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A spin-dependent localized Hartree-Fock density-functional approach is presented for the efficient and
accurate treatment of inner-shell excited states of atomic systems. The approach is applied to the calculation of
the total and excitation energies of inner-shell excited states of several closed-shell atomic systems: Be, B+, Ne,
and Mg. The predicted results are in overall good agreement with available experimental and other ab initio
theoretical data. In addition, results for highly excited inner-shell states are presented.
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Recently there is considerable interest in the experimental
study of the inner-shell photoionization of atoms and mol-
ecules �1,2�. The dynamics of inner-shell photoionization and
the resulting relaxation of the excited atom are complicated
by the collective response of all the electrons of the atomic
target. Furthermore, the correlated response of the electrons
in the atom couples the photoionization and relaxation pro-
cesses. Thus, theoretical study of the inner-shell excited

states, taking into account both exchange and correlation ef-
fects accurately, is a subject of current interest. In this paper
we focus on the study of the electron structure of inner-shell
excited states of closed-shell atoms by means of a spin-
dependent localized Hartree-Fock �SLHF� density-functional
approach �3� recently developed, along with the generalized
gradient approximation �GGA� treatment of the electron
correlation.

The SLHF approach is based on an extension of the ex-
change �X�-only localized Hartree-Fock �LHF� density-
functional theory �DFT� �4� to the excited states. In the origi-
nal X-only LHF DFT �4�, developed and successfully used
for the treatment of the ground-state calculations of atomic
and molecular systems, the basic equation is the Kohn-Sham
�KS� equation and the exchange potential is a LHF exchange
potential derived under the assumption that the X-only KS

TABLE I. Total energies �E� and excitation energies ��E� of
inner-shell excited states 1s−1np 1,3P �n=2�8� of Be. The ground-
state energy is −14.6575 �a.u.�.

−E �a.u.� �E �eV�

States
Present
worka

Other
theory

Present
worka

Other
theory Expt.

1s−12p 3P 10.4526 10.4628b 114.4221 114.4304b

10.4654c

1P 10.4117 10.4146b 115.5350 115.7420b 115.49d

10.4209c 115.513c

1s−13p 3P 10.1843 10.1942b 121.7229 121.7395b

1P 10.1797 10.1882b 121.8481 121.9028b 121.42d

10.2073c 121.420c 121.4e

1s−14p 3P 10.1410 10.1504b 122.9012 122.9314b

1P 10.1392 10.1480b 122.9502 122.9967b 122.52d

10.1662c 122.537c 122.5e

1s−15p 3P 10.1239 10.1331b 123.3665 123.4021b

1P 10.1229 10.1319b 123.3937 123.4348b 122.96d

10.1495c 122.992c 123.0e

1s−16p 3P 10.1152 123.6033
1P 10.1146 10.1412c 123.6196 123.219c 123.16d

1s−17p 3P 10.1102 123.7393
1P 10.1098 123.7502

1s−18p 3P 10.1070 123.8264
1P 10.1068 123.8318

aFrom PW potential.
bWF �14�.
cSPCR �15,16�.
dReferences �17,18�.
eReference �19�.

TABLE II. Total energies �E� and excitation energies ��E� of
inner-shell excited states 1s−1np 1,3P �n=2�8� of B+. The ground-
state energy is −24.3284 �a.u.�.

States

−E �a.u.�
Present
worka

�E �eV�
Present
worka

Other
theoryb Expt.c

1s−12p 3P 17.2559 192.4546 192.460
1P 17.1837 194.4187 194.394 194.39

1s−13p 3P 16.5968 210.3878 209.850
1P 16.5861 210.6797 210.125 210.14

1s−14p 3P 16.4550 214.2478 213.611
1P 16.4509 214.3599 213.715 213.76

1s−15p 3P 16.3959 215.8549 215.189
1P 16.3939 215.9099 215.237 215.30

1s−16p 3P 16.3654 216.6860 215.999
1P 16.3642 216.7170 216.028 216.10

1s−17p 3P 16.3477 217.1684
1P 16.3469 217.1886

1s−18p 3P 16.3362 217.4803
1P 16.3359 217.4895

aForm PW potential.
bDF results �20�.
cReference �20�.
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determinant is equal to the Hartree-Fock �HF� determinant.
In the SLHF approach �3�, we assume that the X-only KS
determinant is also equal to the HF determinants for the ex-
cited states. Here the exchange potential is an exact nonva-
riational SLHF exchange potential. The KS energy eigenval-
ues obtained by solving the KS equation with this high-
quality exchange potential can serve as good zeroth-order
excited-state energies. The accuracy and usefulness of the
SLHF approach has been demonstrated by the recent suc-
cessful calculations of singly, doubly, and triply Rydberg
states of the valence electrons of He- and Li-like ions �3�.

In this paper, we extend the SLHF density functional ap-
proach and GGA to the treatment of atomic inner-shell ex-

cited states. Total and excitation energies of inner-shell ex-
cited states are calculated for closed-shell atomic systems:
Be, B+, Ne, and Mg. The results are in overall good agree-
ment with available experimental and ab initio theoretical
data. We also present some new results for the highly excited
inner-shell states.

In the SLHF density-functional approach, an electron
spin-orbital is determined by the KS equation and the ex-
change potential is the SLHF exchange potential �3�. For an
atomic system in the spherical coordinates, the spin-orbital
�i��r� of the ith electron with spin � can be expressed as
�i��r�=Rnl��r�Ylm�� ,�� /r, where, n, l, and m are the princi-
pal quantum number, orbital angular momentum quantum
number, and azimuthal quantum number of the electron, re-
spectively, Ylm�� ,�� is the spherical harmonic, and Rnl��r� is
the radial spin-orbital. The radial spin-orbital is governed by
the radial KS equation �3�

�−
1

2

d2

dr2 +
l�l + 1�

2r2 + veff�r��Rnl� = �nl�Rnl�, �1�

where, �nl� is the spin-orbital energy, veff�r�=vext�r�+vH�r�
+vx��r�+vc��r� is the radial effective potential, and vext�r�,
vH�r�, vx��r�, and vc��r� are the radial external potential,
radial Hartree potential, radial SLHF exchange potential, and
radial correlation potential, respectively. The radial SLHF
exchange potential is given by �3�

vx��r� = −
1

4����r� �
		�

	�	��

�s		�
� �r� − c		�

� �r�� , �2�

where 	= 	nlm
, 	� stands for a set of quantum numbers of
the occupied spin-orbitals with the spin �, s		�

� �r� and c		�
� �r�

are the matrix elements given in �3�, and ���r� is the spheri-
cally averaged spin-dependent electron density given by

TABLE III. Total energies �E� and excitation energies ��E� of
inner-shell excited states 1s−1ns 1,3S and 1s−1np 1,3P �n=3�8� of
Ne. The ground-state energy is −128.9331 �a.u.�.

States

−E �a.u.�
Present
worka

Other
theoryb

�E �eV�
Present
worka

Other
theory Expt.

1s−13s 3S 97.1495 97.1729 864.8826 864.3917b

1S 97.1411 97.1631 865.1112 864.6583b 865.1d

865.37c 865.32e

1s−14s 3S 97.0348 868.0038
1S 97.0326 868.0636 868.21c

1s−15s 3S 97.0008 868.9290
1S 97.0000 868.9507 869.06c

1s−16s 3S 96.9863 869.3235
1S 96.9859 869.3344 869.44c

1s−17s 3S 96.9788 869.5276
1S 96.9786 869.5331

1s−18s 3S 96.9744 869.6474
1S 96.9743 869.6501

1s−13p 3P 97.0766 97.0982 866.8663 866.4244b

1P 97.0736 97.0950 866.9480 866.5115b 867.05d

867.18c 867.12e

1s−14p 3P 97.0151 97.0330 868.5398 868.1986b

1P 97.0141 97.0318 868.5671 868.2312b 868.68d

868.70c 868.69e

1s−15p 3P 96.9919 97.0098 869.1712 868.8299b

1P 96.9915 97.0095 869.1820 868.8462b 869.23d

869.32c 869.27e

1s−16p 3P 96.9814 96.9900 869.4569 869.1238b

1P 96.9812 96.9988 869.4623 869.1347b 869.63d

869.58c 869.56e

1s−17p 3P 96.9756 869.6147
1P 96.9755 869.6174 869.79c 869.73e

1s−18p 3P 96.9721 869.7099
1P 96.9720 869.7127 869.87c

aFrom LYP potential.
bWF �14�.
cCI �21�.
dReferences �22,23�.
eReferences �21,24,25�.

TABLE IV. Total energies �E� and excitation energies ��E� of
inner-shell excited states 2p−1ns 1,3P �n=4�8� of Mg. The ground-
state energy −200.0744 �a.u.�.

States

−E �a.u.�
Present
worka

�E �eV�
Present
worka

Other
theoryb

Expt.
MZc NEd

2p−14s 3P 198.0557 54.9323 53.72 54.801 54.801
1P 198.0538 54.9849 55.065 55.065

2p−15s 3P 198.0044 56.3272 55.99 56.278 56.280
1P 198.0038 56.3457 56.544 56.545

2p−16s 3P 197.9852 56.8499 56.56 56.777 56.785
1P 197.9849 56.8586 57.039

2p−17s 3P 197.9759 57.1038
1P 197.9757 57.1087 57.302 57.305

2p−18s 3P 197.9707 57.2464
1P 197.9706 57.2478 57.456

aFrom LYP potential.
bCIIOO �26�.
cReference �27�.
dReference �28�.
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���r�= �1/4���nl
	�wnl��Rnl� /r�2. The potential in Eq. �2�

qualifies for excited-state calculation because it is self-
interaction free, has correct long-range behavior, and de-
pends on symmetry of atomic state �3,4�. The exchange po-
tential in Krieger, Li, and Iafrate �KLI� procedure �5�, an
approximation of the exact exchange optimized effective po-
tential �OEP� �6�, is an approximation of the SLHF exchange
potential �3,4�. For atoms with nuclear charge Z
8, the
GGA correlation potential vc��r� is taken to be that proposed
by Lee, Yang, and Parr �LYP� �7�. For atoms with Z�8, due
to the overestimation of the LYP potential �3,7�, the GGA
correlation potential will be taken to be that proposed by
Perdew and Wang �PW� �8�.

The spin-orbitals are obtained by solving the radial KS
equation �1� using the generalized pseudospectral �GPS�
method �9�. The GPS method associated with an appropriate
mapping technique can overcome difficulties due to singular-
ity at r=0 and long-tail at large r of Coulomb interaction.
Furthermore, the GPS method allows for nonuniform and
optimal spatial discretization with the use of only a modest
number of grid points. It has been shown to be a very effec-
tive and efficient numerical algorithm for high-precision so-
lution of KS equation �10–12�. From the spin-orbitals of an
electronic configuration, a single Slater determinant for a

multiplet state is constructed and its total energy calculated.
For a multiplet state that cannot be determined by a single
determinant, Slater’s diagonal sum rule �13� is used to cal-
culate the multiplet energy �3�.

The above procedure is now used to calculate the total
and excitation energies of inner-shell excited states of
closed-shell atomic systems: Be, B+, Ne, and Mg. For sim-
plicity, an abbreviation �nl�−1�n�l�� is used to represent an
electronic configuration of an electron in an inner subshell
�nl� being excited to a subshell �n�l��. For instance, 1s−1 2p
of Be represents 1s2s22p. Throughout the paper, 1 a.u.
=27.2116 eV is used.

In Table I we present the total and excitation energies of
inner-shell excited states 1s−1np 1,3P �n=2�8� of Be. For
comparison, we also list the theoretical results of density
work functional approach �WF� �14� and saddle-point
complex-rotation method �SPCR� �15,16�, and available ex-
perimental results �Expt.� �17–19�. The maximum relative
discrepancies of our total energies to the WF and SPCR re-
sults are 0.10% and 0.27%, respectively. The maximum rela-
tive deviations of our excitation energies to the WF, SPCR,
and experimental results are 0.18%, 0.35%, and 0.37%, re-
spectively. Hence our results agree very well with the experi-
mental and other theoretical results.

TABLE V. Total energies �E� and excitation energies ��E� of
inner-shell excited states 2s−1np 1,3P �n=3�8� and 2s−1ns 1,3S
�n=4�8� of Mg.

States

−E �a.u.�
Present
worka

�E �eV�
Present
worka

Other
theoryb

2s−13p 3P 196.6721 92.5820 91.72
1P 196.6630 92.8288

2s−14p 3P 196.5181 96.7718 96.18
1P 196.5170 96.8026

2s−15p 3P 196.4871 97.6164 97.11
1P 196.4865 97.6317

2s−16p 3P 196.4738 97.9775
1P 196.4735 97.9863

2s−17p 3P 196.4669 98.1667
1P 196.4667 98.1721

2s−18p 3P 196.4628 98.2782
1P 196.4626 98.2820

2s−14s 3S 196.5499 95.9065 94.65
1S 196.5447 96.0502

2s−15s 3S 196.4984 97.3079 97.07
1S 196.4966 97.3585

2s−16s 3S 196.4792 97.8325 97.64
1S 196.4783 97.8565

2s−17s 3S 196.4698 98.0872
1S 196.4693 98.1003

2s−18s 3S 196.4645 98.2301
1S 196.4642 98.2382

aFrom LYP potential.
bCIIOO �26�.

TABLE VI. Total energies �E� and excitation energies ��E� of
inner-shell excited states 1s−1np 1,3P �n=3�8� and 1s−1ns 1,3S
�n=4�8� of Mg.

States

−E �a.u.�
Present
worka

�E �eV�
Present
worka

Other
theoryb

1s−13p 3P 152.1433 1304.2822 1303.25
1P 152.1353 1304.5002

1s−14p 3P 151.9851 1308.5868 1307.86
1P 151.9839 1308.6192

1s−15p 3P 151.9536 1309.4453 1308.80
1P 151.9533 1309.4521

1s−16p 3P 151.9401 1309.8108
1P 151.9399 1309.8179

1s−17p 3P 151.9331 1310.0018
1P 151.9329 1310.0062

1s−18p 3P 151.9290 1310.1145
1P 151.9289 1310.1172

1s−14s 3S 152.0171 1307.7160 1306.29
1S 152.0144 1307.7895

1s−15s 3S 151.9649 1309.1362 1308.77
1S 151.9640 1309.1618

1s−16s 3S 151.9454 1309.6660 1309.35
1S 151.9450 1309.6780

1s−17s 3S 151.9360 1309.9226
1S 151.9358 1309.9297

1s−18s 3S 151.9307 1310.0663
1S 151.9306 1310.0706

aFrom LYP potential.
bCIIOO �26�.

BRIEF REPORTS PHYSICAL REVIEW A 75, 014501 �2007�

014501-3



To explore the feasibility of the approach to inner-shell
excitation of atomic ions, we also apply the procedure to the
calculation of inner-shell excitation of B+. The results for the
excited states 1s−1np 1,3P �n=2�8� are given in Table II
along with the theoretical results of Dirac-Fock method �DF�
�20� and experimental results �20�. The relative deviations of
our excitation energies to the DF and experimental results
are less than 0.32% and 0.29%, respectively. Thus our results
are in very good agreement with the experimental and other
theoretical results.

In Table III we present the total and excitation energies of
inner-shell excited states 1s−1ns 1,3S and 1s−1np 1,3P �n=3
�8� of Ne. For comparison we also list the theoretical re-
sults of density work functional approach �WF� �14� and
configuration-interaction model �CI� �21�, and experimental
results �Expt.� �22–25�. For the excited states 1s−1ns 1,3S, the
relative deviations of our total energies to the WF results are
not more than 0.02%. The relative discrepancies of our ex-
citation energies to the experimental results are less than
0.02%, while the maximum relative discrepancies of the WF
and CI results to the experimental results are 0.08% and
0.03%, respectively. For the excited states 1s−1np 1,3P, the
relative deviations of our total energies to the WF results are
not more than 0.02%. The maximum relative discrepancy of
our excitation energies to the experimental results is 0.02%
while the maximum relative deviations of the WF and CI
results to the experimental results are 0.07% and 0.02%, re-
spectively. Thus our excitation energies are very close to the
CI results and better than the WF data.

The total and excitation energies of inner-shell excited
states 2p−1ns 1,3P, 2s−1np 1,3P and 2s−1ns 1,3S, as well as
1s−1np 1,3P and 1s−1ns 1,3S for n�8 of Mg are shown in
Tables IV–VI, respectively. For comparison, the theoretical
results of configuration-interaction calculation with

improved and optimized orbitals �CIIOO� �26� and
experimental results �Expt.� �27,28� are also shown in these
tables. For the excited states 2p−1ns 1,3P in Table IV, the
only ones for which experimental excitation energies are
available, the CIIOO excitation energies are smaller than
both the experimental results and our results. The maximum
relative deviations of our excitation energies and the CIIOO
results to the experimental results are 0.36% and 1.97%, re-
spectively. Thus our results are more accurate than the CI-
IOO results. For the excited states in Tables V and VI, the
CIIOO excitation energies are again smaller than ours. The
maximum relative deviations of our results to the CIIOO
results are 0.94%, 1.33%, 0.08%, and 0.11% for the excited
states 2s−1np 1,3P, 2s−1ns 1,3S, 1s−1np 1,3P, and 1s−1ns 1,3S,
respectively.

In summary, a SLHF density-functional approach is pre-
sented and applied to calculate the total energies and excita-
tion energies of inner-shell excited states of closed-shell
atomic systems: Be, B+, Ne, and Mg. The results are in over-
all good agreement with the available, more sophisticated ab
initio theoretical results and experimental data. The relative
discrepancies of our calculated excitation energies to the
available experimental results are not more than 0.40%,
demonstrating that the SLHF density-functional approach
provides a powerful and computationally efficient scheme
for the accurate calculation of inner-shell excited states of
closed-shell atomic systems within DFT. Finally, we present
also a number of new results for highly excited inner-shell
states.
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Foundation.
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