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Based on the matrix realignment and partial transpose, we develop an approach to the entangling power and
operator entanglement of quantum unitary operators. We demonstrate the approach by studying several unitary
operators on qudits, and indicate that these two matrix rearrangements are convenient to use in studying
entangling capabilities of quantum operators.
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Given a unitary operator, in the context of quantum infor-
mation �1�, one may ask how much entanglement capability
the operator has. The entangling unitary operator can be con-
sidered as a resource for quantum-information processing,
and it becomes important to quantitatively describe unitary
operators. Recently, there is increasing interest in the en-
tanglement capabilities of quantum evolution and Hamilto-
nians �2–10�. The entangling power based on the linear en-
tropy �2� is a valuable, and relatively easy to calculate,
measure of the entanglement capability of an operator. The
entangling power for two qudits can be expressed in terms of
operator entanglement �3,7� �also called Schmidt strength
�11��. Both entangling power and operator entanglement
have been applied to the study of quantum chaotic systems
�12–15�. Moreover, the concept of entangling power has
been extended to the case with ancillas �16�, the case of
entanglement-changing power �17�, and the case of disentan-
gling power �18�.

Let us start by introducing some basics of entanglement
of quantum states, the operator entanglement, and the entan-
gling power. For a two-qudit pure state ����Hd � Hd, one
can quantify entanglement by using the linear entropy

E����� ª 1 − Tr�1
2, �1�

where �1=Tr2�������� is the reduced density matrix. The
linear entropy satisfies the inequalities 0�E������1−1/d,
where the lower �upper� bound is reached if and only if ���
is a product state �maximally entangled state�.

In the local orthogonal basis ��1� , . . . , �d�	, the state ��� is
written as

��� = 

i,j=1

d

Aij�i� � �j� , �2�

where Aij are the coefficients, and A can be considered as a
d�d matrix. After direct calculations, one finds that the re-
duced density matrix �1=AA†. Substituting it in Eq. �1� leads
to another expression of the linear entropy:

E����� = 1 − Tr�AA†AA†� . �3�

An operator can increase the entanglement of a state, but
an operator can also be considered to be entangled because
operators themselves inhabit a Hilbert space. The entangle-

ment of quantum operators is introduced �3� by noting that
the linear operators over Hd span a d2-dimensional Hilbert
space with the scalar product between two operators X and Y
given by the Hilbert-Schmidt product �X ,Y�ªTr�X†Y�, and
�X�HSª�Tr�X†X�. We denote this d2-dimensional Hilbert
space as Hd2

HS. Thus, the operator acting on Hd � Hd is a state
in the composite Hilbert space Hd2

HS
� Hd2

HS, and the entangle-
ment of an operator X is defined �3�. We use the linear en-
tropy to quantify the entanglement of a unitary operator U,
and denote the amount of entanglement by E�U� in the fol-
lowing discussions.

The entangling power quantifies the entanglement capa-
bility of a unitary operator U. It is defined as �2�

ep�U� ª E�U��1� � ��2�� , �4�

where the overbar stands for the average over all product
states. It tells us how much entanglement the operator U
produces, on average, when acting on product states. After a
suitable average over initial product states, one finds �2�

ep�U� =  d

d + 1
�2

�E�U� + E�US12� − E�S12�� , �5�

where S12 is the swapping operator which can be written as

S12 = 

i,j=1

d

�ij��ji� . �6�

Thus, the entangling power defined on d�d systems can be
expressed in terms of the entanglement of three operators U,
US12, and S12. Therefore, by studying the entanglement of
these three operators we can obtain the entangling power of
U.

Next, we give our approach, and first consider the opera-
tor entanglement of a unitary operator. A unitary operator can
be written as

U = 

ijkl

�ij�U�kl��ij��kl�

= 

ijkl

Uij,kl�i��k� � �j��l� = 

ijkl

Uij,kleik � ejl, �7�

where eik are orthogonal bases in the space Hd2
HS, and can be

considered as states. Now, we define a new matrix UR as
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�UR�ij,kl = Uik,jl. �8�

The matrix can be obtained by realignment of matrix U �19�.
Note that the above manipulation of the matrix is not re-
stricted to the unitary matrix. Comparing Eqs. �2� and �7�,
and using Eq. �3�, one obtains the operator entanglement of
U as

E�U� = 1 −
1

d4Tr�UR�UR�†UR�UR�†� . �9�

We see that the operator entanglement is determined by the
naturally appearing realigned matrix, which is easy to obtain
from the original unitary matrix, and thus our approach is
convenient to study operator entanglement.

This matrix realignment is the same as density matrix
realignment when studying the separability problem of quan-
tum mixed states �19�. The realignment criterion �also called
the cross-norm criterion� is strong to detect many bound en-
tangled states. We see here that the same matrix realignment
approach is useful in studying operator entanglement.

There is another matrix rearrangement, called partial
transpose �20�. A partial transpose with respect to the first
system UT1 is defined as

�UT1�ij,kl = Ukj,il. �10�

The partial transpose method can be used to study entangle-
ment of quantum mixed states. Is it useful in studying en-
tanglement capabilities of quantum operators? We will see
that indeed it is.

The entangling power is determined by three operator en-
tanglements E�U�, E�S12�, and E�S12U�. The first two can be
determined by the realignment method, and the last one of
course can be determined by the same method, but with an
extra effort to make the matrix multiplication S12U. In fact,
we have �21�

S12�S12U�R = UT1.

Using the above property and applying Eq. �9� to S12U, we
obtain

E�S12U� = 1 −
1

d4Tr�UT1�UT1�†UT1�UT1�†� . �11�

Therefore, the operator entanglement of S12U can be written
in terms of the partially transposed matrix UT1.

From Eqs. �5�, �9�, and �11�, we know that the entangling
power can be determined by matrix realignment and the par-
tial transpose

ep�U� =  d

d + 1
�2

�2 − E�S12�� −
1

�d + 1�2d2Tr��UR�UR�†�2

+ �UT1�UT1�†�2	 . �12�

Both these matrix manipulations are useful in the context of
separability of quantum states. Here, we find that they natu-
rally emerge in studying operator entanglement and entan-
gling power in quantum-information theory. To illustrate the
approach, we consider several examples.

Example 1. The SWAP operator S12. From Eq. �6�, it is
easy to see that

S12
R = S12, S12

† = S12, S12
2 = I .

The SWAP operator is invariant under matrix realignment.
Then, from Eq. �9�, the linear entropy of the SWAP operator is
given by

E�S12� = 1 −
1

d4Tr�S12
4 � = 1 −

1

d2 . �13�

From Eq. �5�, evidently the entangling power of the SWAP

operator is zero.
Example 2. The unitary operator V generated by the

SWAP

V = exp�− itS12� = cos�t�I − i sin�t�S12. �14�

It is straightforward to check the following identities:

IT1 = I, IR = dP+, S12
T1 = dP+, S12

R = S , �15�

with the projector

P+ = ��+���+�, ��+� =
1
�d



i=1

d

�i� � �i� . �16�

From the above identities, we obtain

VR�t� = cos�t�dP+ − i sin�t�S12,

VT1�t� = cos�t�I − i sin�t�dP+. �17�

Then we find

VR�t��VR�t��† = cos2�t�d2P+ + sin2�t�I ,

VT1�t��VT1�t��† = cos2�t�I + sin2�t�d2P+. �18�

From the above two equations and Eqs. �9� and �11�, we find
the linear entropies

E�V� = 1 −
1

d2��1 − cos4 t� , �19�

E�VS12� = 1 −
1

d2��1 − sin4 t� . �20�

Substituting Eqs. �19� and �20� into �5� leads to the expres-
sion of the entangling power

ep =
d2 − 1

2�d + 1�2sin2�2t� . �21�

From Eqs. �19� and �21�, we see that the maximal value of
the operator entanglement occurs at t=� /2; however, at this
point the entangling power is zero. This point corresponds to
the SWAP operation. The maximal entangling power occurs at
t=� /4, which corresponds to the �SWAP gate, the square of
which is just the SWAP gate. Thus, the �SWAP gate can be
used as an important gate for quantum computing not only in
qubit systems �22�, but also in qudit systems. Quantitatively,
the operator entanglement and entangling power of the
�SWAP gate are given by
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E�V� =
3

4
1 −

1

d2�, ep =
d2 − 1

2�d + 1�2 , �22�

respectively.
Example 3. A general two-qudit controlled-U gate is given

by

CU ª 

n=1

d

�n��n� � Un. �23�

The controlled-U gate implements the unitary operator Un on
the second system if and only if the first system is in state
�n�. For the controlled-U operation, it was found that �16�

ep�CU� =  d

d + 1
�2

E�CU� . �24�

Let us prove this via our approach. From Eq. �5�, to prove
the above identity is equivalent to proving that

E�CUS12� = E�S12� . �25�

In fact, we have a more general result that if the partial
transpose of a unitary operator U is still a unitary operator,
then E�US12�=1−1/d2=E�S12�. This result immediately fol-
lows from Eq. �11�. For our operator CU, from the definition,
it is not difficult to see that it is invariant under a partial
transpose with respect to the first system. Of course, CU is

unitary, and then Eq. �25� holds. In this case, the entangling
power is proportional to the operator entanglement of the
controlled-U gate. We see that it is easier to obtain Eq. �25�
via our approach.

In conclusion, we have developed a method for studying
entangling power and operator entanglement. One only
needs to obtain the realigned unitary operator and partially
transposed operator to determine the entangling power. Once
we have an analytical expression for the unitary matrix, then
analytical expressions for entangling power and operator en-
tanglement can be obtained. If we cannot have the analytical
expression, it is very convenient to make the matrix rear-
rangements numerically, and then the entangling power and
operator entanglement can be quickly computed.

The matrix realignment and partial transpose play very
important roles in the theory of separability of quantum
mixed states, and we see here that they naturally appear in
the study of entanglement capabilities of quantum evolution.
The approach developed here can be applied to investigate
entanglement capabilities in many physical systems such as
composite quantum chaotic systems.
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