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Simple examples are presented of Lorentz transformations that entangle the spins and momenta of two
particles with positive mass and spin 1/2. They apply to indistinguishable particles, produce maximal entangle-
ment from finite Lorentz transformations of states for finite momenta, and describe entanglement of spins
produced together with entanglement of momenta. From the entanglements considered, no sum of entangle-
ments is found to be unchanged.
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The role of relativity in framing statements about quan-
tum information is illustrated by the fact that quantum en-
tanglement can depend on the reference frame of the ob-
server. In particular, Lorentz transformations can change the
entanglement of the spins of massive particles �1,2�. This
happens because Lorentz transformations of the spin of a
particle depend on its momentum �3–13�. There is a rich
variety of possibilities. Examples selected for calculations
�1� have left questions to be answered. Is a separable spin
state changed into a maximally entangled state only in the
limit of an infinite Lorentz transformation and/or infinite mo-
menta? Does an increase of the entanglement for the spins of
two particles require a decrease in the entanglement of their
momenta? What happens when the particles are indistin-
guishable?

Here we give simple examples of Lorentz transformations
that entangle the spins and momenta of two particles with
positive mass and spin 1/2. They apply to indistinguishable
particles, produce maximal entanglement from finite Lorentz
transformations of states for finite momenta, and describe
entanglement of spins produced together with entanglement
of momenta. The operations are made transparent by describ-
ing the spin states with density matrices written in terms of
Pauli matrices, so you can see the Pauli matrices being ro-
tated by the Wigner rotations of the Lorentz transformations.

From the entanglements we consider, we find no sum of
entanglements that is unchanged. This leads us to question
what is meant by the statements that “Lorentz boosts intro-
duce a transfer of entanglement between different degrees of
freedom. While the entanglement between spin or momen-
tum alone may change due to Lorentz boosts, the entangle-
ment of the entire wave function �spin and momentum� is
invariant” �1� and that “Entanglement was shown to be an
invariant quantity for observers in uniform motion in the
sense that, although different inertial observers may see these

correlations distributed among several degrees of freedom in
different ways, the total amount of entanglement is the same
in all inertial frames” �14�. We are afraid that these state-
ments might incorporate an incorrect extrapolation from ear-
lier examples where a change in the entanglement of the
spins was accompanied by a change in the opposite direction
of the entanglement of the momenta �1�.

We will consider two particles A and B that have positive
mass and spin 1/2. We use Pauli matrices �1, �2, �3 for the
spin of particle A, and Pauli matrices �1, �2, �3 for the spin
of particle B. We consider two-particle states described by
state vectors or density matrices made from state vectors of
the form

�pA,pB��spins� �1�

where �pA ,pB�= �pA�A �pB�B is a product state vector of length
1 that represents a state for the momenta of the two particles
composed of a state where the momentum of particle A is
concentrated around a value pA and a state where the mo-
mentum of particle B is concentrated around a value pB, and
�spins� represents a state for the spins of the two particles. A
Lorentz transformation � changes each �p� to a state vector
we call �p�� and changes �pA, pB� to

�pA,pB�� = �pA�A
��pB�B

�, �2�

which describes momenta concentrated around the Lorentz-
transformed values �pA, �pB. This is the unitary transforma-
tion on the space of momentum states that would represent
the Lorentz transformation if the particles had no spins. The
Lorentz transformation changes the state vector �1� for mo-
menta and spins to

�pA,pB��DA�pA�DB�pB��spins� �3�

where DA and DB are operators on the spin states for par-
ticles A and B, respectively, D�p� means D(W�� , p�) with
W�� , p� the Wigner rotation �15� for the Lorentz transforma-
tion � and the four-vector momentum p corresponding to the
three-vector momentum p and the given positive mass,
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DA�W� for a rotation W is the 2�2 unitary rotation matrix
made from the � j so that

DA�W�†�DA�W� = W��� �4�

where W��� is simply the vector � rotated by W, and DB�W�
is the same for �. We assume that the momenta are concen-
trated closely enough that we can use orthogonal state vec-
tors for concentrations around different momentum values,
use a single Wigner rotation for each concentration, and ac-
cept the accuracy of these approximations.

Suppose that for the state of the pair of particles there are
just two pairs of momentum values, �pA1

,pB1
� and �pA2

,pB2
�,

and that the state of the two particles is either a pure state
represented by a state vector

1
�2

�pA1
,pB1

��0� +
1
�2

�pA2
,pB2

��0� �5�

or a mixed state represented by a density matrix

1

2
�pA1

,pB1
��pA1

,pB1
�� +

1

2
�pA2

,pB2
��pA2

,pB2
�� �6�

where

� = �0��0� , �7�

so that the state of the spins, described by the state vector �0�
or the density matrix �, is the same in both cases.

Let �� be the density matrix that represents the state of
the spins after a Lorentz transformation �. It is obtained by

taking the trace over the momentum states �pA ,pB�� of the
density matrix for the state of the two particles after it is
changed by �. Each constituent state vector �1� is changed to
the spin-rotated state vector �3�. This gives

�� =
1

2
DA�pA1

�DB�pB1
��DA�pA1

�†DB�pB1
�†

+
1

2
DA�pA2

�DB�pB2
��DA�pA2

�†DB�pB2
�†. �8�

Let pA1
=−pB1

=−pA2
=pB2

be along the x axis and let the
Lorentz transformation be in the y direction with velocity v.
Then the Wigner rotations are around the z axis. If W�� , pA1

�
and W�� , pB2

� are rotations by � around the z axis, then
W�� , pB1

� and W�� , pA2
� are rotations by −� around the z

axis. This can be seen, and � can be calculated from pA1
and

v, by using the formulas from Halpern �16� that we have
described ��13�, Sec. V�.

Suppose � is one of the density matrices

�± =
1

4
�1 ± �1�1 ± �2�2 − �3�3� . �9�

Both �+ and �− represent maximally entangled pure states for
the two spins. They are Bell states. The state of zero total
spin is represented by �− and the state obtained from that by
rotating one of the spins by � around the z axis is repre-
sented by �+. The Lorentz transformation takes �± to

�±
� =

1

2
	1

4
�1 ± ��1cos � + �2sin ����1cos � − �2sin �� ± �− �1sin � + �2cos ����1sin � + �2cos �� − �3�3�


+
1

2
	1

4
�1 ± ��1cos � − �2sin ����1cos � + �2sin �� ± ��1sin � + �2cos ���− �1sin � + �2cos �� − �3�3�


=
1

4
�1 ± ��1�1 + �2�2�cos 2� − �3�3� = �±cos2 � + �	sin2 � . �10�

We focus on the case where � is � /4. Then the Lorentz
transformation takes both �+ and �− to

�� =
1

4
�1 − �3�3�

=
1

2
�1

4
�1 − �3��1 + �3�� +

1

2
�1

4
�1 + �3��1 − �3�� . �11�

The Lorentz transformation takes the density matrix � for a
maximally entangled state to the density matrix �� for a
separable state that is a mixture of just two products of pure
states. The inverse Lorentz transformation of the state of the
two particles takes �� back to �.

The Lorentz transformation changes the density matrix �
of Eq. �7� to

�� =
1

2
�1��1� +

1

2
�2��2� �12�

where

�1� = DA�pA1
�DB�pB1

��0� ,

�2� = DA�pA2
�DB�pB2

��0� . �13�

The inner product of these vectors is
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�2�1� = �0��DA�pA2
��†�DB�pB2

��†DA�pA1
�DB�pB1

��0�

= �0��DA�pA1
��2�DB�pB1

��2�0�

= �0��cos � − i�3sin ���cos � + i�3sin ���0�

= Tr�cos2 � − i��3 − �3�cos � sin � + �3�3sin2 ����

= cos2 � − sin2 � = cos 2� �14�

for the DA, DB, and �, either �+ or �−, being considered.
When � is � /4, the vectors �1� and �2� are orthogonal.

The same transformation of the spin density matrix is ob-
tained for different kinds of states for the two particles. If the
state of the two particles is a mixture represented by the
density matrix �6� with � described by Eq. �7�, the Lorentz
transformation changes the density matrix to

1

2
�pA1

,pB1
����pA1

,pB1
� � �1��1�

+
1

2
�pA2

,pB2
����pA2

,pB2
� � �2��2� �15�

which for the spins gives the density matrix �� described by
Eq. �12�. If the state of the two particles is a pure state
represented by a state vector �5�, which for the spins gives
the density matrix � described by Eq. �7�, the Lorentz trans-
formation changes the state vector to

1
�2

�pA1
,pB1

���1� +
1
�2

�pA2
,pB2

���2� �16�

which for the spins gives the density matrix �� described by
Eq. �12� again.

The transformation of the density matrix for the momenta
is different for the different kinds of states. When the two
particles are in a mixed state, the density matrix for the mo-
menta is

1

2
�pA1

,pB1
��pA1

,pB1
� +

1

2
�pA2

,pB2
��pA2

,pB2
� �17�

before the Lorentz transformation and

1
2 �pA1

,pB1
����pA1

,pB1
� +

1

2
�pA2

,pB2
����pA2

,pB2
� �18�

after the Lorentz transformation. The Lorentz transformation
does not change the amount of entanglement in the state of

the momenta of the two particles. Both before and after the
Lorentz transformation, the state of the momenta is a sepa-
rable state that is a mixture of just two products of pure
states.

When the two particles are in a pure state, the density
matrix for the momenta after the Lorentz transformation is
described by Eq. �18�, the same as for the mixed state, be-
cause the vectors �1� and �2� are orthogonal, for the case
where � is � /4 that we are considering. Before the Lorentz
transformation, the density matrix for the momenta is that of
the pure state represented by the vector

1
�2

�pA1
,pB1

� +
1
�2

�pA2
,pB2

� . �19�

For the pA1
=−pB1

=−pA2
=pB2

being considered, this can be
chosen to be a maximally entangled state, a Bell state, rep-
resented by

1
�2

�
�A���B ±
1
�2

���A�
�B �20�

where �
� represents a state for the momentum of a particle
with values concentrated around pA1

and ��� represents a
state with momentum values concentrated around −pA1

. This
choice makes the entanglement of the momentum states the
same as that of the spin states. Before the Lorentz transfor-
mation, the state described by the vector �20� for the two
momenta is maximally entangled. After the Lorentz transfor-
mation, the state of the two momenta is represented by the
density matrix �18� with

�pA1
,pB1

�� = �
�A
����B

�,

�pA2
,pB2

�� = ���A
��
�B

�. �21�

The state of the momenta is a mixture of two products of
pure states, just like the state of the spins described by the
density matrix �11�. The Lorentz transformation removes
both spin entanglement and momentum entanglement, and
the inverse Lorentz transformation restores both. Previous
examples �1� suggested that a change in the entanglement of
the spins might always be accompanied by a change in the
opposite direction of the entanglement of the momenta.

The options we have described are flexible enough to ap-
ply to indistinguishable particles. The particles are assumed
to have spin 1/2, so if the two particles are indistinguishable,
for example if both are electrons, the state of the particles

FIG. 1. Values of the velocity v of the Lorentz transformation
and the momentum-to-mass ratio �p � /m that give � /4 for the angle
� of the Wigner rotation.

FIG. 2. The concurrence C���� as a function of v for
�p � /m=10.
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can combine the Bell state for the momenta that is symmetric
under interchange of the two particles only with the spin
state that is antisymmetric, and the antisymmetric momen-
tum state only with the symmetric spin state.

Changes between separable states and maximally en-
tangled states are not made here by going to limits. They are
made with finite Lorentz transformations of states for finite
momenta. Figure 1 shows values of the velocity of the Lor-
entz transformation and the momentum/mass ratio for the
particles that give the � /4 Wigner rotations that we use. The
calculations were made with the formulas from Halpern �16�
that we have described ��13�, Sec. V�. In previous examples
�1�, maximally entangled states are obtained only in the limit
where the velocity of the Lorentz transformation is c and the
particle momenta are infinite.

The change of entanglement is smaller if � is not � /4,
but it is still the same for the momenta as for the spins. The
state of the spins after the Lorentz transformation is de-
scribed by one of the density matrices �±

� in Eq. �10�, which
we can write as

�±
� =

1

4
�1 ± ��1�1 + �2�2�cos 2� + ��1�1���2�2�� . �22�

This shows that for both �+
� and �−

� the eigenvalues are

1

2
�1 + cos 2��,

1

2
�1 − cos 2��, 0, 0 �23�

because �1�1 and �2�2 each have eigenvalues 1 and −1 and
together they make a complete set of commuting operators:
their four different pairs of eigenvalues label a basis of
eigenvectors for the space of states for the two spins. The
Wooters concurrence �17� is a measure of the entanglement
in a state of two qubits. It is defined by

C��� � max�0,��1 − ��2 − ��3 − ��4� �24�

where � is the density matrix that represents the state and
�1 ,�2 ,�3 ,�4 are the eigenvalues, in decreasing order, of
��2�2���2�2, with �� the complex conjugate that is ob-

tained by changing �2 and �2 to −�2 and −�2. From Eq.
�22� we have

�±
��2�2��±

����2�2 = �±
���±

�����2�2�2 = ��±
��2 �25�

so for �±
� the ��i are the eigenvalues of �±

� and the concur-
rence is

C��±
�� = �cos 2�� . �26�

The concurrence as a function of the velocity of the
Lorentz transformation is shown in Fig. 2 for the case where
�p � /m=10 for the two particles.

A zero value of the concurrence �26�, the mark of a sepa-
rable state, occurs when � is � /4. We know that a state of
two qubits is separable if and only if a positive matrix is the
result of taking the partial transpose of the density matrix,
the transpose for the states of one of the qubits �18,19�. For
�±

�, this means changing �2 to −�2 in the last line of Eq.
�10�. The result, with −�3�3 written as ��1�1���2�2�, is

1

4
�1 ± ��1�1 − �2�2�cos 2� + ��1�1���2�2�� . �27�

For either �+
� or �−

�, this matrix has eigenvalues

1

2
cos 2�, −

1

2
cos 2�,

1

2
,

1

2
�28�

so the state of the spins after the Lorentz transformation is
separable only if cos 2� is zero.

We can think of a qubit formed by the two momentum
states for each particle and use the concurrence of these qu-
bits for the two particles to measure the entanglement of

their momenta. We use Pauli matrices �˜1, �˜2, �˜3 to describe

the momentum qubit for particle A and Pauli matrices �˜1,

�˜2, �˜3 for the momentum qubit for particle B, taking �pA1
�,

�pA2
� to be the eigenvectors of �˜3 for the eigenvalues 1and

−1 and taking �pB1
�, �pB2

� to be the eigenvectors of �˜3. From
Eqs. �16� and �14�, we find that when the state of the two
particles is a pure state, the density matrix for the state of the
momenta after the Lorentz transformation is

1
2 �pA1

,pB1
����pA1

,pB1
� + 1

2 �pA2
,pB2

����pA2
,pB2

� + 1
2 �pA1

,pB1
����pA2

,pB2
�cos 2� + 1

2 �pA2
,pB2

����pA1
,pB1

�cos 2�

= 1
2� 1

2 �1 + �˜3� 1
2 �1 + �˜3� + 1

2 �1 − �˜3� 1
2 �1 − �˜3� + 1

2 ��˜1 + i�˜2� 1
2 ��˜1 + i�˜2�cos 2� + 1

2 ��˜1 − i�˜2� 1
2 ��˜1 − i�˜2�cos 2��

= 1
4 �1 + ��˜1�˜1 − �˜2�˜2�cos 2� + �˜3�˜3� �29�

which we can write as

1

4
�1 + ��˜1�˜1 − �˜2�˜2�cos 2� − ��˜1�˜1���˜2�˜2�� . �30�

We can see that this density matrix has the same eigenvalues
�23� as the density matrices �±

� for the spins, so it has the

same Wooters concurrence �26�, which is shown in Fig. 2 as
a function of the velocity of the Lorentz transformation for
the case where �p � /m=10. By this measure, the change in
entanglement for the momenta is the same as the change in
entanglement for the spins.

We can also see that the partial transpose of this density
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matrix for the momenta, changing �˜2 to −�˜2 in the last line
of Eq. �29�, gives a matrix that has the same eigenvalues �28�
as the partial transpose �27� of the density matrix for the
spins. For the momenta, as well as for the spins, the state is
separable only if cos 2� is zero.

Both before and after the Lorentz transformation, there is
no entanglement or correlation between any momentum and

any spin. The density matrix for one momentum and one
spin is always the product of a density matrix for the mo-
mentum and a density matrix for the spin. There are no two-
qubit entanglements or correlations that increase as the en-
tanglement of the spins and the entanglement of the
momenta decrease. To see this, we write out the state vector
�16� as

1
�2

�
�A
����B

�DA�pA1
�DB�pB1

�
1
�2

�� + �A�− �B ± �− �A� + �B� ±
1
�2

���A
��
�B

�DA�pA2
�DB�pB2

�
1
�2

�� + �A�− �B ± �− �A� + �B�

=
1

2
�
�A

����B
��e−i�� + �A�− �B ± ei��− �A� + �B� ±

1

2
���A

��
�B
��ei�� + �A�− �B ± e−i��− �A� + �B� �31�

using Eqs. �20�, �21�, and �13� and writing out the Bell-state
vector �0� in terms of the eigenvectors �± �A of �3 and �± �B of
�3 for the eigenvalues ±1. For example, the density matrix
for particle A, obtained by taking the trace over the states of
particle B, is

�A
� =

1

4
��
�A

�
A
��
� + ���A

�
A
����� � �� + �AA� + � + �− �AA� − �� .

�32�

The density matrix for the momentum of particle A and the
spin of particle B, obtained by taking the trace over the spin
states of A and the momentum states of B, is

�A momentum,B spin
� =

1

4
��
�A

�
A
��
� + ���A

�
A
�����

� �� + �BB��+ � + �− �BB� − �� . �33�
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