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When it comes to laser phenomena in quantum-dot-based systems, usually atomic models are employed to
analyze the characteristic behavior. We introduce a semiconductor theory, originating from a microscopic
Hamiltonian, to describe lasing from quantum dots embedded in microcavities. The theory goes beyond
two-level atomic models and includes modified contributions of spontaneous and stimulated emission as well
as many-body effects. An extended version, which incorporates carrier-photon correlations, provides direct
access to the photon autocorrelation function and thereby on the statistical properties of the laser emission. In
comparison to atomic models, we find deviations in the dependence of the input/output curve on the sponta-
neous emission coupling �. Modifications of the photon statistics are discussed for high-quality microcavities
with a small number of emitters.
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I. INTRODUCTION

Recently it became possible to combine high-Q optical
microcavities with quantum-dot �QD� emitters as the active
material. The cavity design has been realized in the form of
microdisks �1–3�, micropillars �4,5�, or photonic crystals
�6,7�. All of them have been used to demonstrate high
Q-factors together with small mode volumes, resulting in
highly selective emission into few cavity modes, or even a
single mode. Correspondingly, large �-values, which de-
scribe the fraction of the spontaneous emission into the laser
mode, are realized, leading to low threshold currents re-
quired to achieve lasing with such devices. In the limit of a
�-factor of unity the so-termed “thresholdless” laser is ob-
tained as the jump in the input-output curve vanishes �8–11�.
Thus for the case that � becomes close to unity, one must
look at the intensity correlations of the outcoupled light to
obtain information on the photon statistics and, based on this,
to identify the transition from dominating spontaneous to
dominating stimulated emission. Experimentally this is pos-
sible in a Hanbury-Brown and Twiss �HBT�-like coincidence
measurement setup �12�. At the transition from spontaneous
to stimulated emission, a kink or peak is visible in the mea-
sured intensity correlation function. The list of recent efforts
and publications where the threshold behavior of QD or
quantum-well-based laser devices is investigated, partly by
using HBT-like setups, show the current strong topical inter-
est not only in the quantum optics, but also the nanotechnol-
ogy community �2–7,13,14�.

In the literature, semiconductor QD-based laser devices
are modeled almost without exception by considering atomic
two- or multi-level systems, resulting either in a set of rate
equations �9,10�, or a master equation for the reduced density
matrix �11,15,16�. To describe the statistical properties of the
emission from the microcavity, such as the intensity correla-
tion function, the latter approach has been used. Alterna-
tively, for two-level systems the quantum regression theorem
can be applied �17�.

On the basis of underlying atomic models, it is, however,
not possible to consider intrinsic semiconductor effects, such
as a modified source term of spontaneous emission and Cou-

lomb effects �18,19�. Also, unlike conventional four-level
gas lasers, QD-based microcavity lasers usually do not oper-
ate at full inversion, which leads to considerable differences
in the input-output curve of these devices. Especially if char-
acteristic values are derived from measured data, such as the
�-factor, one must be aware of the differences between an
atomic and a semiconductor laser model. Therefore a semi-
conductor approach is desirable if QD-based devices are
studied. A general semiconductor laser model based on a
microscopic Hamiltonian has been previously used to study
the influence of the carrier dynamics and many-body effects
�20,21�, lasing without inversion �22�, and noise spectra �23�,
but did not include correlations required to determine the
photon statistics.

In this paper we introduce a microscopic theory to calcu-
late both the light output and the intensity correlation func-
tion of microcavity lasers with QDs as the active material.
Our semiconductor approach naturally includes a modified
source term of spontaneous emission, Pauli-blocking effects
of the occupied states, as well as many-body Coulomb ef-
fects.

The paper is structured as follows: In the next section we
show how the equations of motion follow from the Hamil-
tonian for the coupled carrier-photon system and explain
how operator averages are classified within the scheme of the
cluster expansion technique. In Sec. III the laser equations
are derived and the atomic rate equation limit is discussed.
Section IV is concerned with higher order correlations
needed to obtain the photon statistics in terms of the auto-
correlation function. A direct comparison of a reduced two-
level version of our equations to the master equation is used
to verify our approach in Sec. IV B. Analytic results for the
autocorrelation function are considered in Sec. IV C. Finally,
results from the coupled equations for laser dynamics and
photon correlations are presented in Sec. V.

II. THEORETICAL MODEL

Starting from the semiconductor Hamiltonian for the in-
teracting carrier-photon system, we derive coupled equations
of motion for the relevant expectation values that describe
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the carrier and photon population dynamics and—in an ex-
tended version—also the photon statistics. We employ a
quantized light field together with a treatment of the carrier
system in second quantization.

A. Hamiltonian

The carrier part of the Hamiltonian contains the single-
particle contributions for conduction and valence band carri-
ers with the energies ��

c,v and the two-particle Coulomb in-
teraction,

Hcarr
0 = �

�

��
cc�

†c� + �
�

��
vv�

†v� , �1�

HCoul =
1

2 �
������

�V���,���
cc c��

† c�
†c��c� + V���,���

vv v��
† v�

†v��v��

+ �
������

V���,���
cv c��

† v�
†v��c�. �2�

Here, the Fermi operators c� �c�
†� annihilate �create� a

conduction-band carrier in the state ���, the operators v� �v�
†�

are the equivalent for valence band carriers. The explicit na-
ture of the single particle states will be specified later, and
the corresponding form of the Coulomb matrix elements

V���,���
��� is discussed in detail in Ref. �18�.

The Hamiltonian for the free part of the electromagnetic
field has the form

Hph = �
q

��q�bq
†bq +

1

2
	 , �3�

where the Bose operators bq �bq
†� annihilate �create� a photon

in the mode q. The index q stands for the fundamental cavity
mode ql with energy ��ql

, used for the laser emission, or
other nonlasing modes with q�ql.

The two-particle Hamiltonian for the light-matter interac-
tion in dipole approximation is given by

HD = − i �
q,��

�gq��c�
†v�bq + gq��v�

†c�bq� + H.c. �4�

The light-matter coupling strength gq�� is determined by the
overlap of the mode function of the electromagnetic field
with index q and the single-particle wave functions belong-
ing to the states ��� and ���, see Ref. �18�. We use the ap-
proximation of equal wave-function envelopes for
conduction- and valence-band carriers, resulting in diagonal
transitions between the corresponding conduction- and
valence-band states, i.e., qq��=gq����. The total Hamiltonian
is the sum of all discussed contributions:

H = Hcarr
0 + HCoul + Hph + HD. �5�

B. Factorization and truncation scheme

Using Heisenberg’s equations of motion together with the
Hamiltonian of the interacting system, we obtain the time
evolution of the carrier and photon operators. From this

coupled equations for operator averages, like the carrier
population or photon number in the cavity, are derived. Oc-
curring operator averages are classified into singlets, dou-
blets, triplets, quadruplets, etc., according to the number of
particles they involve. Considering interband transitions, it
must be borne in mind that the excitation of one electron is
described as the destruction of a valence band carrier and the
creation of a conduction band carrier. For the corresponding
interaction processes, a photon operator is connected to two
carrier operators �18,24�. This fact is used to classify mixed
expectation values with photon and carrier operators. For
example, the electron population f�

e = 
c�
†c�� is a singlet con-

tribution, the source term of spontaneous emission

c�

†v�vv
†c�� and the photon-assisted polarization 
bq

†v�
†c�� are

doublet terms.
In the following, N-particle averages, schematically de-

noted as 
N� and containing 2N carrier operators or an
equivalent replacement of photon operators, are factorized
into all possible combinations of averages involving one up
to �N−1�-particle averages. For the difference between the
full operator average and this factorization, we introduce a
correlation function of order N, denoted as �
N�. Schemati-
cally the factorization of singlets, doublets, triplets, and qua-
druplets is given by


1� = �
1� , �6a�


2� = 
1�
1� + �
2� , �6b�


3� = 
1�
1�
1� + 
1��
2� + �
3� , �6c�


4� = 
1�
1�
1�
1� + 
1�
1��
2� + 
1��
3� + �
2��
2� + �
4� .

�6d�

Looking at the last equation, the first four terms on the right-
hand side represent all possible combinations of singlets, sin-
glets and doublets, singlets and triplets, and doublets, respec-
tively. The last term is the remaining quadruplet correlation
function. Continuing the series �6a�–�6d� leads to quintuplet
terms and so on. Note that singlets cannot be factorized any
further.

From Heisenberg’s equations of motion an infinite hierar-
chy arises due to the two-particle parts of the Hamiltonian,
here the Coulomb and the light-matter interaction. The es-
sential idea of what has become known as the cluster expan-
sion method �25� is to replace all occurring operator expec-
tation values 
N� according to Eqs. �6� so that equations of
motion for the correlation functions �
N� are obtained. Then
the hierarchy of correlation functions is truncated rather than
the hierarchy of expectation values itself. This allows the
consistent inclusion of correlations up to a certain order in all
of the appearing operator expectation values. This truncation
procedure has previously been used to describe the lumines-
cence dynamics of quantum wells �26,27� and QDs
�18,28,29�. If the hierarchy is truncated at the level of two-
particle correlation functions, the so-called semiconductor
luminescence equations �SLE� for the coupled carrier and
photon populations emerge, which consistently include cor-
relations up to the doublet level.
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The purpose of this paper is the application of the cluster
expansion method to the coupled carrier-photon system in
order to describe the threshold behavior of
semiconductor-QD lasers. The extensions of the SLE pre-
sented in this paper are twofold. By discriminating between
the emission channels into the laser mode and the nonlasing
modes and by explicitly considering the pump process, a
semiconductor laser theory can be formulated, which con-
tains the familiar rate equations as a limiting case. Further-
more, the hierarchy of coupled equations is extended to pho-
ton correlations �corresponding to the quadruplet-level� in
order to access the photon statistics of the light emission. In
this context it is important to consider the correct terms for
the spontaneous and stimulated emission in order to relate
the �-factor to the threshold properties and especially to the
height of the “jump” in the input-output curve. The correct
source term already appears on the doublet level and is,
therefore, part of a laser theory obtained from extending the
SLE.

An important motivation for our work is the observation
that for large � values, typical for state-of-the-art microcav-
ity systems, the “jump” in the input-output curve broadens
and cannot be used for a clear identification of the onset of
coherent light emission. The statistical properties of the light
emission can be described in terms of the autocorrelation
function at zero delay time, g�2��	=0�= �
n2�− 
n�� / 
n�2.
Here, n=b†b is the photon number operator for the laser
mode. By means of Eq. �6d�, we can introduce �
b†b†bb�
= 
b†b†bb�−2
b†b�2. Since 
b�= 
b†�=0 for a system without
coherent excitation, only a factorization into doublets is pos-
sible. The factor of 2 arises from the two realizations for this
factorization. Then the autocorrelation function can be writ-
ten in terms of a quadruplet correlation function:

g�2��	 = 0� = 2 +
�
b†b†bb�


b†b�2 . �7�

C. Equations of motion

For the dynamical evolution of the photon number 
bq
†bq�

in the mode q and the carrier populations f�
e = 
c�

†c��, f�
h=1

− 
v�
†v��, the contribution of the light matter interaction HD in

the Heisenberg equations of motion leads to

��
d

dt
+ 2
q	
bq

†bq� = 2 Re �
��

�gq���
2
bq

†v��
† c��� , �8�

�
d

dt
�f�

e,h�opt = − 2 Re �
q

�gq��2
bq
†v�

†c�� . �9�

Note that we have scaled 
bq
†v�

†c��→gq�
bq
†v�

†c�� to have the
modulus of the coupling matrix elements appear. In Eq. �8�
we have introduced the cavity loss rate 2
q. For the laser
mode, this is directly connected to the Q-factor of the fun-
damental cavity mode, Q=�� /2
. The dynamics of the pho-
ton number in a given mode is determined by the photon-
assisted polarization 
bq

†v�
†c�� that describes the expectation

value for a correlated event, where a photon in the mode q is

created in connection with an interband transition of an elec-
tron from the conduction to the valence band. The sum over
� involves all possible interband transitions from various
QDs. The dynamics of the carrier population in Eq. �9� is
governed by contributions of photon-assisted polarizations
from all possible modes q. The influence of carrier-carrier
interaction on the carrier dynamics is discussed below.

The dynamical equation for the photon-assisted polariza-
tion is given by

��
d

dt
+ 
q + � + i��̃�

e + �̃�
h − ��q��
bq

†v�
†c��

= f�
e f�

h − �1 − f�
e − f�

h�
bq
†bq�

+ i�1 − f�
e − f�

h��
�

V����
bq
†v�

†c��

+
1

gq�
�
�

gq�C����
x + �
bq

†bqc�
†c�� − �
bq

†bqv�
†v�� .

�10�

The free evolution of 
bq
†v�

†c�� is determined by the detuning
of the QD transitions from the cavity resonances. In a semi-
conductor, the source term of spontaneous emission is de-
scribed by an expectation value of four carrier operators

c�

†v�v�
†c��, see Ref. �18�. For uncorrelated carriers, the

Hartree-Fock factorization of this source term leads to f�
e f�

h,
which appears as the first term on the right-hand side of Eq.
�10�. Corrections to this factorization are provided by the
Coulomb and light-matter interaction between the carriers
and are included in C������

x =�
c��
† v�

†c��v��.
A restriction of the source term of spontaneous emission

to the factorization approximation is justified in certain situ-
ations, such as the laser applications considered here. High
carrier densities efficiently screen the Coulomb interaction
between the carriers and lead to strong dephasing that di-
rectly suppresses correlations �18�. The feedback of the laser
cavity can support strong carrier-photon correlations that
dominate over carrier-carrier correlations. The calculation of
carrier-correlation contributions Cx to the source term of
spontaneous emission is a central issue of Ref. �18�, and a
discussion about the sensitivity of Cx to dephasing can be
found there. Note that in atomic systems, the spontaneous
emission is always linear in the excited-state population.
This difference to semiconductor systems is the origin of
interesting new effects in QDs, which are unknown in atomic
systems �19,28�.

The stimulated emission-absorption term in Eq. �10�,
which is proportional to the photon number 
bq

†bq� in the
mode q, provides feedback due to the photon population in
the cavity. Hartree-Fock �singlet� contributions of the Cou-
lomb interaction lead to the appearance of renormalized en-
ergies �̃ and to the interband exchange contribution in Eq.
�10� that couples the photon-assisted polarizations from dif-
ferent states �. The last two terms in Eq. �10� are carrier-
photon correlations that are discussed in Sec. IV. Carrier-
carrier and carrier-phonon interaction lead to dephasing,
which corresponds to a damping of the photon-assisted tran-
sition amplitude. While the used formalism allows for a mi-
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croscopic evaluation of these effects �27�, this is not the pur-
pose of this paper and dephasing is included via a
phenomenological damping constant �.

Furthermore, in the above equations we have used the fact
that in the incoherent regime polarizationlike averages of the
form 
v�

†c�� vanish �26�.

III. LASER EQUATIONS

To formulate the laser theory for QDs in optical micro-
cavities, we have to specify the electronic structure of the
system as well as the mode structure of the resonator. We
consider QDs with two confined shells, referred to as s- and
p-shell according to the in-plane symmetry of the corre-
sponding single-particle eigenstates, which appear energeti-
cally below a continuum of delocalized wetting layer �WL�
states. The QDs are embedded in a microcavity, which pro-
vides one �potentially degenerate� fundamental mode with a
large quality �Q-� factor that is in resonance with the QD
s-shell emission. Higher cavity modes are assumed to be
energetically well-separated from the fundamental mode, and
a continuum of leaky modes is used to define the spontane-
ous emission coupling �, i.e., only a fraction of the sponta-
neous emission at the laser transition energy involves the
laser mode.

A. Dynamical equations

In the following scheme, several assumptions are in-
cluded, which are justified by possible experimental condi-
tions and which lead to a convenient formulation of the
theory. They provide no principle limitations and their use
can be circumvented at the cost of more complicated analyti-
cal and numerical formulations. �i� We assume that optical
processes involving the laser mode �stimulated and sponta-
neous emission as well as photon reabsorption� are exclu-
sively connected to the s-shell transitions. In this case, higher
shells and WL states contribute only to the carrier dynamics.
�ii� Ultrafast carrier scattering processes in QDs have been
predicted in recent studies of carrier-carrier �30� and carrier-
phonon �31� interaction. Based on these grounds, we assume
that the carrier system is close to equilibrium, so that scat-
tering processes can be described in relaxation-time approxi-
mation �30�. �iii� To include the simplest possible pump pro-
cess, we consider carrier generation in the p-shell at a given
rate P. This can be traced back either to resonant optical
pumping in connection with rapid dephasing, or to carrier
injection into the delocalized WL or bulk states and fast suc-
cessive carrier capture and relaxation processes. �iv� For the
nonlasing modes, stimulated emission and reabsorption of
photons is neglected, which corresponds to a situation where
photons spontaneously emitted into nonlasing modes rapidly
leave the cavity. In the case of strong dephasing �provided by
efficient carrier scattering� it is then possible to analytically
solve the equation for the corresponding photon-assisted po-
larization and to introduce a rate of spontaneous emission
into the nonlasing modes. �v� It has been shown in Ref. �28�
that the major emission into the fundamental mode is due to
those QDs, which are on resonance, whereas slightly detuned

dots hardly contribute. Therefore in the following we can
consider to a good approximation only those emitters in reso-
nance with the fundamental mode, rather than using an inho-
mogeneously broadened sample of QDs. For a system of
identical dots, which are on resonance with the nondegener-
ate fundamental mode of the cavity, the occurring energy
differences with the laser mode, �̃�

e + �̃�
h−��ql

, drop out in the
equations of motion in the following.

So far we have derived the fundamental equations for the
carrier and photon dynamics, which, on the singlet-doublet
level, are known as semiconductor luminescence equations.
In order to describe a pumped laser system, we must incor-
porate carrier generation and the �-factor into the theory, as
well as deal with the correlations appearing in Eq. �10�.

Regarding the treatment of many-body Coulomb effects,
one can distinguish between two limiting cases. In the high-
carrier density and high-temperature regime, the WL states
accommodate a substantial carrier density that screens the
Coulomb interaction between the QD carriers. At the same
time, the Coulomb interaction between QD and WL carriers
leads to broadening and energy shifts of the QD transitions.
Calculations of QD gain spectra in this regime are the sub-
ject of Ref. �32�. In the low-temperature regime that was
recently studied in several experiments �5,28�, the population
of the WL states is expected to be marginal. The remaining
Coulomb interaction between the QD carriers leads to intra-
and interband interaction effects and will be summarized in
an effective transition energy and oscillator strength for the
coupling to the laser mode.

While the main focus of this paper is on carrier-photon
and photon-photon correlations in QD lasers, also the ex-
plicit inclusion of carrier-carrier Coulomb correlations, in
terms of the cluster expansion or with alternative methods, is
desirable. While this is an ongoing research subject, our ap-
proximations are supported by several arguments: �i� Since
dominantly QDs with transitions in resonance with the high-
Q laser mode contribute to the emission, possible line shifts
are not explicitly included subsequently. �ii� In calculations
of the source term of spontaneous emission for QDs in mi-
crocavities �28� it turned out that the role of Cx is small,
when typical material parameters and high Q-values are con-
sidered. In this case the strong feedback of the cavity domi-
nates over the correlations and the singlet factorization f�

e f�
h

provides a good approximation for the source term. Thus, in
the following calculations, Cx is not included.

Under the discussed conditions, the equation of motion
for the photon-assisted polarization of the laser mode takes
the form

��
d

dt
+ 
 + �	
b†vs

†cs� = fs
efs

h − �1 − fs
e − fs

h�
b†b�

+ �
b†bcs
†cs� − �
b†bvs

†vs� ,

�11�

where, from now on, the index q=ql is omitted for the laser
mode. In the equation of motion for the photon-assisted po-
larization of the nonlasing modes, the negligible photon
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population allows the omission of the feedback term and
carrier-photon correlations,

��
d

dt
+ 
q + � + i��̃s

e + �̃s
h − ��q�	�
bq

†vs
†cs��q�ql

= f�
e f�

h.

�12�

As a result, Eq. �12� can be solved in the adiabatic limit and
the part q�ql of the sum in Eq. �9� can be evaluated, yield-
ing a time constant 	nl for the spontaneous emission into
nonlasing modes according to the Weisskopf-Wigner theory
�17�,

2

�
Re �

q�ql

�gqs�2


q + � + i��̃s
e + �̃s

h − ��q�
=

1

	nl
. �13�

In a laser theory, one typically distinguishes between the rate
of spontaneous emission into lasing and nonlasing modes,
1 /	l and 1/	nl, respectively. Both rates add up to the total
spontaneous emission rate 1 /	sp. Then the spontaneous emis-
sion factor is given by

� =

1

	l

1

	sp

=

1

	l

1

	l
+

1

	nl

�14�

and the rate of spontaneous emission into nonlasing modes
can be expressed according to

1

	nl
=

1 − �

	sp
. �15�

For a further discussion of the time constants, see the Appen-
dix.

From Eq. �9� one can now determine the population dy-
namics in the s-shell. For the spontaneous emission into non-
lasing modes, the adiabatic solution of Eq. �12� is used ac-
cording to Eqs. �13� and �15�. Furthermore, we include a
transition rate of carriers from the p- to the s-shell in
relaxation-time approximation, Rp→s

e,h = �1− fs
e,h�fp

e,h /	r
e,h, and

ggql,s
to obtain

d

dt
fs

e,h = − 2�g�2 Re
b†vs
†cs� − �1 − ��

fs
efs

h

	sp
+ Rp→s

e,h . �16�

Here the first term describes the carrier dynamics due to the
interaction with the laser mode, while the second term rep-
resents the loss of carriers into nonlasing modes. The block-
ing factor 1− fs

e,h in Rp→s
e,h ensures that the populations cannot

exceed unity.
The carrier dynamics for the p-shell can be written as

d

dt
fp

e,h = P�1 − fp
e − fp

h� −
fp

e fp
h

	sp
p − Rp→s

e,h , �17�

where a carrier generation rate P is included together with
the Pauli-blocking factor �1− fp

e − fp
h�. The second term de-

scribes spontaneous recombination of p-shell carriers and the
third contribution is the above-discussed carrier relaxation.

The resulting set of equations �16� and �17�, together with
Eqs. �8� and �11� allows one to calculate the coupled dynam-

ics for the photon number and the carrier population. It turns
out that the inclusion of the carrier-photon correlations,
which are given by the last two terms in Eq. �11�, does not
change the results for the input-output characteristics, shown
below in Fig. 3. Neglecting the carrier-photon correlations in
Eq. �11�, the resulting set of equations corresponds to a trun-
cation of the hierarchy on the doublet level. Note, however,
that the inclusion of these correlations in Eq. �11� is of criti-
cal importance if 
b†v�

†c�� is used for the calculation of
higher-order correlation functions, cf. Sec. IV.

B. Rate equation limit

In the following we show how the frequently used atomic
rate equation model �9,11� can be obtained from the above
developed semiconductor theory as a limiting case. �i� The
semiconductor specific source term of spontaneous emission
f�

e f�
h in Eqs. �11�, �16�, and �17� is replaced by the electron

population f�
e. This happens because successive destruction

of more than one carrier always yields zero in the case of a
two-level system, where only one electron is present per in-
dependent emitter, in which case we use c�c�=v�v�=c�v�

=0. Then the source of spontaneous emission 
c�
†v�v�

†c��
arising in Eq. �10� can be found to reduce to 
c�

†c��= f�
e . �ii�

Full inversion of the laser transition is assumed, 1− fs
h

= 
vs
†vs�=0, which is usually well-justified for atomic four-

level laser systems �but not for QDs�. �iii� The adiabatic
solution of Eq. �11� is inserted into Eq. �8�. Introducing the

number of excited emitters N̄= fs
eN, where N is the total num-

ber of emitters that arises from the sum over all states in Eq.
�8�, we find

d

dt

b†b� = − 2

b†b� +

�

	sp
�1 + 
b†b��N̄ . �18�

The photon population is determined by the interplay of the
cavity losses 2
 and the photon generation due to spontane-

ous processes �N̄ and stimulated processes �
b†b�N̄. For the
number of excited emitters we obtain

d

dt
N̄ = −

�

	sp

b†b�N̄ −

1

	sp
N̄ + P , �19�

where, for atomic laser systems quite common, a constant
pumping NRp→s

e,h = P has been used, which describes the
carrier-generation rate in the laser-transition level. The car-
rier recombination is determined by the stimulated emission
into the laser mode �� /	sp=1/	l, and by the spontaneous
emission �1/	sp into all available modes.

For a direct comparison with the semiconductor model,
results of the rate equations �18� and �19� for the input-
output curves and various values of the �-factor are shown in
Fig. 1. We use a typical set of parameters: 	sp=50 ps �spon-
taneous emission of QDs enhanced by the Purcell effect�,
N= Ñ /� with Ñ=20 �the number of emitters is increased
with decreasing � in order to have the thresholds occur at the
same pump rate�, and 
=20 eV. The corresponding cavity
lifetime is about 17 ps, yielding a Q-factor of roughly
30 000. The curves show the typical intensity jump ��−1
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from below to above threshold. In the limit �=1 the kink in
the input-output curve disappears.

IV. PHOTON STATISTICS

A. Extended laser equations

Now we turn to the extended set of laser equations includ-
ing carrier-photon and photon-photon correlation functions.
To access intensity correlations, we must calculate the corre-
lation function in Eq. �7�, which is a quadruplet contribution.
This implies that the treatment within the cluster expansion
has to be extended to the quadruplet level. Only photons
from the laser mode are assumed to build up correlations,
and because we consider only QDs in resonance with the
cavity, the free evolution energy terms drop out and are
therefore not explicitly given in the following.

The time evolution of the intensity correlation function is
given by

��
d

dt
+ 4
	�
b†b†bb� = 4�g�2�

��

�
b†b†bv��
† c��� , �20�

where the sum involves all resonant laser transitions from
various QDs. In this equation another quadruplet function
enters, which represents a correlation between the photon-
assisted polarization and the photon number. For the corre-
sponding equation of motion we obtain

��
d

dt
+ 3
 + �	�
b†b†bv�

†c��

= − 2�g�2
b†v�
†c��2 − �1 − f�

e − f�
h��
b†b†bb�

+ 2f�
h�
b†bc�

†c�� − 2f�
e�
b†bv�

†v�� − 2�
b†bc��
† v�

†c�v���

+ �
��

�
b†b†v��
† v�

†c�c��� . �21�

Here we have again scaled �
b†b†bv�
†c��→g�
b†b†bv�

†c��
with the light-matter coupling g for the laser mode. The trip-

let photon-carrier correlations in the third line are the same
as in Eq. �11�, and their evolution is given by

��
d

dt
+ 2
	�
b†bc�

†c��

= − 2�g�2 Re��
b†b†bv�
†c�� + �

��

�
b†v��
† c�

†c��c��

+ �
b†b� + f�
e�
b†v�

†c��� , �22�

��
d

dt
+ 2
	�
b†bv�

†v��

= 2�g�2 Re��
b†b†bv�
†c�� − �

��

�
bc��
† v�

†v��v��

+ �
b†b� + f�
h�
b†v�

†c��� . �23�

The correlation functions in the sum, which have been scaled
as �
b†v��

† c�
†c��c��→g�
b†v��

† c�
†c��c��, �
bc��

† v�
†v��v��

→g�
bc��
† v�

†v��v��, obey equations of motion

��
d

dt
+ 
 + �	�
bc��

† v�
†v��v��

= �1 − �������1 − f��
e − f��

h ��
b†bv�
†v��

− �g�2
b†v�
†c��*
b†v��

† c���
*� , �24�

��
d

dt
+ 
 + �	�
b†v��

† c�
†c��c��

= �1 − �������1 − f��
e − f��

h ��
b†bc�
†c��

+ �g�2
b†v�
†c��
b†v��

† c���� . �25�

In the following, we give arguments why the correlation
functions, which are determined by Eqs. �24� and �25�, and
the last term of Eq. �21� only contribute if correlations be-
tween different QDs exist, i.e., superradient coupling plays a
role in the system. The effect of superradiance is known to
rely on weak dephasing, which is difficult to realize under
the considered high-excitation conditions. We refer to the
dipole selection rules in cubic crystals, where optical transi-
tions with a given circular light polarization are coupled to a
particular electron spin and the corresponding hole total an-
gular momentum. Specifically, the s-shell states for electrons
are spin degenerate and the two spin states are coupled to
different light polarizations. If we consider correlations be-
tween photons with the same circular polarization, we find
that they are linked to states for which only one electron or
hole per s-shell and QD are available. In other words, anni-
hilating two valence-band electrons in the case of

bc��

† v�
†v��v�� and two conduction-band electrons in the case

of 
b†v��
† c�

†c��c�� is only possible if these carriers belong to
different QDs. Hence for �=�� these expectation values, and
according to their definition
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FIG. 1. Calculated output curves for the atomic limit and
�=1–10−5 from top to bottom. The photon number is scaled with �
in order to have the thresholds occur at equal pump intensities for
better comparison.
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bc��
† v�

†v��v�� = − 
bc��
† v���f�

v�1 − ����� + �
bc��
† v�

†v��v�� ,

�26�


b†v��
† c�

†c��c�� = − 
b†v��
† c���f�

c�1 − ����� + �
b†v��
† c�

†c��c�� ,

�27�

also the corresponding correlation functions �
bc��
† v�

†v��v��
and �
b†v��

† c�
†c��c�� vanish exactly. The correlation functions

referring to different QDs ���� are related to superradiant
coupling. The same applies to the expectation value


b†b†v��
† v�

†c�c��� = 2
b†v�
†c��
b†v��

† c����1 − �����

+ �
b†b†v��
† v�

†c�c��� , �28�

which also vanishes together with the corresponding correla-
tion function for �=��. Under the assumption that superradi-
ance is weak in the system, the discussed correlation func-
tions are neglected. If, however, the phenomenon of
superradiant coupling itself is to be studied, the correlation
functions must be included via their own equations of mo-
tion. Finally, the term �
b†bc��

† v�
†c�v��� in Eq. �21� is a gen-

eralization of the correlations to the source term of sponta-
neous emission C������

x =�
c��
† v�

†c��v��. For consistency
reasons, this contribution is neglected in accordance with the
above discussed omission of Cx.

Effects due to the Coulomb interaction of carriers can be
included along the same lines as discussed in Secs. II and III.
The contributions to Eq. �21�, that remain on the quadruplet
level, are given by

i�
d

dt
��
b†b†bv�

†c���Coul

= − 2�
�

�1 − f�
e − f�

h�V�����
b†b†bv�
†c��

− 2�f�
e + f�

h�V�����
b†b†bv�
†c�� . �29�

The result shows an analogous structure like the Hartree-
Fock Coulomb terms for 
b†v�

†c�� in Eq. �10� and can be
interpreted accordingly as a renormalization of the single-
particle energies and as interband exchange interaction caus-
ing additional renormalizations of the transition energies as
well as a redistribution of oscillator strength between differ-
ent QD transitions.

Coulomb interaction contributions to �
b†bc�
†c�� and

�
b†bv�
†v�� are analogous to those contributing to the carrier

dynamics of f�
e and f�

h discussed in detail in Ref. �18�. Their
inclusion is, however, beyond the scope of this paper and
will be the subject of future investigations.

B. Verification of the treatment of correlations: Comparison
with the master equation model

In Sec. III B we have shown that the developed laser
model can be reduced to the well-known rate equations, if
the semiconductor is replaced by two-level systems. In the
extended laser model derived in Sec. IV A, the calculation of

photon correlations is based on the cluster expansion that
provides a truncation of the hierarchy of correlation func-
tions. The aim of this section is to verify that such a trunca-
tion on the quadruplet level provides correct results for the
photon-intensity correlations, described by the autocorrela-
tion function g�2�.

In quantum optics, access to photon-intensity fluctuations
can either be obtained by invoking the quantum regression
theorem �17�, or by using a master equation to calculate the
diagonal density matrix for the coupled atom-photon system
�11,15,16�. Both methods are not directly applicable in semi-
conductors due to the presence of many-body effects and the
modified source term of spontaneous emission. However, our
semiconductor model can be reduced to a description of two-
level systems. This provides a verification method for our
approach and the possibility to study how well the truncation
of correlations within the cluster expansion scheme works, as
carrier-photon correlations are treated on an exact level in
the master equation within the two-level approach.

We have shown in Sec. III B that the source term of spon-
taneous emission reduces to f�

e under the assumption that
only one electron is present in each two-level atomic system.
Additionally, the equation of motion �21� changes to

��
d

dt
+ 3
 + �	�
b†b†bv�

†c��

= − 2g2
b†v�
†c��2 − 4�g�2
b†v�

†c��Re
b†v�
†c��

− �1 − f�
e − f�

h��
b†b†bb� + 2�
b†bc�
†c�� , �30�

again neglecting the quadruplet-level correlation functions
appearing on the right-hand side and scaling with the light-
matter coupling strength. All other equations of motion for
the correlations remain unmodified under the two-level as-
sumptions. In order to quantitatively compare to the master
equation given in Ref. �11�, we must once more assume a
fully inverted system, which is done by setting 1− f�

h=0 in
Eqs. �11� and �30�. Due to the coupling to the correlation
functions in Eq. �11�, an adiabatic solution in the spirit of the
rate equations �18� and �19� is no longer possible. Neverthe-
less, the numerical steady-state solution can be directly com-
pared to the results of the master equation.

To remain as close as possible to the semiconductor
model, we solve the atomic two-level version of Eqs. �8� and
�11� together with Eqs. �16� and �17� for the population dy-
namics of the laser and pump level �with f�

e f�
h replaced by f�

e

for the spontaneous emission�. This allows us to avoid the
introduction of a number of excited two-level systems. For
the direct comparison with the master equations, Rp→s is
used as a measure for the carrier generation rate at the laser
transition level.

Figure 2 shows numerical results from our truncated clus-
ter expansion model applied to two-level systems, in com-
parison to results obtained from the master equation in the
formulation of Rice and Carmichael �11�. The values for the

parameters 
, Ñ, and 	sp were taken from Sec. III and are the
same as for Fig. 1. Additionally relaxation rates entering
Rp→s

e,h for both electrons and holes of 1 ps, and a dephasing
�=1.36 meV, corresponding to a time of approximately
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500 fs, were used. The upper part of the figure shows the
second order correlation function atop the input/output curve
for various values of the �-factor. Looking at the input-
output curves, we see that the equation of motion approach
agrees convincingly well with the results from the master
equation for all values of �. Regarding the autocorrelation
function in the top panel, there is excellent agreement for
small values of the �-factor. A deviation of roughly 5% be-
comes apparent as � is increased to unity, and the results are
in good agreement regarding the onset and the end of the
transition from thermal to coherent light emission.

We point out that the deviation between lines and symbols
in Fig. 2 is a measure for the applicability of the cluster
expansion method leading to a truncation of carrier-photon
and photon-photon correlations beyond the quadruplet level.
Clearly one has to consider the tradeoff between deviations
due to this truncation and the possibility to include semicon-
ductor effects. The influence of the latter will be discussed
below. The agreement between the truncated �cluster expan-
sion� and nontruncated �master equation� description of
atomic two-level systems depends on parameters like the
cavity lifetime and the spontaneous emission rate. �For the
above comparison, typical values of current microcavities
have been used.� As long as the semiconductor theory is used

for parameters where its two-level version is in agreement
with the master equation, we are reassured that the truncation
of the cluster expansion can be applied with respect to the
photonic correlations. The semiconductor theory contains ad-
ditional carrier-carrier correlation effects, which are well-
described by means of the cluster expansion method. In fact,
the cluster expansion was developed to treat many-body ef-
fects of carriers �25�. Successful applications include the
photoluminescence of QDs �18,29� and exciton formation in
quantum wells �27�.

C. Analytical results for g„2…
„0…

Before the numerical results of the semiconductor model
are presented, it is instructive to study analytical solutions
for g2�0� in the two limiting cases of strong and weak pump-
ing. For this purpose we use the stationary limit of Eqs. �8�,
�11�, and �20�–�23�. Considering the resonant s-shell contri-
butions from identical QDs, we replace ��� by the number of
QDs N. Inserting in Eq. �8� the photon-assisted polarization
from Eq. �11�, ignoring spontaneous emission for the above-
threshold solution, and expressing the higher-order correla-
tions with the help of Eqs. �22� and �23�, we obtain from
Eqs. �7� and �20�

g�2��0� − 1 = −

�
 + ��

2�g�2
b†b�
�1 +

�g�2N


�
 + ��
�1 − fs

e − fs
h�	 .

�31�

In the limit 
b†b� /N�1, the right-hand side vanishes. Hence
we obtain g�2��0�=1, i.e., well above threshold the light is
coherent.

For the limiting case of weak pumping, we seek again the
stationary solution of our coupled system of equations, now
under the assumption that in Eq. �11� the stimulated emission
term and the higher-order correlations �
b†bc�

†c��,
�
b†bv�

†v�� can be neglected. A convenient way to solve for
the intensity correlation function �
b†b†bb� is to insert Eq.
�21� into Eq. �20�. The higher-order correlations in Eq. �21�
are replaced by the static solution of Eqs. �22� and �23�,
while in the latter 
b†v�

†c�� is replaced by Eq. �8�, and
�
b†b†bv�

†c�� is traced back to �
b†b†bb� with the stationary
solution of Eq. �20�. As explained above, we ignore the qua-
druplet correlations occurring in Eq. �21�. Together with Eqs.
�7� and �8� we finally obtain

�
�3
 + ��
�g�2N

+ �1 − fs
e − fs

h�	�g�2��0� − 2�

= −
2�fs

e + fs
h�

N
�g�2��0� − 1� −

2
�3
 + 2��
�g�2N2 . �32�

To evaluate this formula further, we restrict ourselves to the
case


2

�g�2N
� 1, �33�

or 2
 /��N /	l, i.e., the cavity loss rate is much larger than
the total rate of spontaneous emission into the laser mode. In
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FIG. 2. �Color online� Autocorrelation function �top� and input-
output curve �bottom� for a fully inverted two-level system. Com-
parison between the master equation �symbols� and the two-level
version of the semiconductor theory �solid lines� for �=1, 0.1, and
0.01. On the x-axis the pump rate into the laser level is given. For
the modified semiconductor theory, this corresponds to an effective
carrier generation rate in the s-shell.
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this “bad cavity limit” �11�, in which typical semiconductor
lasers operate, we obtain as an analytical result of our theory

g�2��0� = 2 −
2

N
. �34�

This is an important finding because it provides the statistics
of thermal light in the limit of many QDs, g�2��0�=2, and in
the opposite limit of a single QD it gives the statistics of a
single-photon emitter, g�2��0�=0.

V. NUMERICAL RESULTS

We now present numerical solutions of the extended
semiconductor laser theory including carrier-photon correla-
tions based on Eqs. �8�, �11�, �16�, �17�, and �20�–�23� using
an adaptive time integration algorithm. Again, we use the
same parameters as in Secs. III B and IV B, but different
relaxation times for electrons and holes are taken: 	r

e=1 ps,
	r

h=500 fs.
In Fig. 3 the autocorrelation function is shown atop the

input-output curve for various values of �. There are several
striking features: �i� The jump of the intensity curve from
below to above threshold is no longer determined by 1/�, as
in Figs. 1 and 2, obtained from a laser theory for two-level
systems. This is of particular importance since measurements
of the input-output characteristics are often used to experi-

mentally deduce the �-factor according to the predictions of
the two-level models. If the atomic 1/�-behavior would be
used to extract the �-factors from the curves in Fig. 3, one
would obtain 0.017 instead of 0.1, 0.0017 instead of 0.01,
and 0.00017 instead of 0.001. �ii� For small � values, the
s-shaped intensity jump is accompanied by a decrease of the
second-order coherence from the Poisson value g�2��0�=2 for
thermal light to g�2��0�=1 for coherent laser light. Using
larger � values, the abrupt drop of the autocorrelation func-
tion becomes softer, and below threshold g�2� remains
smaller than two. This decrease in the autocorrelation func-
tion is already a result of the relatively high cavity quality
�long cavity lifetime�. For a shorter cavity lifetime and a
large number of emitters, also at �=1 a value of g�2��0�=2 is
obtained in the sub-threshold regime, see below. �iii� At high
pump intensities saturation effects due to Pauli blocking be-
come visible in the input-output curve, effectively limiting
the maximum output that can be achieved. Additionally, ef-
fects of quenching were observed in master equation treat-
ments �15�.

In Sec. IV C we have discussed the analytical solution of
the semiconductor model for the autocorrelation function
g�2��0� below threshold in the limiting case that 
2� �g�2N. In
Fig. 4 we show the subthreshold value of the autocorrelation
function versus the number of emitters N. The analytical so-
lution �solid line�, which was derived for the limit of large 
,
is compared to numerical solutions of the extended semicon-
ductor laser model �open symbols� for �=1 and various val-
ues of 
. All other parameters are the same as those used in
Fig. 3. If 
=200 meV, the condition for the analytical solu-
tion is fulfilled and perfect agreement between analytical and
numerical results is obtained. In this case, the thermal emis-
sion g�2��0�=2 below the laser threshold is approached for a
large number of emitters N. In the limit of one single QD, the
antibunching signature g�2��0�=0 is numerically obtained.
On the other hand, in the theoretical limit of an infinitely
good cavity 
→0, a constant value of g�2��0�=1 is expected
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FIG. 3. �Color online� Calculated output curve �lower panel�
and autocorrelation function g�2��	=0� �upper panel� for �=1, 0.1,
0.01, and 0.001. The main parameters are the same as in Fig. 2 and
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for atomic models �11�. The case of larger cavity lifetimes is
displayed �circles and squares� and the trend of a decrease of
the subthreshold value is observed. For the case of a small
number of emitters in a very good cavity, photon correlations
become so strong that the truncation on quadruplet order
becomes insufficient.

VI. DISCUSSION AND OUTLOOK

In conclusion, we have developed a semiconductor laser
theory that includes carrier-photon correlations and allows
one to determine the photon statistics of the light emission.
The theory has been applied to describe microcavity lasers
with QDs as active material. It has been demonstrated how
�i� the model can be reduced to obtain the commonly used
rate equations, and �ii� how the incorporation of two-level
assumptions makes it possible to compare the photon corre-
lations to those obtained from a master equation. By these
means, we have verified that the truncation method of the
arising hierarchy of equations of motion can be applied in
the considered parameter regime, which is typical for current
state-of-the-art microcavity lasers.

Using a numerical evaluation of the theory, we have dem-
onstrated modifications of the characteristic emission prop-
erties due to semiconductor effects. Especially the jump in
the input-output curve from below to above threshold is
found not to scale with 1/�, as it does in the two-level case.

Most importantly, our approach opens up the possibility
to include the full spectrum of semiconductor effects in a
consistent and well-defined manner. Besides a more com-
plete inclusion of Coulomb correlations beyond the singlet
level, relaxation and dephasing processes can also be treated
on a microscopic level. Furthermore, with respect to Cou-
lomb and light-matter interaction-induced correlations be-
tween different QDs, effects of superradiant coupling can be
studied. While this is not the focus of this paper, it outlines
the direction of future work.
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APPENDIX: INTERPLAY OF TIME CONSTANTS

For the evaluation of our theory, we treat the rate of spon-
taneous emission into the nonlasing modes 1/	nl as an ex-

trinsic parameter, which is determined by the properties of
the laser resonator. Depending on the particular cavity de-
sign, other high-Q resonator modes as well as a quasicon-
tinuum of low-Q leaky modes can contribute.

The spontaneous emission into the laser mode can be cal-
culated from the light-matter coupling strength �g�2= �gqls

�2

for this mode, 
, and �. Restricting the adiabatic solution of
Eq. �11� to the spontaneous emission into the laser mode and
using Eq. �9� to define the corresponding rate 1 /	l according
to

d

dt
�fs

e,h�l,spont = −
fs

efs
h

	l
, �A1�

we find

1

	l
=

2

�

�g�2


 + �
. �A2�

With 	l and 	nl the �-factor follows from Eq. �14�.
In this paper we present the figures in the common style

where the �-factor is varied, as it is the most important pa-
rameter characterizing the cavity efficiency, while the total
rate of spontaneous emission 1/	sp=1/	l+1/	nl is held con-
stant. To achieve such a situation, for various �-values both
	nl and 	l need to be changed. Note that the latter requires a
change of the light-matter coupling strength according to Eq.
�A2�, which is possible for a given dipole coupling by a
modification of the mode functions, and/or by a change of
the lifetime of the cavity mode.

In Ref. �5� the presented theory is applied to pillar micro-
cavities with various resonator diameters. In such a situation,
the spontaneous emission into nonlasing modes is practically
constant due to the unchanging contributions of leaky modes,
while the spontaneous emission into the laser mode is modi-
fied by the Purcell effect.

The Purcell factor FP is defined as the ratio of the rate of
spontaneous emission into the cavity mode, 1 /	l, to the rate
of spontaneous emission into free space, 1 /	free. We can ex-
press the �-factor in terms of FP as

� =
FP

dFP +
	free

	nl

=

1

	l

d

	l
+

1

	nl

, �A3�

where additionally a possible degeneracy d of the fundamen-
tal mode has been included, see the article by J.-M. Gérard in
Ref. �33�.
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