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We study the properties of coupled linear and nonlinear resonances. The fundamental phenomena and the
level crossing scenarios are introduced for a nonlinear two-level system with one decaying state, describing the
dynamics of a Bose-Einstein condensate in a mean-field approximation �Gross-Pitaevskii or nonlinear
Schrödinger equation�. An important application of the discussed concepts is the dynamics of a condensate in
tilted optical lattices. In particular the properties of resonance eigenstates in double-periodic lattices are dis-
cussed, in the linear case as well as within mean-field theory. The decay is strongly altered, if an additional
period-doubled lattice is introduced. Our analytic study is supported by numerical computations of nonlinear
resonance states, and future applications of our findings for experiments with ultracold atoms are discussed.
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I. INTRODUCTION

In the last decade, the advance of atom and quantum op-
tics has made it possible to realize and to study the evolution
of the center-of-mass motion on scales ranging from the mi-
croscopic �single particle� to the macroscopic �many-
particle� realm �1,2�. In a typical experiment with ultracold
atoms, interactions can either be made negligibly small or
reduced to a mean-field effect on the evolution of the mac-
roscopic order parameter of a Bose-Einstein condensate �see,
e.g., �2,3� and references therein�. The latter approach results
in an effective nonlinear Schrödinger equation, the following
Gross-Pitaevskii equation:

�−
�2

2m

�2

�x2 + V�x� + g���x,t��2���x,t� = i �
���x,t�

�t
, �1�

that describes the dynamics of the macroscopic wave func-
tion �or of the order parameter� of a Bose-Einstein conden-
sate �BEC� for zero temperature �3�. This mean-field descrip-
tion has proved to be extremely successful and reliable for
most recent experiments. The nonlinearity of the equation
leads to a variety of surprising phenomena, which are present
even in a simple nonlinear two-level system. Self-trapping of
a BEC in a double-well trap was observed experimentally
only recently �4�. The self-trapping transition manifests itself
in the appearance of novel nonlinear eigenstates �5�. The
appearance and disappearance of nonlinear eigenstates may
also lead to a breakdown of adiabaticity and nonlinear Zener
tunneling �6–8�.

In the present paper, we investigate nonlinear quantum
dynamics in decaying systems. Up to now, only relatively
few papers have studied nonlinear and non-Hermitian quan-
tum dynamics, discussing self-stabilizing, shifting, and
broadening of nonlinear resonances �9–13�. Here we focus
on the coupling of nonlinear resonances in nonlinear, non-

Hermitian level crossing scenarios. Our first object of inves-
tigation, the nonlinear two-level system with one decaying
level, offers analytic access to this subject. The eigenvalues
and eigenstates of its linear counterpart show some interest-
ing features, such as exceptional crossing scenarios �14�.

A very natural experimental setup leading to nonlinear
dynamics and decay is the dynamics of a Bose-Einstein con-
densate in a tilted or accelerated optical lattice, correspond-
ing to the Wannier-Stark scenario of solid-state physics �16�.

The decay dynamics in a nonlinear Wannier-Stark system
was recently discussed in �12,13�. It was shown that a non-
linear mean-field interaction can destroy resonant tunneling.
In this paper, we extend these studies to a double-periodic
optical lattice. The decay dynamics in this system shows
some interesting features even in the linear case, such as a
splitting of resonant tunneling peaks. The different types of
non-Hermitian crossing scenarios can be observed in depen-
dence on the system parameters.

The paper is organized as follows: first of all we review
some important results about the crossing scenarios in the
non-Hermitian two-level system in the linear �Sec. II� and
the nonlinear �Sec. III� case. The double-periodic Wannier-
Stark system is introduced and analyzed in Sec. IV. Nonlin-
ear Wannier-Stark resonances for a doubly periodic lattice
are presented in Sec. V. A discussion of interesting experi-
mental applications of our findings follows in Sec. VI.

II. CROSSING SCENARIOS OF RESONANCES
IN LINEAR QUANTUM MECHANICS

We prepare for the full discussion of nonlinear resonance
states as solutions of Eq. �1� by reviewing some essential
properties of the simpler linear case. First of all, we want to
illustrate the different types of possible curve crossing sce-
narios for non-Hermitian systems. To start with, we briefly
review a simple and instructive model system, a two-level
Hamiltonian with one decaying level �14,15�:*Electronic address: witthaut@physik.uni-kl.de
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H2 = �+ � − 2i� v

v − �
� �2�

with �, v, ��R, and ��0. In this approach it is assumed
that one of the bare states decays with rate �, while the decay
is negligible for the other one. The mean energy of the two
bare states is set to zero, the energy difference is given by 2�.
The two states are coupled with strength v. A different, non-
Hermitian two-level Hamiltonian was previously discussed
by Berry �17�.

The eigenvalues of the non-Hermitian Hamiltonian �2� are
given by

E± = − i� ± ��� − i��2 + v2 = E± − i�±/2. �3�

Both real and imaginary part of the eigenvalues are different
for ��0. �Anti�crossings of the real and imaginary part are
found only in the critical plane �=0. The exceptional line
v= ±� separates the critical plane into different regions: �i�
For �v � �� the imaginary parts of the eigenvalues coincide,
�+=�−=2�, while the real parts differ. This case is denoted
as a type-I crossing. �ii� For �v � �� the real parts of the
eigenvalues coincide, E+=E−=0, while the imaginary parts
differ. This case is denoted as a type-II crossing. �iii� The
eigenvalues are fully degenerate, E+=E−, along the critical
lines v= ±�.

The two different crossing types are illustrated in Fig. 1.
For a type-I crossing, i.e., �v � ��, the imaginary parts of the
eigenvalues cross while the real parts anticross. For a type-II
crossing, i.e., �v � ��, it is the other way around. Physically
this crossing describes a resonantly enhanced tunneling
�RET� effect: the decay rate of the lower state increases sig-
nificantly if this state is energetically close or equal to the
decaying upper level.

In view of the discussion of Wannier-Stark resonances in
period-doubled lattices in the following sections we want to
introduce another model system. We assume that the bare
states split up into two states, where the energies of the stable
bare states differ slightly by 2	. Each stable state mainly
couples to one of the decaying states, while all other cou-
plings are assumed to be weak. We consider the Hamiltonian

H4 = �H2 + A W

W H2 − A ,
� �4�

with the two-level Hamiltonian H2 defined in Eq. �2� and

A = 	�0 0

0 1
�, W = w�1 1

1 1
� . �5�

Figure 2 shows the eigenvalues of this Hamiltonian in de-
pendence of the on-site energies �. One observes that the
resonance peak splits up into two peaks. Two possibilities for
resonant tunneling, i.e., two type-II crossings, are found in-
stead of just one. This crossing scenario is robust against
small variations of the coupling w as long as w�v is ful-
filled. A nonvanishing coupling w causes a slight asymmetry
of the two crossings. For v�� one has two type-I crossings
instead, i.e., the imaginary parts of the eigenvalues cross
while the real parts anticross.

The change of a system parameter, e.g., the strength of the
Stark field F in the Wannier-Stark system discussed in Sec.
IV, will typically affect the bare state energies � as well as
the decay rate � and the coupling strengths. Therefore we
consider a variety of the four-level Hamiltonian �4�, the pa-
rameters of which are functions of the external field F:

� = − F/2 + 0.1,

� = Fe−1/F,

v = 0.05Fe−1/2F,

w = 0.01Fe−1/2F. �6�

The exponential scaling of the decay rate � is well known
from standard Landau-Zener theory �see, e.g., �18��. The de-
pendence of the bare state energies and the coupling coeffi-
cients on F were analyzed in detail for a two-ladder system
in �19�. It was shown that the Wannier-Stark spectrum is
accurately described assuming that the parameters scale as in
Eq. �6�. The actual values of coefficients in Eq. �6� are cho-
sen in an ad hoc manner for illustration only. The resulting
decay rates are illustrated in Fig. 3. For 	=0.02, we find two
type-II crossings. With increasing 	, the crossing on the right
changes its form and becomes a type-I crossing. Such a
crossing scenario is naturally realized for Wannier-Stark
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FIG. 1. Real �left� and imaginary �right� part of the eigenvalues

�3� as a function of � for �=1. A type-I crossing is found for v
=1.01�� �upper figures�, a type-II crossing is found for v=0.99
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FIG. 2. Real �left� and imaginary �right� part of the eigenvalues
of the four-level Hamiltonian �4� as a function of � for �=1, v
=0.98, w=0.04, and 	=0.2.
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resonances in double-periodic lattices, as will be shown in
Fig. 9 below.

III. NONLINEAR NON-HERMITIAN
CROSSING SCENARIOS

The linear non-Hermitian two-level system described in
Sec. II neglects any particle interaction. Including this inter-
action in a mean-field description according to the Gross-
Pitaevskii equation �1� yields a nonlinear non-Hermitian
two-level system �20�, described by the Hamiltonian

Hmf = �� + 2c��1�2 − 2i� v

v − � + 2c��2�2
� , �7�

where the nonlinearity parameter c is proportional to the pa-
rameter g in the Gross-Pitaevskii equation �1�. The nonlinear
eigenstates are then defined as the self-consistent solutions of
the time-independent Gross-Pitaevskii equation

Hmf��1

�2
� = 
��1

�2
� . �8�

The nonlinear eigenstates crucially depend on the normaliza-
tion of the state vector, which is fixed as ��1�2+ ��2�2=1
throughout this section. For convenience we symmetrize the
nonlinear Hamiltonian �7� by substracting a constant energy
term c���1�2+ ��2�2�. The Gross-Pitaevskii equation �8� then
reads

�� + c� − 2i� v

v − � − c�
� ��1

�2
� = 
��1

�2
� �9�

with �= ��1�2− ��2�2. The self-consistent solutions of this non-
linear equation define the nonlinear eigenstates and eigenval-
ues.

Note that the nonlinear eigenstates are not connected to
stationary solutions of the time-dependent system, if the
chemical potential turns out to be complex, since the dynam-
ics depends crucially on the normalization of the state vector,
which is not constant for a complex valued chemical poten-
tial. After some algebraic manipulation one can show that the
nonlinear eigenstates, i.e., the solutions of Eq. �9�, are given
by the real roots of the equation

�c2 + �2��4 + 2c��3 + �v2 + �2 − �2 − c2��2 − 2c�� − �2 = 0.

�10�

Depending on the parameters, there are two or four real roots
and each of them is connected to a complex eigenvalue by


 = c + �/� − i��1 + �� = M − i�/2. �11�

For �→ ±�, the linear term dominates and one has only two
eigenvalues. For �=0, �=0 is a double degenerate solution
of Eq. �10�. For ��v these states are connected to the com-
mon linear �anti�symmetric eigenstates, while this is not the
case for ��v. In the following we consider the crossing
scenario of the eigenvalues in dependence on � for different
fixed values of the other parameters.

The nonlinear eigenstates of a two-level system are well
known for the Hermitian case �=0 �6,7,21�. Novel eigen-
states emerge with broken symmetry if the nonlinearity ex-
ceeds a critical value, �c � �ccr=v, which is given by the
coupling strength v which corresponds to half of the gap
between the linear levels at �=0. The levels show looped
structures around �=0 with a width �� �  �c2/3−v2/3�3/2.

Let us first discuss the effect of a weak nonlinearity. Fig-
ure 4 shows the eigenvalues for a relatively weak nonlinear-
ity in comparison with the linear case c=0. The size of the
gaps is not altered by the nonlinearity, which leads to the
important fact that the nonlinearity does not influence the
crossing type. Nevertheless, it changes the shape of the lev-
els. For a type-I crossing, the real part of the upper level is
sharpened while the one of the lower level is flattened, which
is well known for �=0 �6�. For a type-II crossing the effect is
basically the same, but is accompanied by a shift of the
crossing point from 
=0 to 
=c and the lower level is
stretched to this point. The imaginary parts bend slightly to
the left. At the exceptional point additional eigenvalues
emerge in a narrow interval around �=0
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FIG. 3. Imaginary part of the eigenvalues of the four-level
Hamiltonian �4� as a function of 1/F and 	=0.02 �left� and 	
=0.05 �right�. See text for details.
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FIG. 4. Real �left� and imaginary �right� part of the eigenvalues
�9� as a function of � for �=1.00, c=0.3, and v=1.05�� �upper
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The linear levels �c=0� are plotted as dotted lines for comparison.
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.
In general, the presence of moderate decay facilitates

the formation of novel eigenstates. Figure 5 shows the non-
linear levels for c=0.9, which is slightly below the critical
value ccr=v for �=0. For a type-I crossing, v��, the real
parts show a familiar loop. The imaginary parts cross as
usual, showing an additional S-shaped structure. In fact, the
critical nonlinearity for the emergence of looped levels is
decreased to

ccr = �v2 − �2, �12�

which can be seen by analyzing the behavior of the polyno-
mial �10� for �=0. At the exceptional point v=�, the critical
nonlinearity tends to zero and there are additional eigenstates
even in the case of arbitrary weak nonlinearity. For a type-II
crossing, v��, the imaginary parts anticross and the real
parts cross in a manner which can be understood as a de-
struction of the loop at its lower edge. The crossing appears
at the former crossing point of the loop at �=0 and 
=c
�0. In the nondecaying case, �=0, novel eigenstates first
emerge at the point of the avoided crossing at �=0. This
remains true for a type-I crossing, v��. For a type-II cross-
ing, v��, however, novel eigenvalues emerge, again in an
S-shaped structure around some nonzero value of �.

Concluding this section, a weak nonlinearity does not al-
ter the crossing type, however, it deforms the levels in a
characteristic manner. For a type-II crossing the real parts
cross at 
=c�0. At the exceptional point novel eigenstates
emerge, even for small nonlinearities. The presence of decay
facilitates the formation of novel eigenstates for stronger
nonlinearities. For type-I crossings, loops appear if �c � �ccr
=�v2−�2. For a type-II crossing the additional eigenstates
emerge around some nonzero value of � forming a double-S
structure. If the sign of the nonlinearity is changed, the levels
interchange their behavior, i.e., the real parts are mirrored at
the � axis, the imaginary parts at the � axis.

IV. WANNIER-STARK RESONANCES
IN DOUBLE-PERIODIC LATTICES

A. Fundamentals of the linear Wannier-Stark system

A prime example for resonances and resonant tunneling is
the �linear� Wannier-Stark problem described by the Hamil-
tonian

HWS = −
1

2

�2

�x2 + V�x� + Fx �13�

with a periodic potential V�x+d�=V�x�. We use rescaled
units in which �=M =1. The Wannier-Stark problem was
already discussed in the early days of quantum mechanics in
the context of electrons in solids under the influence of an
external electric field �22�. Coherent dynamics of electrons in
semiconductor superlattices were observed not until the
1990s. Experiments showed Bloch oscillations for “weak”
electric fields and decay for stronger fields �23,24�. The
Wannier-Stark system is furthermore realized for the propa-
gation of light pulses in thermo-optically biased coupled
waveguides. Bloch oscillations as well as decay could thus
be observed directly in real space �25�. On the other hand,
recent experiments with cold atoms and Bose-Einstein con-
densates in optical lattices offer some considerable advan-
tages �2,26–28�. Scattering by lattice defects or impurities is
absent and experimental parameters can be tuned in a wide
range. The periodic potential is generated by a standing laser
beam and thus simply cosine shaped.

Let us briefly review some fundamentals of Wannier-
Stark resonances, which are defined by the eigenvalue equa-
tion

HWS��,n�x� = E�,n��,n�x� . �14�

Here, � is the ladder index and n�Z labels the lattice sites.
The Wannier-Stark Hamiltonian �13� is non-Hermitian due to
the boundary condition: A wave packet will eventually decay
towards x→−�. In fact, it has been shown that the spectrum
of the Hamiltonian is continuous with embedded resonances
�29�. Thus the resonance eigenenergies are complex, E�,n
=E�,n−i�� /2, where the imaginary part � gives the decay
rate. The Wannier-Stark Hamiltonian has one important sym-
metry, it is invariant under a simultaneous spatial translation
over a lattice period d and an energy shift dF. This symmetry
is expressed by the commutation relation

�HWS,Tm� = − mdFTm, �15�

where Tm is the translation operator over m lattice periods.
Now it is easy to see that the Wannier-Stark resonances from
one ladder � are related by a simple translation,

HWSTm��,n�x� = TmHWS��,n�x� + �HWS,Tm���,n�x�

= �E�,n − mdF�Tm��,n�x� . �16�

Thus the discrete spectrum is arranged in the form of the
so-called Wannier-Stark ladders,

��,n�x� = ��,0�x − nd� ,
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FIG. 5. Real �left� and imaginary �right� part of the eigenvalues
�9� as a function of � for �=1.00, c=0.9, and v=1.01�� �upper
figures�, v=1.00=� �middle figures�, v=0.99�� �lower figures�.
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E�,n = E�,0 + ndF − i��/2. �17�

The different ladders are labeled by �=0,1 ,2 , . . . . An effi-
cient method to calculate the resonance eigenstates was in-
troduced in �30�, a recent review can be found in �31�.

The decay rate �� is the same for all resonances in
one ladder. In general, the decay rate scales as �
	F exp�−��E2 /F�, where �E is the energy gap between
the Bloch bands of the periodic potential. This result can be
deduced from Landau-Zener theory �18,19�. However, one
observes peaks of the decay rate on top due to resonant tun-
neling. For example, the decay rate of the two most stable
resonances for the periodic potential V�x�=cos x is plotted as
a function of the inverse field strength 1/F in Fig. 6. RET
takes place when a state of a lower ladder with energy E�,n
gets in resonance with a state of a higher ladder at a different
site, i.e., E�,n=E��,n�. The decay rate of the lower ladder is
significantly increased as it couples resonantly to a higher
ladder with a higher decay rate. For example, the pronounced
peak in the ground ladder decay rate �i.e., �=0� at F
1/7
corresponds to the resonance �=0↔��=1 and n�=n−1.

B. Double-periodic lattices

Now we turn to the main subject of the present paper. We
consider a double-periodic potential V�x� consisting of a ma-
jor optical lattice of period d plus an additional shallow lat-
tice of double period,

V�x� = V0�sin2��x/d� + 	 sin2��x/2d + �/2�� . �18�

Rescaling the spatial coordinate as x�=2�x /d and neglecting
a constant potential offset, we can rewrite the periodic po-
tential as

V�x� = −
V0

2
�cos�x� + 	 cos�x/2 + ��� . �19�

The relative phase of the two lattices is denoted by �.
Due to the additional lattice each Bloch band splits up

into two minibands �34�, and each Wannier-Stark ladder
splits up into two miniladders, as proved in the following.
The symmetries of the Hamiltonian are given by the commu-
tation relations

�H,T2m� = − 2mdFT2m,

�H,T2m+1G� = − �2m + 1�dFT2m+1, �20�

where Tm is the translation operator over m lattice periods
and the operator G inverts the sign of 	 in all following
terms. Then it is easy to see that the Wannier-Stark states of
one ladder are related by a translation over an even number
of lattice periods, or by a translation over an odd number of
lattice periods plus an inversion of the sign of 	,

HT2m��,n�x� = �E�,n�	� − 2mdF�T2m��,n�x� ,

HT2m+1G��,n�x� = �E�,n�− 	� − �2m + 1�dF�T2m+1G��,n�x� .

�21�

Furthermore, it can be shown that the energy offset E�,0 is
antisymmetric in 	,

E�,0�− 	� = − E�,0�	� . �22�

Thus the Wannier-Stark ladders split up into two minilad-
ders, each with an energy offset 2E��	�:

E�,2n = E��	� + 2ndF ,

E�,2n+1 = − E��	� + �2n + 1�dF . �23�

A similar proof is given in �32� within the tight-binding ap-
proximation.

The decay of the Wannier-Stark resonances is seriously
influenced by the additional period-doubled potential. Figure
7 shows the decay rate � as a function of the inverse field
strength 1/F for V0=2, �=0, 	=0.05, and 	=0.1, respec-
tively. The decay rate of the single-periodic lattice 	=0 is
also plotted for comparison. As all Wannier-Stark ladders
split up into two miniladders, so does the decay rate �. The
general scaling of � with F remains the same for both
miniladders, while the RET peaks are seriously altered. The
peaks split up into two, where the height of the subpeaks
increases significantly. This effect is mostly pronounced for
the major resonance at F
1/7. The explanation of the split-
ting is straightforward: In Fig. 8, the thick blue lines repre-
sent the energy levels of the two most stable Wannier-Stark
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FIG. 6. Eigenenergies �upper panel� and decay rates �lower
panel� of the two most stable Wannier-Stark ladders for the poten-
tial V�x�=cos x.
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FIG. 7. �Color online� Resonant tunneling in a double-periodic
Wannier-Stark system. Decay rates of the four most stable reso-
nance for V0=2, �=0, and 	=0 �dashed black line�, 	=0.05 �thin
red lines�, and 	=0.1 �thick blue lines�.
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ladders. Due to the period-doubled potential they are alter-
nately shifted up or down with respect to the unperturbed
level �	=0, dash-dotted lines�. The decay rate � is resonantly
enhanced when two energy levels of different ladders are
degenerate, as indicated by the solid red arrow. However, for
	�0, the two miniladders are in resonance with higher lad-
ders for different values of the field strength F due to the
alternating energy shift. In Fig. 8, for example, one of the
miniladders is off resonance �indicated by the broken arrow�
while the other one is in resonance �solid arrow�. If the field
strength is lowered, the off-resonant ladder will get into reso-
nance at another value of F.

With increasing amplitude 	 of the second double-
periodic lattice, the splitting of the resonant tunneling peaks
clearly becomes more pronounced as one can see in Fig. 7.
Another �not so intuitive� effect is that the additional lattice
can also alter the crossing type. For 	=0.1 one observes a
crossing of the decay rates at F
1/9.5 due to resonant tun-
neling instead of an anticrossing. This effect is further illus-
trated in Fig. 9. The real and the imaginary part of the reso-
nance eigenenergies are plotted in the vicinity of one of the
RET peaks �cf. Fig. 7�. For 	=0.075, one observes a familiar
RET peak, i.e., a type-II curve crossing. For 	=0.08, how-
ever, the crossing type is altered from type II to type I. The
decay rate of one miniladder crosses the decay rate of one
excited miniladder. Correspondingly, the real parts anticross.
A diabolic point, where real and imaginary part are degener-

ate, is found at 	=0.0772 and F=1/8.937 for �=0. If we
consider the relative phase � as another free parameter, the
set of diabolic points is a one-dimensional subset of the
three-dimensional parameter space �	 ,F ,��; the diabolic
crossing has co-dimension 1.

C. Output control by the relative phase

Up to now, we have shown that the RET peaks split up,
whereby the splitting increases with the amplitude 	 of the
additional lattice. Furthermore, the decay depends crucially
on the relative phase � of the lattices. Figure 10 shows the
decay rate of the two lowest miniladders in dependence of
the relative phase � and the inverse field strength 1/F for
V0=2 and 	=0.05. The splitting of the RET peaks is maxi-
mal for �=0. It becomes zero for �
0.55�, where the de-
cay rates of the two miniladders degenerate again.

Despite the fact that the additional lattice is much weaker
than the single-periodic one �	=0.05�, it can seriously affect
the decay properties. Changing the relative phase � of the
two lattices, the decay rate of the two lowest miniladders
may vary over several orders of magnitude. This is further
illustrated in the lower panel of Fig. 10, where the decay rate
is plotted for a fixed value of F=0.12. The decay rate for the
single-periodic case 	=0 is also plotted for comparison. This
strong effect is caused by the shift of the RET peak position
Fres in dependence of � shown in the upper panel of Fig. 10.
Fixing the field strength F at an appropriate value, one can
tune the system in and out of resonance solely by a variation
of the phase �. In the example in Fig. 10, we have chosen
the field strength so that F=0.12
Fres for �=0. Changing
the phase to �=0.55� shifts the RET peak to Fres=0.134. As
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neling �RET�. See text for details.
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the field strength F remains fixed, the system is tuned out of
resonance and the decay rate drops by orders of magnitude.
The decay rate as a function of the phase, ����, is � peri-
odic. This can be seen as follows: Shifting the phase by an
amount of � and the position by 2� leaves the Wannier-
Stark Hamiltonian �13� with the potential �19� invariant up to
a real constant. Since a spatial translation by 2� just ex-
changes the two miniladders as shown above, so does a
phase shift by �.

The sensitive dependence on the relative phase � might
be very useful for the design and control of future experi-
ments with double-periodic optical lattices. A complete sta-
bilization of the relative phase of the two lattices will be hard
to achieve and fluctuations will play an important role. Yet,
Ritt et al. have realized a new technique based on Fourier
synthesis to control two �or even more� optical lattices with
different spatial harmonics �33�. In the following, we will
discuss the effects on the decay rates of the Wannier-Stark
resonance in some detail. The strongest effects are found in
the vicinity of the RET peaks, on which we focus in our
present discussion.

Figure 11�a� again presents the decay rate as a function of
the inverse field strength 1/F for V0=2 and a weak addi-
tional lattice with 	=0.05 and �=0. For the given param-
eters, we find RET peaks at F1
1/6.9 and F2
1/8.4. Fig-
ure 11�b� shows the position F1,2 of the two resonant
tunneling peaks in dependence of the relative phase �. The
positions vary in an interval of width �F
1/40.

In a real-life experiment, it is difficult to exactly control
the relative phase of two independent standing waves. There-
fore we study also the influence of random-phase fluctua-
tions. If we assume that the phase � fluctuates in an interval
of width �� around the desired value �0, �� ��0

−�� /2 ,�0+�� /2�, the positions of the resonant tunneling
peaks will also fluctuate in an interval of width �F. Figure
11�c� shows how the width �F depends on the strength of
the phase fluctuations �� for �0=0 and �0=� /2. The fluc-
tuations are rather weak for �0=0, where the RET peaks
have maximum distance. For a given value of the external
field F, the decay rates � fluctuate in an interval of width
��. Figure 11�d� shows the relative strength of the fluctua-
tion, �� /�0 vs the phase fluctuations �� for the most stable
resonance for an external field F=1/8 and �0=0 or �0
=� /2, respectively. The relative uncertainty of the decay rate
becomes greater than unity already for small fluctuations of
the phase �. Nevertheless, the noise induced shift and
change in height of the RET peaks is small considering the
absolute change of the decay rates around the RET peaks of
about two orders of magnitude.

However, it is also possible to exploit the sensitive depen-
dence on the phase �, if it can be accurately controlled. For
instance, it could be possible to rapidly tune the output of a
pulsed atom laser. An example will be discussed in detail in
Sec. VI.

V. NONLINEAR WANNIER-STARK RESONANCES
IN DOUBLE-PERIODIC OPTICAL LATTICES

A method to obtain accurate, nonlinear Wannier-Stark
resonances was proposed recently in �13�, and we use a simi-
lar approach to numerically compute decay rates of the non-
linear version of the Wannier-Stark introduced in Sec. IV B
above. In contrast to the case studied in �13�, the computa-
tions based on the Gross-Pitaevskii equation �1� in the pres-
ence of a two-period optical lattice are more difficult, since
the algorithm needs to discriminate between the two mini-
band solutions which are quite close in energy �cf. Figs. 6
and 7�. In particular, for very small Stark fields, it is hard to
obtain convergence. In the following, we concentrate there-
fore on RET peaks at fields as large as possible, and one trick
to shift the peaks to such values is to use attractive interac-
tions, i.e., negative nonlinearities �g�0�. Figure 12 presents
a set of RET peaks for different values of the nonlinearity g.

The nonlinearity induced a shift of both RET peaks �cor-
responding to the two minibands� and also a systematic sta-
bilization �i.e., smaller heights� can be observed, as predicted
by similar results for the usual, one-band Wannier-Stark sys-
tem �13�. This is analyzed in more detail in Fig. 13, where
the peak positions Fres and the height of the peaks �res are
plotted in dependence of g.

The stabilization of the Wannier-Stark states by an attrac-
tive nonlinearity is shown in the upper panel. An asymmetry
of the two peaks is observed already in the linear case g=0:
The left peak is slightly higher than the right one, i.e., the
peak decay rate is larger for smaller external fields F. This
phenomenon becomes even more pronounced in the nonlin-
ear case g�0. The stabilization by an attractive nonlinearity
�cf. �13�� is stronger for the right peak.

6.5 7 7.5 8 8.5 9
10

−6

10
−4

10
−2

1/F

Γ/
2F

0 0.5 1
0.1

0.12

0.14

0.16

φ/pi

F
1,

2

(a)

(b)

(c)

(d)
0 0.4 0.8

0

0.01

0.02

0.03

∆φ/pi

∆F

φ
0
 = 0

φ
0
 = π/2

0 0.4 0.8
0

2

4

6

φ
0
 = π/2

φ
0
 = 0

∆φ/pi

∆Γ
 / 

Γ 0

FIG. 11. Effects of fluctuations of the relative phase �. �a� De-
cay rate of the two most stable resonances for V0=2, 	=0, and �
=0. �b� Position F1,2 of the RET peaks vs the relative phase �. �c�
Uncertainty �F of the positions of the RET peaks vs fluctuation ��
of the phase. �d� Relative fluctuation �� /�0 of the decay rate for
F=1/8 vs ��.

BOSE-EINSTEIN CONDENSATES IN ACCELERATED… PHYSICAL REVIEW A 75, 013617 �2007�

013617-7



The peak positions shown in the lower panel of Fig. 13
vary linearly with g, which can be derived in a perturbative
approach. As discussed above, resonant tunneling is ob-
served when a state of a lower ladder get in resonance with a
state in a higher ladder at a different site, E�,n=E��,n�. Here
we consider only the states in the ground ladder, which are
localized in a single potential well. First-order perturbation
theory with respect to the linear case g=0 predicts that their
energy is shifted by the amount �13�

�E0,0 
 g�
−�

+�

��0,0
�0��x��4dx , �24�

where the superscript �0� refers to the linear case g=0. The
shift �F of the RET peaks then follows from the modified
resonance condition

E0,n
�0� + �E0,n = E��,n�

�0� + n�d�F . �25�

Evaluating the integral in Eq. �24� and setting n�=n−1 one
finds

�F = −
0.36

2�
g �26�

for the peak shift plotted in Fig. 13. Both peaks are shifted
equally, so that the distance of the peaks remains constant.

Furthermore, the shape of the RET peaks becomes asym-
metric in the nonlinear case. This is shown in Fig. 14, where
we have plotted a magnification of the decay rate ��F�
around the respective positions of the RET peaks for
g=−0.3 and g=0. In comparison to the linear case, the peak
is bent to the left for an attractive nonlinearity. This asym-
metry is a general feature of nonlinear eigenstates in open
systems. It is already present for the nonlinear two-level sys-
tem as shown in Fig. 4. A similar incline of resonant curves
is also important for nonlinear resonant transport. The curves
can even bend over for strong nonlinearities leading to a
bistable behavior as shown in �35�.

VI. DYNAMICS

In this section, we discuss the dynamics of an initially
localized matter wave, e.g., a Gaussian wave packet in the
tilted double-periodic optical lattice �19�. In one of the first
experiments on the macroscopic dynamics of BECs in opti-
cal lattices it was shown that such a system shows a coherent
pulsed output �28�. An explanation in terms of truncated
Wannier-Stark resonances can be found in �36�. The ampli-
tude of the pulsed output is given by the decay rate of the
Wannier-Stark resonances.

First of all, we illustrate how the sensitive dependence on
the phase can be used to tune a pulsed atom laser. As a proof
of principle, we just consider the linear �g=0� evolution. In
contrast to the previous sections we consider a weaker po-
tential, V0=0.8, so that decay is generally stronger. We nu-
merically integrate the Schrödinger equation for an initially
Gaussian wave packet

��x,t = 0� =
1

�2��1/4�1/2 exp�− �x − x0�2/4�2� �27�

with width �=5�. Figure 15 shows the density ���x , t��2 in a
grey-scale plot for a single periodic lattice �	=0�. A pulsed
output forms due to the external field. The pulses are accel-
erated just as classical particles. The first three strong pulses
emerge from excited ladders. The output strength of the other
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FIG. 12. �Color online� Decay rates of nonlinear Wannier-Stark
resonances in double periodic optical lattices with V0=2, 	=0.05,
�=0, and g=0 �dashed black line�, g=−0.1 �dotted green line�, g
=−0.2 �dash-dotted red line�, and g=−0.3 �solid blue line�,
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pulses from the ground ladder can be controlled to a large
extent in the double-periodic case by the relative phase �. As
already shown in Fig. 10, the decay rate varies strongly with
the relative phase of the two lattices. The effect on the pulsed
output is shown in Fig. 16, where the density is plotted for
t=14TB for three different lattice setups.

For 	=0.2 and �=0, a RET peak of type I is found in the
second miniladder at F=1/18. Thus decay from this minilad-
der is strongly enhanced in comparison to the single-periodic
lattice 	=0. Note that the pulsed output will stop as soon as
the population in the second miniladder has decayed. In con-
trast, the pulsed output is strongly suppressed for a relative
phase �=� /2, where RET does not play a role for the given
field strength.

In order to measure the performance of this output switch
more qualitatively, we define the fidelity

f =
Pout��0 = 0�

Pout��0 = �/2�
, �28�

where Pout measures the integrated density of the pulsed out-
put for a certain value �0 of the relative phase of the two
optical lattices. The output is switched on for �0=0 and it is
switched off for �0=� /2. We measure the output density
Pout at t=14TB, where we neglect the first three strong pulses

as they are due to the initial population of excited Bloch
bands. Then one has

P = �
−230d

−30d

���x��2dx . �29�

For the parameters used in Fig. 16, we find a fidelity of F
=7.4, i.e., the output for �0=0 is enhanced by a factor of 7.4
in comparison to �0=� /2.

However, in a real experimental setup the phase � will
fluctuate around the desired value. This is mainly due to
mechanical perturbations, thus fluctuations with very high
frequencies are unlikely, while fluctuations with small fre-
quencies up to some kHz can be controlled by an active
stabilization. Thus we assume that the power spectrum of the
phase fluctuations has a maximum at intermediate values in
the kHz regime. This is comparable to the Bloch frequency
�B=2� /TB, as the Bloch period is about one millisecond in
a typical experiment �28�. Exemplarly, we consider fluctua-
tions with a Gaussian power spectrum with mean �B and
width �B /4. In the following we analyze the pulsed output in
dependence of the strength of the fluctuations. Figure 17
shows the fidelity of the output in dependence of the stan-
dard deviation ��= ����−�0�2�1/2 of the fluctuations for the
same parameters as in Fig. 16. One observes that the fidelity
drops to 1 �no switching effect� for a standard deviation of
��
0.6�. A reduction of the fluctuations below this value
is in principle possible today, however, only with a great
technical effort. As a consequence, an output switching
seems feasible in double periodic lattices.

VII. CONCLUSION AND OUTLOOK

In the present paper we have studied the interplay be-
tween decay and a nonlinear mean-field potential describing
the atom-atom interactions in a dilute Bose-Einstein conden-
sate.

As an illustrative model we have investigated a two-level
systems with one decaying level, which can be treated ana-
lytically. In the linear case, one has to distinguish two types
of level crossings, either the real parts anticross while the
imaginary parts of the eigenvalues cross �type I� or the other
way around �type II�. Both real and imaginary parts are de-
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FIG. 15. Pulsed output from a tilted optical lattice for V0=0.8,
F=1/18 and 	=0, g=0. Shown is the atomic density ���x , t��2 in a
grey-scale plot.
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generate at the exceptional point, where the bare state decay
rate equals the coupling strength. A weak nonlinearity does
not alter the crossing type, however, it deforms the levels in
a characteristic manner. For example, it leads to a bending of
the peaks in the decay rates. Novel nonlinear eigenstates
emerge for a stronger nonlinearity, where the critical nonlin-
earity is decreased in the presence of decay. Looped levels
appear for type-I crossings, while the additional eigenstates
emerge in a double-S structure for a type-II crossing. At the
exceptional point novel eigenstates emerge, even for small
nonlinearities.

An experimental setup where both decay and nonlinearity
play an important role is the dynamics of Bose-Einstein con-
densates in accelerated optical lattices. In particular, we have
analyzed the decay in a double-periodic lattice, where a weak
period-doubled potential is superimposed onto the funda-
mental lattice. These results will be of interest for controlling
transport of ultracold atoms in future and ongoing experi-
ments �37�.

The decay rate in a double-periodic Wannier-Stark system
depends sensitively on the system parameters, such as the
relative amplitudes of the lattices and the relative phase,
which can be varied over a wide range. In particular, the
resonant tunneling peaks of the decay rate ��F� split up into

two subpeaks. Varying the system parameters one can tune
these peaks and even achieve a crossover from a type-II
crossing to a type-I crossing. This could be crucial for future
experiments since a robust control of the relative phase is
hard to realize. One can, however, also exploit this sensitive
dependence in order to implement a fast output switch for a
pulsed atom laser. A weak nonlinear mean-field potential de-
scribing the atom-atom interactions in a Bose-Einstein con-
densate of ultracold atoms has two major effects: The reso-
nant tunneling peaks are shifted. This shift can lead to a
stabilization against decay. Furthermore, it leads to a bending
of the peaks as predicted by the nonlinear non-Hermitian
two-level system.
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