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Emergence of Wigner molecules in one-dimensional systems of repulsive fermions under
harmonic confinement

Saeed H. Abedinpour, Marco Polini,* Gao Xianlong, and M. P. Tosi
NEST-CNR-INFM and Scuola Normale Superiore, I-56126 Pisa, Italy
(Received 28 July 2006; published 9 January 2007)

A Bethe-ansatz spin-density functional approach is developed to evaluate the ground-state density profile in
a system of repulsively interacting spin-1/2 fermions inside a quasi-one-dimensional harmonic well. The
approach allows for the formation of antiferromagnetic quasiorder with increasing coupling strength and
reproduces with high accuracy the exact solution that is available for the two-fermion system.
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INTRODUCTION

It is known from bosonization [1] that the ground state
|GS) of a one-dimensional (1D) system of repulsively inter-
acting spin-1/2 fermions carries antiferromagnetic quasior-
dering. Quantum fluctuations prevent any type of true spin-
symmetry breaking in 1D and |GS) may be viewed as a
superposition of two spin-density waves (SDW),
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so that the local spin polarization is rigorously zero. Never-
theless, ordering is signaled by the so-called “2kp— 4kp
crossover” in the wave number ¢ of bulk Friedel oscillations:
for vanishing and weak interactions the ground state is lig-
uidlike with g=2k, whereas at strong repulsions a periodic-
ity g=4kr emerges. Here kg is the Fermi wave number, re-
lated to the fermion density n by kp=7m/2, and each
modulation is weighted by a slow decay factor.

In previous work [2] we studied a system of N spin-1/2
fermions subject to a strongly anisotropic harmonic poten-
tial, characterized by angular frequencies w, and w in the
radial and axial directions with w;<w,. The fermions are
dynamically 1D if the anisotropy parameter of the confine-
ment is much smaller than the inverse particle number,
w)/w, <N7!. The two species of fermionic particles are
taken to have the same mass m, to be in equal numbers N
and N, and to interact via a contact repulsion with an effec-
tive 1D coupling strength g,p,=0 [3]. The system is de-
scribed by the Hamiltonian

22 N; N

H=——2 —+ Nz = 2)) + Vexos 2
o g PO Z ) Ve (2)

where contact interactions between parallel-spin particles are
suppressed by the Pauli principle and Vm=2ﬁ Vext(z2)
=(mwi/2)=Y 27 is the external static potential associated
with the axial confinement. Choosing the harmonic-oscillator
length ay=\#%/(mw;) as unit of length and the harmonic-
oscillator quantum % w; as unit of energy, the Hamiltonian (2)
can be shown to be governed by the dimensionless coupling
parameter
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For V=0 the Hamiltonian (2) reduces to the homogeneous
Gaudin-Yang model, which is exactly solvable by means of
the Bethe-ansatz technique [4].

In Ref. [2] a density-functional scheme using as reference
the Bethe-ansatz homogeneous fluid was proposed to calcu-
late the ground-state properties of the inhomogeneous 1D
system described by the Hamiltonian (2). However, this ap-
proach was found to fail at strong-coupling (see Fig. 8 at A
=10 in Ref. [2]): more precisely, the exchange-correlation
potential proposed there is unable to describe the 2k,— 4kp
crossover, which as noted above is expected to occur upon
increasing the strength of the repulsive interactions between
antiparallel-spin particles. In the present Brief Report we
propose a simple functional that embodies this crossover and
is capable of describing inhomogeneous Luttinger liquids
with strong repulsions. The main idea is to capture the ten-
dency to antiferromagnetic spin ordering (i) by adding an
infinitesimal spin-symmetry-breaking magnetic field to the
Hamiltonian (2),
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with up the Bohr magneton; and (ii) by resorting to spin-
density functional theory (SDFT) [5].

THE GROUND-STATE ENERGY OF THE GAUDIN-YANG
MODEL FOR FINITE <§z>

The addition of a magnetic field to the Hamiltonian (2) as
prescribed by Eq. (4) requires that we know the ground-state
energy of the homogeneous Gaudin-Yang model for the situ-
ation N;# N|, which will be our reference system with
Luttinger-liquid ground-state correlations. In the thermody-
namic limit (N, N, and L— %, L being the system size) the
properties of the reference fluid are determined by the linear
density n=N/L, by the spin polarization {=(N;-N)/N, and
by the effective coupling g,p. The linear density and the
coupling parameter can be conveniently combined into a
single dimensionless parameter y=mg,p/(f’n).

The energy per particle can be written in terms of the
momentum distribution p(k) as
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FIG. 1. The interaction contribution f to the ground-state energy
Segs(n,gp) of the homogeneous Gaudin-Yang model (see text) as
a function of the spin polarization ¢ for y=10. The exact result,
obtained from the solution of the Bethe-ansatz equations (6)—(9), is
compared with the fitting formula in Eq. (12).
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The function p(k) can be calculated by solving the two-
coupled Gaudin-Yang Bethe-ansatz integral equations [4],
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where Q and B are determined by the normalization condi-
tions

+0
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We have fitted the results for egg(n,{,gp), obtained from
the numerical solution of the Gaudin-Yang equations (6)—(9),
with a simple yet accurate parametrization formula given be-
low.

We introduce the Fermi wave number kp=7mn/2 of the
unpolarized system and the corresponding Fermi energy e
=hkx/ (2m). We write

SGS(n’ g’ng) = K(l’l, g) + 58GS(n’ g’ng) s (10)

where
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k(n,{) =

is the kinetic energy of the noninteracting system per par-
ticle. We find that degg(n,{,g;p) in units of the Fermi en-
ergy, f=0degs(n,{,gp)/ep, can be very accurately repre-
sented by the parametrization

fx,0) =[e(x) - 131 + alx) * + B(x) *
—[1+ a(x) + B, (12)

where x=2v/ 1, e(x) is given in Eq. (21) of Ref. [2], and
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Here a,=-1.68894, b,=-8.0155, ¢,=2.74347, ag
=-1.514 57, bg=2.598 64, and cz=6.580 46. Equation (12)
is compared with the exact Bethe-ansatz results for y=10 in
Fig. 1.

SPIN-DENSITY-FUNCTIONAL THEORY IN THE KOHN-
SHAM SCHEME

The ground-state spin-densities n,(z) can be calculated
within the Kohn-Sham version of SDFT by solving self-
consistently the effective Schrodinger equations for single-
particle orbitals

&
- Eg + K(rs)[l/l(,](Z) (Pa,(r(z) = Sa,(r(pa,(r(z) (]4)

with Vidlln,)(2)= Vi [n,1(2)+ VT [n,](2)+ Vil (2), together
with the closure

ne(@) = 2 T'9e, (). (15)
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Here the sum runs over the occupied orbitals and the degen-
eracy factors Fg’) satisfy the sum rule EaI‘g’)zNU. The first
term in the spin-dependent effective Kohn-Sham potential
V(K‘Ts) is the mean-field term V(I_‘; ) =g pn5(z), while the second
term is the exchange-correlation potential defined as the
functional derivative of the exchange-correlation energy
E.[n,] evaluated at the ground-state density profile, Vf:?
= 8E,[n,]/ 6ny(z)|gs. Finally, the third term is the spin-
dependent external field ng(z)=mwﬁz2/ 2—upoB(z).
Equations (14) and (15) provide a formally exact scheme
to calculate n,(z), but E,, needs to be approximated. The
local-spin-density approximation (LSDA) is known to pro-
vide an excellent description of the ground-state properties
of a variety of inhomogeneous systems [5]. In the following
we employ a Bethe-ansatz-based LSDA functional
(BALSDA) for the exchange-correlation potential,
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FIG. 2. Density profile n(z) (in units of au_l) as a function of z/q
for two fermions with antiparallel spins at A=1 (top) and A\=100
(bottom). The results of the BALSDA scheme proposed in this work
are compared with the exact solution of the two-body problem and
with the BALDA results of Ref. [2]. At A=1 the BALSDA result
coincides with the BALDA one.

Exc[na] - E??LSDA[nU]
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where the exchange-correlation energy s?‘c’m of the homoge-
neous Gaudin-Yang model is defined by
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&g (n,4,81p) = €65, ¢,81p) — k(n,) — en(n,,g1p).
(17)

Here

1
en(n,{,g1p) = Zngnz(l -8 (18)

is the mean-field energy.

ILLUSTRATIVE NUMERICAL RESULTS FOR THE TWO-
BODY PROBLEM

To illustrate how this procedure based on SDFT and
BALSDA embodies the 2kp— 4ky crossover we present
some numerical results for the case N=2, which is exactly
solvable as shown in Ref. [6] and in the Appendix of Ref.
[2].

For the case N=2 we choose the following form for the
infinitesimal spin-symmetry-breaking magnetic field:

B(z) = ze arctan(z/§), (19)
ar

where the field strength € is reduced to zero during the self-
consistent solution of the Kohn-Sham equations and £ is a
parameter that we take as £=0.5q;. Two important remarks
can be made: (i) if N is small the addition of this infinitesimal
field is irrelevant and, at the end of the self-consistency
cycle, one reproduces the results presented in the top and
central panels of Fig. 8 in Ref. [2]; and (ii) if N\ is large
instead, the final result for the total density n(z) is very dif-
ferent from that resulting from the BALDA theory of Ref.
[2]. We have carefully checked that the final result is inde-
pendent of the special form of the spin-symmetry-breaking
field. In fact one could alternatively start the self-consistent
Kohn-Sham cycle from an initial guess which has slightly
broken spin symmetry [i.e., from n(z) #n (z)], without us-
ing any B field.

Figure 2 reports our numerical results for the total density
profile of N=2 fermions with antiparallel spins. The emer-
gence of a Wigner molecule at strong coupling is evident and
very well-described by the BALSDA approach.
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