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We investigate the ground-state properties of an equal mixture of two species of bosons in its Mott-insulator
phase at a filling factor of two per site. We identify one type of spin triplet-singlet transition through the
competition of the ground state. When the on-site interaction is weak �U�Uc� the two particles prefer to
stay in the lowest band and with weak tunneling between neighboring sites the system is mapped into an
effective spin-1 ferromagnetic exchange Hamiltonian. When the interaction is tuned by a Feshbach resonance
to be large enough �U�Uc�, the higher band will be populated. Due to the orbital coupling term S+S− in
the Hamiltonian, the two atoms in different orbits on a site would form an on-site singlet. For a non-SU�2�-
symmetric model, easy-axis or easy-plane ferromagnetic spin exchange models may be realized, corresponding
to phase separation or counterflow superfluidity, respectively.
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The study of quantum phase transitions in optical lattices
has made great progress both theoretically and experimen-
tally �1,2� and has become one of the focus issues of current
interest in the exploration of rich physics in ultracold atomic
systems. Jaksch et al. predicted that the dynamics of a
single-component Bose gas loaded into the lowest band of an
optical lattice is well described by the Bose-Hubbard model
�1� and Greiner et al. experimentally confirmed that the
phase transition from superfluid phase to Mott insulator
could be realized by suppressing tunneling between neigh-
boring sites �2�. For single-component bosons without inter-
nal degrees of freedom, the superfluid-insulator transition in
a periodic lattice has been extensively studied by various
methods �1,3,4�. When the spinless bosons are in the Mott
phase, the on-site fluctuation of particle numbers is sup-
pressed �4�. Many studies have shown that multicomponent
bosonic or fermionic gases in optical lattices exhibit much
richer phase diagrams �5–10�. An intriguing feature of the
multicomponent Bose systems is the structure of their inter-
nal “spin” degree of freedom. The recent formation of bound
repulsive atom pairs in an optical lattice even exemplifies
stable states without any analog in traditional condensed
matter physics �11�.

So far, a number of schemes have been proposed to derive
an effective Hamiltonian to describe the spin-related dynam-
ics for the multicomponent system in the Mott-insulator
phase �7,8�. Most of the schemes ignore the existence of the
upper bands and take the single-band approximation, which
is reasonable when the on-site interaction is much smaller
than the energy gap between the first band and the second
one. The situation may change dramatically if the scattering
strength of the atoms is greatly enhanced by the Feshbach
resonance so that the on-site interaction exceeds the band
gap. Recently, Köhl et al. have studied a fermionic mixture
of two hyperfine states of 40K, in a three-dimensional optical

lattice and accessed the strongly interacting regime via a
Feshbach resonance, in which coupling between the lowest
energy bands was dynamically generated �12�. Theoretically,
Diener and Ho showed that a band insulator may evolve into
a state with more bands occupied near the Feshbach reso-
nance �13�. Very recently, Ho studied the phase transition
from band insulator to Mott insulator for a fermionic system
in optical lattices at a filling of two fermions per site under
the two-band approximation �14�. In that work, the Hund-
like orbital coupling term is shown to play a special role in
the strongly interacting regime and favors spin alignment
between different orbits.

It is thus physically nontrivial to go beyond the single-
band approximation. Motivated by the recent progress in re-
search into the atomic gas in an optical lattice near a Fesh-
bach resonance, in this paper we study the equal mixing of a
two-component boson in an optical lattice with a filling of
two bosons per site, focusing on the Mott-insulating regime
and the spin-related phase transition due to the Feshbach
resonance. As in the fermionic case, on each site there are
many orbits and higher orbits may be occupied when the
system is near the Feshbach resonance. Without loss of gen-
erality and for the purpose of simplicity, we take into account
only two bands in the following text, which can be fulfilled
by enforcing an on-site interacting energy smaller than the
energy level spacing between the third and the first orbital.
We will show that in the strongly interacting regime the in-
duced interband coupling prefers the two atoms in different
orbits on a site to form an on-site singlet, which is quite
different from the Hund-like orbital coupling in the fermi-
onic systems �14�. For simplicity, we consider only a
one-dimensional �1D� system which can be achieved by tun-
ing the laser amplitudes V0x�V0y ,V0z to produce a set of
uncoupled 1D tubes �15,16�. In each tube, the system is
effectively described by a 1D optical lattice because the
transverse motion is completely frozen.

We start with the microscopic Hamiltonian of the
two-component bosonic system in a 1D optical lattice*Electronic address: schen@aphy.iphy.ac.cn
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where the spin indices �= ↑ ,↓ indicate the two species of
atoms or, equivalently, atoms with two internal states, and ��

is the chemical potential. For the equally mixed bosons, we
have �↑=�↓=� corresponding to N↑=N↓, where N� is the
total atom number of each species. The optical lattice poten-
tial has the form of V0xsin2 kx with wave vectors k=2� /�
and � is the wavelength of the laser light. The parameter
c�0 describes the repulsive interaction of the atoms and the
strengths of intraspecies and of interspecies interactions are
taken to be the same. Since we are interested in the regime
where the interaction energy is tuned so that at most two
Bloch bands are populated, it is sufficient to expand the
operator ���x� in the lowest two Wannier functions

���x� = �
i,	=1,2


i	�x�ci�	, �2�

where the operator ci�	 annihilates an atom with spin � in
the band 	 at lattice site i. In a deep lattice the Wannier
functions 
i	�x� can be approximated by the local harmonic
oscillator orbits in the ground state and the first excited state


i1�x� =
1

��a0
2�1/4 exp

− �x − xi�2

2a0
2 , �3�


i2�x� =
�− 1�i
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exp
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2a0
2 , �4�

where a0=�� /m
T is the ground-state size of the local har-
monic oscillator. Here 
T=�4V0xER /� and ER=�2k2 /2m is
the recoil energy.

The second quantized Hamiltonian thus consists of three
parts

H = Ht + Hintra + Hinter. �5�

The hopping term Ht describes tunneling of atoms from one
site to another, which is typically assumed to occur between
the nearest neighboring sites

Ht = − �
i,�,	,�

t	�ci+1�	
† ci�� + H.c., �6�

and the hopping energy is

t	� = −
�2

2m
�

0

L

dx �x
i+1	�x��x
i��x� . �7�

Hintra is the contact-type interaction Hamiltonian in the same
energy band,

Hintra = − �
i,�,	

�	ci�	
† ci�	 + �

i,	
U		ni↑	ni↓	

+
1

2 �
i,�,	

U		ni�	�ni�	 − 1� , �8�

where the chemical potentials for each band

�	 = − �
0

L

dx�−
�2

2m
�x

2 + V0xsin2 kx − �	
i	
2 �x� �9�

are distinguished by a difference �=�1−�2. This difference
is roughly the band gap between the two bands for
deep lattice. On the other hand, the on-site interaction
Hamiltonian between the two bands is denoted as Hinter,

Hinter = �
i,	��

U	��ni↑	ni↓� + Si	
+ Si�

− + �i	
† �i��

+
1

2 �
i,�,	��

U	��ni�	ni�� + �i�	� †�i��� � , �10�

where �i�=ci↓�ci↑�, �i��� =ci��ci��, and Si	
+ =ci↑	

† ci↓	

�Si	
− = �Si	

+ �†� is a pseudo-spin-operator. The repulsive interac-
tion �positive scattering length� between two atoms sharing a
lattice site in the same band or between the two bands gives
rise to an interaction energy

U		 =
c

2
�

0

L

dx 
i	
4 �x� �11�

or

U12 =
c

2
�

0

L

dx 
i1
2 �x�
i2

2 �x� = U21, �12�

which is just the additional energy that one needs to put two
atoms on one site, in the same band or in different bands.

FIG. 1. �Color online� The on-site energies i versus U /� where
we have made a total energy shift of −2�1.
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The term Si	
+ Si�

− describes the orbital coupling between the
upper and lower bands or orbits. A striking feature here is
that we have got an interaction term with opposite sign com-
pared to the fermionic case �14�, for which the Hund-like
orbital coupling term favors the spin of the two fermions at
each site residing in different bands being aligned parallel.
The orbital coupling thus determines the ground state in a
different way for the bosonic case. The spins tend to align
antiparallel in different bands when the interaction exceeds
the energy gap far away as illustrated later in Fig. 2. The
terms of �i	

† �i� and �i�	� †�i��� describe the interaction of
atomic pairs in different bands.

Substituting the approximate Wannier functions Eqs. �3�
and �4� into Eqs. �7�, �11�, and �12� we easily obtain
the parameters U11=U ,U22=0.75U ,U12=0.5U where
U=c /4�2�a0. Unlike the long-range Coulomb interactions
for electrons in solids, here the orbital coupling term is of the
same order of magnitude as the on-site repulsion term. Ow-
ing to the approximation of local harmonic oscillator orbits
on Wannier functions, the integral of the hopping matrix el-
ement between different bands is nonzero and in fact they
satisfy the relations 
t11 
 � 
t12 
 � 
t22
. In optical lattice, both
the hopping term t	� and the on-site interaction U depend on
the amplitude V0 of the laser field. In this work, we will
focus on the Mott phase with a larger ratio of U / t	� and
study the ground-state phase transition due to the change of
the on-site interaction. In principle, via the Feshbach reso-
nance, one could tune the strength of interaction so that
U�� or ��U�2�. In the former case two bosons occupy
the lowest Bloch band while in the latter case one of the
atoms in the lowest band would be forced into the higher
excited band.

In the strong coupling limit with t	��U	� ,�, it is in-
structive to first consider the on-site local Hamiltonian with
t	�=0 and then treat the hopping term �6� as perturbation. It
is easy to diagonalize the local on-site Hamiltonian �both
intra- and interband parts �8� and �10�� with two bosons per
site. The local spectra are given by

1 = − 2�1 + � +
7U

8
−��� −

U

8
	2

+ �U

2
	2

,

2 = − 2�1 + � ,

3 = − 2�1 + � +
U

2
,

4 = − 2�1 + � + U ,

5 = − 2�1 + � +
7U

8
+��� −

U

8
	2

+ �U

2
	2

.

Among the ten eigenstates, those corresponding to
eigenenergy 1 are threefold degenerate and are given by


 + � = − e
↑↑,0� + f 
0,↑↑� ,


0� = − e
↑↓,0� + f 
0,↓↑� .


− � = − e
↓↓,0� + f 
0,↓↓� .

The state corresponding to 2 is a local singlet formed by the
atoms in the upper and lower orbits,


s� =
1
�2

�
↑,↓� − 
↓,↑�� .

The states corresponding to 3 are


t + � = 
↑,↑� ,


t − � = 
↓,↓� ,

and state corresponding to 4 is


t0� =
1
�2

�
↑,↓� + 
↓,↑�� .

Finally the states corresponding to 5 are again threefold
degenerate,


+�� = f 
↑↑,0� + e
0,↑↑� ,


0�� = f 
↑↓,0� + e
0,↓↑� ,


−�� = f 
↓↓,0� + e
0,↓↓� .

Here we have used the notation for the representation of
eigenstates that the notation to the left of the comma is for
band 1 and that to the right of the comma is for band 2. For
example, 
↑ ↑ ,0�= �1/�2��c↑1

† �2 
0� represents two atoms
with spin of ↑ in the lower orbit and 
↑ , ↓ �=c↑1

† c↓2
† 0� repre-

sents an atom with spin of ↑ in the lower orbit and an atom
with spin of ↓ in the upper orbit. The coefficients

e =
1
�2�1 +

1

�1 + � 1

2�/U − 1/4
	2

,

f =
1
�2�1 −

1

�1 + � 1

2�/U − 1/4
	2

,

satisfy e2+ f2=1 and e2 and f2 describe the probability that
two atoms simultaneously stay in the lowest band and the
upper band, respectively. We have 0� f2�0.0659 for
0�U��. When U /�→0, f2→0 and thus the system goes
back to the single-band model. To give concrete examples,
we note that f2=0.0006 for U /�=0.1 and f2=0.0169 for
U /�=0.5. Hence in the weakly interacting regime the two
atoms mainly stay in the lowest band.

In Fig. 1, we display the five eigenenergies as a function
of U /�. To get the phase diagram for the ground state, it is
sufficient to identify the lowest two levels while 3, 4, and
5 always correspond to the higher bands. The competition
of the lowest two levels gives rise to a completely different
ground-state structure of the system and the transition point
Uc /��1.19 is approximately determined by the energy level
crossing of 1 and 2. For U�Uc, the local ground state on
each site is a singlet state 
s� with the spins of the two bosons
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aligned antiparallel. For U�Uc, the local ground state is one
of the spin triplet 
+ �, 
0�, and 
−�. It is worthwhile to indi-
cate that, although the total spin satisfies Sz

total�=0 as a result
of N↑=N↓, at each site the two species of bosons are not
necessarily equally mixed. At first sight, this seems to imply
that, in the limit of t	�=0 and U�Uc, the ground state of the
whole system is highly degenerate and the spins of atoms at
each site align arbitrarily because the local ground state on
an isolated site can be any of the three states as long as the
total spin of the system is zero. Actually this is not true when
the hopping processes between the neighboring sites are
considered.

Now we switch on the hopping term between the nearest-
neighbor sites. For the system with a filling factor of 2, the
state with two atoms at each site has lowest on-site energy.
The process of an atom hopping to its neighboring site would
change the on-site population; however, such a hopping pro-
cess is greatly suppressed because placing three atoms at a
site costs a lot of energy. Nevertheless, the virtual process of
hopping to an intermediate state and then hopping back gives
a second-order correction to the ground-state energy and
lowers the ground-state energy. The virtual hopping process
does not change the total on-site populations but can ex-
change two different atoms on neighboring sites. These vir-
tual exchange processes can be described by an effective
Hamiltonian acting on the ground states which is obtained in
second-order perturbation theory as

Hef f = �
i,m

�i,i+1
Ht
m�m
Ht
�i,i+1�
E0 − Em


�i,i+1��i,i+1
 �13�

where �
�i,i+1� , 
�i,i+1�= 
g�i � 
g�i+1� are ground-states with
Ni=Ni+1=2 and with ground-state energy E0. As U�Uc, the
threefold-degenerate ground states at an isolated site form a
triplet, i.e., 
g�i= 
+ �i , 
0�i, or 
−�i, and therefore 
�i,i+1� is
ninefold degenerate with E0=21. In the opposite regime of
U�Uc, 
�i,i+1�= 
s�i � 
s�i+1 with E0=22. The intermediate
states are the products of states on the two neighboring sites
with three and one bosons, respectively, and with excitation
energies Em.

The second-order perturbation calculation of the hopping
terms enables us to identify one type of spin-related quantum
phase transition induced by the Feshbach resonance. On the
one side of the transition point, that is, in the weakly inter-
acting regime �U�Uc�, the effective Hamiltonian can be fur-
ther simplified and represented as an effective isotropic
Heisenberg model in terms of spin-1 operators. After
straightforward but tedious algebra we get the effective
Hamiltonian

Hef f = − ��
i,j�

Si · S j �14�

where S	 is a spin-1 operator in 	 �	=x ,y ,z� orientation and
the spin exchange coefficient is

� = e42�t11�2

U
+ 2e2f2� �t12�2

� + U
+

�t12�2

3� +
1

4
U� , �15�

where the term f4 is neglected due to its smallness. Equation
�14� is nothing but the Hamiltonian of an isotropic S=1 fer-
romagnetic quantum Heisenberg spin system. In the limiting
case ��U, that is, when the upper band lies much higher
than the lower band, we find

� = 2
�t11�2

U
. �16�

In this limit, the probability of two atoms occupying the
lowest band e2 approaches unity. We then recover the result
in the single-band approximation �5,8�. The isotropic ferro-
magnetic model �14� has �2Stotal+1�-fold degeneracy with
Stotal=N /2 �N /2=N↑=N↓�. The ground state corresponds to
the state with Sz

total=0, in which case no spatial broken sym-
metry occurs. In the bosonic language, this means that the
system phase does not separate in the ground state for the
SU�2�-symmetric model.

On the other side of the transition point, when U�Uc, the
ground state at the isolated site is a singlet. In this case, the
virtual hopping process does not induce redistribution of on-
site spins and the global ground state is the product of on-site
singlets. We straightforwardly obtain the correction to the
ground-state energy per site of the optical lattice by calculat-
ing the virtual hopping process to second-order perturbation

� = 2 + �� �17�

with

�� = −
3

2� �t11�2

2U
+

�t22�2

7

4
U

+
�t12�2

� +
7

4
U

+
�t12�2

2U − �� . �18�

Obviously this correction is negative and the hopping pro-
cess always lowers the ground state energy.

Figure 2 depicts the phase diagram of two- bosons in the
two-band optical lattice model. For the interaction U�Uc,
the atoms on a site form a triplet and the virtual hopping
process produces ferromagnetic exchange between spins on
neighboring sites, while in the strong coupling limit U�Uc
the atoms in different bands prefer to align their spins anti-
parallel and form an on-site singlet. A phase transition from
spin exchange to bosonic singlet occurs therefore at U=Uc.
We recall that in the fermionic case the phase diagram ex-
hibits drastically different structure. Fermions with a filling
factor 2 in a two-band optical lattice are shown to exhibit

FIG. 2. Schematic picture for competing ground states in an
optical lattice. A phase transition from spin exchange to bosonic
singlet occurs at U=Uc.
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opposite behavior and there exists a phase transition from the
band insulator to a Mott insulator with interesting dynamics
of a spin-1 Heisenberg antiferromagnet �14�.

We notice here a big difference between 1D fermions and
bosons. According to Haldane’s conjecture, the ground state
of SU�2�-symmetric antiferromagnetic spin-1 Hamiltonian is
gapped. Hence, small deviations of the Hamiltonian param-
eters reducing the SU�2� symmetry to U�1� will not lead to
qualitatively different results. On the other hand, the ground
state for the ferromagnetic Hamiltonian is ordered and it is
crucially important to consider a generic non-SU�2�-
symmetric model in order to understand whether the ground
state is an easy-axis or easy-plane ferromagnet.

To do this, we let the tunneling matrix elements t	�
�

��= ↑ , ↓ � depend not only on band indices 	 ,� but also on
the component index �. Furthermore we distinguish the
intraspecies interaction U=U↑↑=U↓↓ and interspecies inter-
action U�=U↑↓ to break the SU�2� symmetry. When the sys-
tem is in the strongly interacting regime, deviation of the
SU�2� symmetry does not lead to qualitative change of the
ground state properties because the ground state is composed
of on-site singlets. However, in the weakly interacting re-
gime, when the SU�2� symmetry is broken, the effective
Hamiltonian can be of the easy-axis type or of the easy-plane
type with different kinds of ground states. We note that, for
the general case with U�U�, the effective Hamiltonian can-
not be represented in the form of a simple spin exchange
model. However, if 
U�−U 
 �U ,U�, we can attribute the
difference of the on-site interacting energies to the zeroth-
order Hamiltonian �5� and get an effective Hamiltonian of
the XXZ model

H = − �
i,j�

���Si · S j + ��z�SizSjz� + B�
i

Siz + D�
i

�Siz�2,

�19�

where

�� = 2e4 t11
↓ t11

↑

U
+ 2e2f2t12

↑ t12
↓ � 1

3� +
1

4
U

+
1

� + U� ,

��z� = e4 �t11
↑ − t11

↓ �2

U

+ e2f2�t12
↑ − t12

↓ �2� 1

� + U
+

1

3� +
1

4
U� ,

B = − e4�3
�t11

↑ �2 − �t11
↓ �2

U
+

�t12
↑ �2 − �t12

↓ �2

�
	

− e2f2� �t11
↑ �2 − �t11

↓ �2

2� −
1

4
U

+
�t22

↑ �2 − �t22
↓ �2

2� �

− 3e2f2��t12
↑ �2 − �t12

↓ �2�� 1

3� +
1

4
U

+
1

� + U�
and

D =
7

8
�U − U�� −��� −

U

8
	2

+ �U

2
	2

+��� −
U�

8
	2

+ �U�

2
	2

.

In the limiting case ��U, it is easy to show that
��=2t11

↓ t11
↑ /U, ��z�= �t11

↑ − t11
↓ �2 /U, B=−3��t11↑�2− �t11↓�2� /U,

and D�U−U� and we recover the result for the single-band
approximation �5,8�. It is obvious that we have always a
positive small anisotropy parameter ��z� for t	�

↑ � t	�
↓ , which

implies that the effective XXZ model describes an easy-axis
ferromagnet. Under the condition of ��z��D, the ground
state of the spin system is in a phase with spin domains. In
the bosonic language, it corresponds to the situation with
phase separation of the two components. This implies that
differentiating the tunneling terms for different components
would induce phase segregation. When t	�

↑ = t	�
↓ , we have

��z�=0 and B=0 which reduces the model to �14� except for
an additional term D �which vanishes naturally for the
SU�2�-symmetric model because U=U��. For a large positive
D, however, an easy-plane ground state can be realized. In
terms of the nomenclature in Ref. �5�, the easy-plane ferro-
magnet means a counterflow superfluid. Straightforwardly, a
positive D reduces the Sz component of the spin on each site.
At large enough D�0, all spins will be essentially confined
to the state with Siz�=0, which implies that a large enough
intracomponent interaction �U�U�� leads to two atoms be-
longing to distinct species occupying each site. On the other
hand, for small enough D�0 �U�U��, the ground state
would stay in the state withSiz�= ±1 and the term of D
enhances the phase separation of different components.

Before ending the discussion, we would like to note the
extension of the present work to the case with higher dimen-
sions. Unlike the single-band model which can be directly
extended to the high-dimensional case, the effective Hamil-
tonians �14� and �19� are no longer applicable to the high-
dimensional optical lattice models when the higher orbits are
populated. For higher dimensions, the first excited state in a
local site is degenerate and has spatial anisotropy. Corre-
spondingly, the hopping matrix element acquires spatial an-
isotropy and new physical phenomena may arise due to the
orbital degeneracy �17–19�.

In summary, we have studied the quantum phase transi-
tion induced by effective orbital coupling in optical lattices
for an equally mixed two-component boson system at a fill-
ing factor of 2 per site. In the regime with weak on-site
interaction, the two atoms stay in the lowest band and can be
described by an effective spin-1 ferromagnetic exchange
model. In the regime with strong on-site interaction, the two
atoms prefer to occupy different orbits on a site and form an
on-site singlet due to the effective orbital coupling. We also
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considered the generic non-SU�2�-symmetry model. In the
weakly interacting regime, the ground state may be described
by an easy-axis ferromagnet corresponding to the case of
phase separation or an easy-plane ferromagnet corresponding
to the state of a counterflow superfluid.
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