superopera-
tors P that take into account statistical correlations between
the open system and its environment. We have formulated
and explained some general physical conditions which de-
mand, essentially, that P can be expressed in terms of a
projective quantum channel that operates on the environmen-
tal variables. On the basis of these conditions a representa-
tion theorem for correlated projection operators �Eq. �12��
has been derived.

Employing a correlated projection superoperator instead
of the usual projection onto a tensor product state, one en-
larges the set of dynamical variables from the reduced den-
sity matrix �S to a collection of densities �i describing sys-
tem states that are correlated with certain environmental
states. By means of an embedding of the non-Markovian
dynamics into a Lindblad dynamics on a suitably extended
state space, we have derived the general structure of a master
equation �Eq. �30�� which governs the dynamics of the �i and
models strong non-Markovian effects, while preserving the
physical conditions of normalization and positivity. A par-
ticularly important feature of the master equation is that it is
able to describe very long and even infinite memory times, as
well as large correlations in the initial state.

We have also discussed the role of known conserved
quantities. Such quantities may be helpful to find an appro-
priate projection superoperator by demanding that they be
relevant observables for P. Once this has been achieved one
can express the corresponding conservation laws on the level
of the effective description provided by the master equation.

The semigroup assumption used in the derivation of the
master equation �30� is not really necessary. In fact, the
present formulation can easily be extended to the case of an
explicitly time-dependent Lindblad generator on the ex-
tended state space. The resulting master equation is then
again of the form of Eq. �30�, where the operators Hi�t� and
R


ij�t� now depend explicitly on time.
The result expressed by Eq. �30� could be particularly

useful for a phenomenological approach to non-Markovian
dynamics: For arbitrary Hi and R


ij this equation represents a
physically acceptable master equation because it preserves
the normalization of the reduced density matrix and trans-
forms positive initial components �i�0��0 into positive
components �i�t��0. We emphasize that the argument lead-
ing to the form �30� of the master equations is nonperturba-
tive. Given a certain projection superoperator P defining the
densities �i, the only assumption entering the derivation is
the existence of an embedding of the dynamics into a Lind-
blad dynamics on the extended state space.
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The projection superoperators used for the description of
non-Markovian dynamics in Sec. III have a special feature.
Namely, they project any given state onto a classically cor-
related state. If a non-Markovian dynamics can be approxi-
mated by use of such a superoperator within low orders of
the perturbation expansion, one can conclude that the true
states of the total system can be represented effectively
through classically correlated states and that genuine quan-
tum correlations �entanglement� may be treated as perturba-
tions. On the other hand, the representation theorem of Sec.
II B includes the case of projection superoperators that
project onto nonseparable �entangled� quantum states. For
such superoperators the arguments that led to the master

equation �30� are not applicable. It remains an important
open problem to extend the formulation developed here to
the case of nonseparable projection superoperators. Such an
extension could enable a systematic investigation of the dy-
namical significance of genuine quantum correlations in non-
Markovian processes.
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