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We propose and discuss methods for detecting quasimolecular complexes which are expected to form in
strongly interacting optical lattice systems. Particular emphasis is placed on the detection of composite fermi-
ons forming in Bose-Fermi mixtures. We argue that, as an indirect indication of the composite fermions and a
generic consequence of strong interactions, periodic correlations must appear in the atom shot noise of bosonic
absorption images, similar to the bosonic Mott insulator �S. Fölling et al., Nature �London� 434, 481 �2005��.
The composites can also be detected directly and their quasimomentum distribution measured. This
method—an extension of the technique of noise correlation interferometry �E. Altman et al., Phys. Rev. A 79,
013603 �2004��—relies on measuring higher order correlations between the bosonic and fermionic shot noise
in the absorption images. However, it fails above a certain number of the constituents due to a dramatic
increase of uncorrelated noise.
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I. INTRODUCTION

Atomic mixtures in optical lattices represent a laboratory
system for the study of ultracold matter. They are intrinsi-
cally clean and feature a unique amount of tunability. There-
fore they offer outstanding opportunities to investigate fun-
damental many-body systems exhibiting some very rich
physics. A fascinating example is the formation of composite
states, which are induced by the lattice and the interaction.
Such states have recently been detected experimentally
�1–4�.

Two-component mixtures of atoms of, say, sorts A and B
provide the simplest example of such objects which can be
viewed as diatomic AB quasimolecules occurring if the A-B
interaction is strong enough. It is interesting to note that the
formation of composites is possible not only for attractive
�5,6� but also for repulsive interaction �7�. In the last case the

pairing occurs between an atom of sort, say, A and a hole B̄
of the sort B. Moreover, multiatomic complexes of the type
ABn with n�1 can form as well �8–10�. Even in strongly
nonequilibrium situations quasibound atomic states can exist
if the repulsive energy greatly exceeds a typical single par-
ticle bandwidth. This mechanism was first introduced for the
pointlike defects in solid He4 �11� and realized recently in
the optical lattice �12�.

In this paper particular emphasis will be put on generic
schemes for detecting the composites in the lattice Bose-
Fermi mixtures since such mixtures have recently been stud-
ied experimentally �13,14�. We will be referring to the com-

posites of the type FBn or FB̄n, n=1,2 ,3 , . . ., where F stands

for a fermion and B �B̄� denotes a boson �bosonic hole�.
However, all the conclusions can be easily extended to any
other type of a composite.

The quasimolecular complexes are induced by the lattice
and consequently vanish in most cases once the lattice po-
tential is removed. Since the standard method of detection in
ultracold gases, namely, time of flight imaging, entails the
elimination of all trapping potentials, the detection of com-
posites with this technique is challenging. In the example of

Bose-Fermi mixtures, the formation of such complexes—
composite fermions—would lead to the destruction of the
Fermi surface of the original fermions. Therefore the disap-
pearance of the corresponding feature should be observable
in the absorption image. However, this disappearance would
by no means constitute a definite proof of the formation of
composites since a variety of phenomena, e.g., heating, could
also lead to the same observation.

In this paper we propose a method how such composites
can be detected directly. The method is similar to the Han-
bury Brown and Twiss noise correlation interferometry �15�
applied to thermal sources of cold atoms �16� and proposed
in Ref. �17� for revealing nontrivial many-body states in ul-
tracold atoms. Such a method has been successfully imple-
mented in Refs. �18–20� for bosonic and in Refs. �21,22� for
fermionic systems.

Noise correlation spectroscopy relies on the fact that,
while the momentum distribution itself shows no particular
features, the atomic shot noise is correlated. In order to in-
troduce the extended noise correlation method with a simple
example, consider a model system with a single composite
�quasimolecule� consisting of one boson and one fermion.
The quasimomentum of the center of mass of the composite
is denoted by Q. When the lattice is switched off, the pair
breaks and the fermionic and bosonic wave packets expand
independently from each other. The fermionic or the bosonic
momenta distributions nF�q1� and nB�q2�, respectively, by
themselves, which can be measured after expansion, do not
reveal any low energy structure in their individual momenta
q1, q2—they feature almost uniform backgrounds because
binding of both atoms entails a wide range of their relative
momenta. However, momentum conservation requires the
momenta to add up to Q. Therefore, if in an individual mea-
surement, the fermion is found to have q1, the boson must
have q2=Q−q1 and the correlation between the two enables
one to measure the quasimomentum of the composite.

In the more general case with more than one pair in the
system, the correlations between the bosonic and fermionic
momentum distributions, which allow one to determine the
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quasimomenta of the pairs, will only be observable in the
noise �nB,F=nB,F− �nB,F� of the measured momentum distri-
butions. This is due to the fact that, in addition to the corre-
lated pair events, there are also events due to the components
originating from different pairs. The key point is that the
momentum distribution of the �centers of mass of the� FB
composites is reproduced by the noise correlator in the far
field of free expansion

ICF�Q� =� dX2��nF�q1��nB�q2�� , �1�

with Q=q1+q2 fixed, and q1=mFX1 / t=Q−q2, q2=mBX2 / t
being the dependent and independent variables, respectively.
Here mF, mB are the masses of fermionic and bosonic atoms,
respectively, and X1 �X2� denotes the position in the far field
where a fermion �boson� is detected. We point out that Eq.
�1� is essentially the Fermi distribution function �̃CF�Q� of
the composite fermions ��̃CF�Q��1 for 	Q	�QCF and
�̃CF�Q��0 for 	Q	�QCF, where QCF stands for the Fermi
surface wave vector of the composites�. We also show that in
the repulsive Bose-Fermi mixture, the role of the center of
mass momentum Q is played by Q−=q1−q2 similar to the
case of the repulsive two-component bosonic mixture �17�.
These properties of the correlator �1� will be discussed in
detail in Appendix A and extended to a general case of FBn

and FB̄n complexes in Sec. II C.
Detection of the Fermi edge in ICF�Q� may require quite

low temperatures T determined by the Fermi energy ECF of
the composites. However, since a typical binding energy Eb
of the composites can be much larger than ECF, a signature
of the composites will be seen as long as T�Eb �for T
�Eb, the correlator �1� is essentially zero�. Indeed, the very
fact that ICF�Q� is finite and proportional to a typical density
of the original fermions or bosons is a direct indication of the
presence of the composites. Accordingly, as T is lowered
below ECF, the formation of the Fermi edge in ICF�Q� will be
observed.

In principle, detection of multiatomic complexes—
quasimolecules with the number of the atomic constituents
exceeding two—can be done by extending the noise-
correlator method, as explained in Sec. II C. However, as
will be discussed in Sec. II D, such an extension to higher
order correlators can lead to a dramatic increase of uncorre-
lated noise. For this case, we propose an indirect method to
observe the complexes �Sec. III�. In this method, the pres-
ence of complexes of the type FBn is revealed by imaging
the density-density noise correlations of the original bosons,
if their number is incommensurate with the number of the
lattice sites. Then the resulting image of the Bragg structure
is similar to the one observed in a bosonic Mott insulator
�18,19�. Such a feature �provided T is below the condensa-
tion temperature of the bosons to exclude the thermal origin
of the structure� turns out to be a consequence of a strongly
interacting many-body ground state in which individual mo-
menta of bosons are poorly defined and, therefore, strongly
fluctuate.

II. DESCRIPTION AND DIRECT DETECTION OF
COMPOSITES IN OPTICAL LATTICES

A. The nature of the composite pairs

Here we will give a brief account of the nature of equi-
librium quasimolecular states. In general, quasimolecular
�composite� states form when the binding energy Eb exceeds
temperature T as well as the gain in kinetic energy the con-
stituents would encounter by delocalizing from each other.
For attractive interactions between bosons and fermions,
composites states of the type FB are formed. For repulsive
interaction, on the other hand, the quasimolecules represent

bound states of one fermion F and a bosonic hole B̄ �7� or,

similarly, one fermionic hole F̄ and a boson B. Binding of
one fermion with more than one boson or bosonic hole is
also possible if the number of bosons per site is large enough
and the magnitude of the Bose-Fermi interaction 	UBF	 sub-
stantially exceeds the repulsion between bosons UBB �10�. In

this event the composites FBn �for UBF�0� or FB̄n �for
UBF�0� with the integer n�	UBF	 /UBB can form. In recent
experiments �13,14� complexes of the type FBn with n as
large as n=3 may have played an important role.

Depending on the parameters, the effective interaction be-
tween composite fermions can be tuned to become attractive
or repulsive. In the case of effective attractive interaction, a
p-wave superfluid of pairs of composite fermions will form
�6,7�. For effective repulsive interactions and low filling of
composite fermions the ground state is a Fermi liquid while
near half filling insulating states may appear �10�. For clarity,
we will limit ourselves here to the case of composite fermi-
ons forming a weakly interacting Fermi liquid with a well
defined Fermi surface.

A pure quasimolecular phase FBn will only exist when the
number of bosons NB and fermions NF is commensurate, i.e.,
NB=nNF. Conversely, in the case of a pure phase of compos-

ites of the type FB̄n the number of bosons must be NB
=N ·k−NF ·n, with the integer k�n �23� and N standing for
the total number of the optical lattice sites. Free fermions or
bosons will be present when these conditions are not ful-
filled, or when going away from the strongly interacting re-
gime, where the composites can partly dissociate. Then two
types of Fermi surfaces can coexist—one for the composites
and the other for the original fermions. Moreover, a portion
of the B bosons can form a BEC �24�.

Here we will consider the limit of low density of the
composites, so that the size of one molecule am is much less
than the average distance r0 between them. In this case the
description becomes quite straightforward in terms of the
centers of mass of the composites only. As am /r0 increases
and eventually becomes comparable to 1, the composite fer-
mions will dissociate according to the scenario �24�.

B. Detection in weakly interacting Bose-Fermi mixtures

In the weakly interacting Bose-Fermi mixture without
composites present, practically all important information can
be deduced by imaging the bosonic nB�q� and fermionic
nF�q� quasimomentum distributions. In this method, the qua-
simomentum distribution is first mapped to the momentum
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distribution by removing the lattice potential on a time scale
which is slow with respect to single particle physics but fast
compared to quasimomentum changing collisions. After sub-
sequent free expansion for a time t the quasimomentum dis-
tribution is detected by imaging the density �25,26�.
Apart from unimportant multiplicative factors, nB�q�
�
dx exp�−iq ·x���B

†�x��B�0�� and nF�q��
dx exp�−iq ·x�
���F

†�x��F�0��, where �B�x� and �F�x� are the bosonic and
fermionic field operators, respectively, just before the lattice
was removed and the averaging �¯� is taken over the corre-
sponding state in the lattice. In the weakly interacting re-
gime, the bosonic quasi-momentum distribution reflects the
off-diagonal long range order �ODLRO� inherent in the one-
particle density matrix �B�x ,x��= ��B

†�x��B�x���, resulting in
a very small spread of quasimomenta. The fermionic one-
particle density matrix �F�x ,x��= ��F

†�x��F�x��� features
Friedel oscillations which are due to the sharp edge in the
Fermi distribution nF�q� �at T=0�: nF�q��1 for 	q	�qF and
nF�q��0 for 	q	�qF, where qF stands for the Fermi wave
vector.

C. Direct detection of composites

The method described above is not applicable to compos-
ite fermions, since they typically dissociate during the expan-
sion. However, the center of mass momentum Q of a FBn
atomic complex is conserved during time of flight. Therefore
the momenta of all its n+1 constituents after expansion are
directly correlated and add up to Q. We point out that the
observation of such correlations constitutes direct evidence
for the existence of the composites. In the following we will
describe how these correlations can be used to directly detect
the �quasi�momentum distribution of the composites in the
lattice.

For an ultracold gas that contains many composites, the
fermionic �bosonic� momentum distributions, i.e., the ab-
sorption images after time of flight, represent the momenta
of many fermions �bosons�. Consequently, the correlations
between the constituents originating from one composite are
not easily visible, since it is not clear which of the many
bosons and fermions made up one composite. The correla-
tions can therefore not be determined from the form of the
momentum distributions but only from the atomic shot noise
visible in them. Since the correlations are between one fer-
mion and n bosons, the corresponding correlator is
��nF�X1��nB�X2�¯�nB�Xn+1��. To determine the amount of
correlation, this correlator must be integrated over n+1 co-
ordinates under the constraint that the center-of-mass mo-
mentum Q of the constituents is fixed:

In+1�Q� =� dq2 ¯ dqn+1

�:�nF�q1��nB�q2� ¯ �nB�qn+1�:� , �2�

with Q=q1+q2+ ¯ +qn+1 and q1=mFX1 / t, q2
=mBX2 / t , . . . ,qn+1=mBXn+1 / t. Here :¯: implies the normal
order of the operators—when all the creation operators stay
to the left of the annihilation ones. The averaging �¯� is

performed over a particular realization of a many body
eigenstate 		� and, then, over many realizations. In Appen-
dixes A and B we show that the amount of correlation
In+1�Q� is proportional to the number of composites with
given quasimomentum Q, that is,

In+1�Q� � �̃CF�Q� − C , �3�

where �̃CF�Q�= �c†�Q�c�Q�� and c†�Q� ,c�Q� are the com-
posite fermion creation and annihilation operators in the mo-
mentum space and C is a constant term. To summarize, the
quasimomentum distribution �̃CF�Q� of the composites can
be found by measuring the correlations between experimen-
tal absorption images according to Eq. �2�.

The relation �3� is proved rigorously in Appendixes A and
B. It is instructive to follow the main steps of the proof: The
operators

�nF�X� = �F
†�X��F�X� − �		�F

†�X��F�X�		� , �4�

�nB�X� = �B
†�X��B�X� − �		�B

†�X��B�X�		� , �5�

appearing in Eq. �2� are expressed as functions of the onsite
fermionic f i

† , f i and bosonic bi
† ,bi creation and annihilation

operators by means of Eqs. �A1� and �A2�, with i being the
site index, in the lattice before expansion with the help of
Eqs. �A4�, �A5�, and �A3�. Inserting these expressions into
Eq. �2� yields sums over terms with 2�n+1� creation and
annihilation operators on different sites. Many of these can
be set to zero, resulting in

In+1�Q� � �
ij

eiQ�xi−xj���ci
†cj − �ijci

†ci�� , �6�

where ci
†, ci are the onsite composite fermion creation-

annihilation operators as defined in Eq. �B1� of the Appendix
B, and xi denotes the site i coordinates. The first term in
brackets in Eq. �6� is �̃CF�Q�: as can be noticed, after intro-
ducing the composite Fermi operators in the Fourier space
c�Q���i exp�−iQ ·xi�ci, one finds Eq. �3�. While �̃CF�Q�
gives the occupation number of composites with quasimo-
mentum Q, the second term is the constant C which takes
care of the normalization 
dQIn+1�Q�=0. The last relation
follows from the observation that the integral 
dQIn+1�Q� is
exactly ��NF : ��NB�n : � where �NB,F denote fluctuations of
the total numbers of bosons and fermions NB,F, respectively.
Since NF is diagonal on any many-body eigenstate 		�, such
a mean is exactly zero for any particular realization of 		�,
that is �NF		�=0. Both contributions in Eqs. �3� and �6� can
easily be distinguished because they have very different
structures: the first one is concentrated within the Fermi sur-
face of the composite fermions and the second is spread uni-
formly over all momenta in the first Brillouin zone.

In the case of the complexes FB̄n �see the discussion in
Appendix A below Eqs. �A9� and �A10�� the only change is
in the definition of the momentum Q in Eqs. �2�. It becomes
Q=q1−q2− ¯−qn+1.

As discussed in Ref. �24�, decreasing the F-B interaction
UBF will eventually result in coexistence of three types of
quasiparticles: some portion of free B bosons and F fermions
and the composites. In order to detect the composites in this
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case, the noise must be measured on top of signals from the
structured backgrounds �nF�q��, �nB�q�� in the fermionic and
bosonic channels.

D. Correlated versus uncorrelated noise

Here we discuss the detection requirements under the as-
sumption that the atomic quantum and shot-to-shot noises
are dominant. The above results indicate that measuring the
noise in the density correlator of the n+1 order can provide
a one-particle density matrix for the centers of mass of the
composites. It is important, however, that the uncorrelated
noise due to photon shot noise, inaccuracy 
 in determina-
tion of the number of particles in each detection bin, etc., is
much less than the correlated noise in one shot. Otherwise,
many shots S are required in order to reduce the effect of the
uncorrelated noise �by the factor �1/
S�. Here we will show
that, while for diatomic composites the uncorrelated noise
�with respect to the correlated one� is insignificant for large
enough numbers NF�NB �decays as 1/
NF�, for multiatomic
composites FBn with n=3, . . ., it grows as �NF

n/2−1, with the
case n=2 being marginal. This makes the direct scheme of
measuring the density matrix of the n�2 composites im-
practical because the required number of shots grows as S
�NF

n−2. This effect is caused by a strong increase of the
phase space with n when the composites are dissociated as a
result of the lattice release.

In what follows we will normalize the correlated and un-
correlated noises by the corresponding measured signal

Isig =� dX2 ¯ dXn+1�nF�Q − q2 − ¯ − qn+1��

��nB�q2�� ¯ �nB�qn+1�� , �7�

where qk=mBXk / t. This integral can be estimated as Isig
�NB

nNF /Nbin=nnNF
n+1 /Nbin, where we consider exact match-

ing NB=nNF and Nbin stands for the total number of the
detection bins. In the following estimates we will be using
the relations NB�NF�N, so that the actual numbers of par-
ticles can be replaced by the total number of sites �provided
the densities are finite�.

The uncorrelated noise is caused by technical inaccuracies

�Xi� in the detection of the number of, e.g., fermions in
each detection bin. The effect of such noise becomes criti-
cally magnified for large n even under the condition that
	
�Xi�	 is much smaller than a typical quantum fluctuation
�
NF /Nbin�
N /Nbin�1 of the number of detected par-
ticles per each bin. We note that, under the ideal condition

�Xi�=0, quantum fluctuations of the particles number in
each bin do not give rise to any uncorrelated noise in the
correlator �2�. This is due to the fact that the center of mass
momenta of the composites are good quantum numbers—in
contrast to the momenta of the constituents—and therefore
the corresponding quantity, the density of the composites
represented by the operator in Eq. �2� does not fluctuate in
any particular many-body eigenstate 		�. If, however, the
measurement is done with an error 
�Xi�, the operator deter-

mining the correlator �2� acquires the contribution 
Î
=
dX2¯dXn+1
�X1��nB�X2�¯�nB�Xn+1�, which can be

considered as a fair estimate of the total error under the con-
dition 	
	�
NF /Nbin. Clearly the mean of it is zero

�
Î�=0. However, its r.m.s. fluctuation E=
�
Î
Î� / Isig

�normalized by Isig� is not zero. We estimate �
Î
Î�
��
2��
dX1
dX2��nB�X1��nB�X2���n��
2�Nn, where we
have taken into account that the quantum fluctuation of the
number of bosons in each bin is �
N /Nbin and we have
considered no correlations between the bins �and omitted
factors dependent on n as n!, nn, etc.�. Given this estimate
and the one for Isig in Eq. �7�, we find

E =
�	
	�Nbin

N1+n/2 , �8�

where �	
	� stands for the r.m.s. fluctuations of 
�Xi�.
The quantity E characterizes the uncorrelated noise con-

tribution in one shot. If S shots are performed, it is reduced
as E→E /
S so that, in principle, the effect of the uncorre-
lated noise can be reduced below the correlated contribution
In+1 / Isig after taking a sufficient amount of the shots. In re-
ality, the required S must scale not faster than S�O�1� with
NF. The correlated contribution �6� is given just by the total
number of the composites �NF in each bin: In+1�NF /Nbin
�N /Nbin. Hence, In+1 / Isig�N−n and 
I / In+1
��	
 	 �NbinN

n/2−1 /
S. Thus, the required number of shots is

S � 	
	2Nbin
2 Nn−2. �9�

For n=1, this condition can be achieved for large enough N
and not very large number of bins Nbin. For n=2, the condi-
tion is marginally reachable, and, for n�2, it becomes im-
possible to fulfill.

It is worth mentioning that, in the case of composite
bosons, say, ABn, where A labels some boson of a kind dif-
ferent from B, the condition �9� becomes less strict. Indeed,
In+1 �2� in this case acquires an additional factor �N due to
the ratio of the correlation volumes of a boson and a fermion.
Indeed, the sum �ije

iQ�xi−xj��ci
†cj� can be estimated as �N
3,

where 
 is a typical distance on which the correlator �ci
†cj�

becomes zero. For fermions it is given by the interparticle
separation r0. For bosons in BEC, it is the size of the lattice
and one finds In+1�N2 /Nbin. Accordingly, keeping the signal
and the uncorrelated noise estimates the same, we find the
number of the required shots S� 	
	2Nbin

2 Nn−4. This implies
that for composite bosons the method described above can be
used if n�4, that is the total number n+1 of the constituents
should not exceed 5.

Concluding this section, we mention that performing shot-
to-shot averaging should be done with care, because, other-
wise, the noise scaling with N can become even stronger.
The operators of fluctuations �nF=nF− �nF�, �nB=nB− �nB�,
�nA=nA− �nA� are defined with respect to averaging over a
particular ground state characterized by given total numbers
of atoms NF ,NB ,NA. In other words, the average number of
atoms �nF�, �nB�, �nA� per each bin must be determined in
each shot. Then, the final value In+1 can be averaged over the
shots. Otherwise, shot-to-shot fluctuations of NF,B,A which
typically scale at least as 
NF,B,A, respectively, will introduce
stronger noise if the means �nF�, �nB�, �nA� are understood as

ANATOLY KUKLOV AND HENNING MORITZ PHYSICAL REVIEW A 75, 013616 �2007�

013616-4



the total ensemble means. In the latter case the difference
between the mean in one particular realization and the total
one serves as an additional uncorrelated noise. Then, one can
estimate 
�
N /Nbin and, accordingly, find 
I / In+1
�N�n−1�/2 /
S, so that the required number of shots scales as
S�Nn−1, implying that the detection of the composite fermi-
ons with n�1 is not possible. Similarly, for the composite
bosons 
I / In+1�N�n−3�/2 /
S, and the detection for n�3 be-
comes impossible.

III. INDIRECT INDICATION OF THE COMPOSITE
FERMIONS IN THE BOSONIC DENSITY-DENSITY NOISE

CORRELATOR

Here we discuss the situation when all bosons are bound
to be the constituents of the composite fermions so that there
is no ODLRO in the lattice. The question is how the bosonic
density-density correlator

Ibb�Y� =� dX�		:nB�X + Y/2�nB�X − Y/2�:		� �10�

�taken in the normal order� is affected by such a state. In this
case, the lattice is switched off suddenly and nB�X�, the den-
sity distribution measured after time of flight, represents the
momentum rather than the quasimomentum distribution of
the atoms in the lattice. Below we show that �10� exhibits the
Bragg structure similar to that observed in the Bose Mott
insulator �18,19�. The relations �B6� and �B7� in the physical
space of the composites �B2� allow expressing the correlator
�10� as the mean over the operator

Îbb�Y� = n2�
ij

�1 + ei�mBY/t��xi−xj��ci
†cj

†cjci + n�n − 1��
i

ci
†ci,

�11�

where the last term, which is �o�1/N� with respect to the
first one, can be ignored. Taking the means and replacing
�ci

†cj
†cjci�=�2�1−�ij�, with � being the average onsite popu-

lation of fermions, we find that Eq. �11� has exactly the same
structure observed for the bosonic Mott insulator �18,19�: the
term �exp�i�mF,BY / t��xi−x j�� is the correlated contribution
�15� which peaks as long as Y matches the positions of the
Bragg peaks �in other words, Y=0 modulo the primitive vec-
tors of the reciprocal lattice�. It is important that this struc-
ture exists for any filling factor of the composites ��1, that
is, it is not a sole property of the Mott insulating ground
states.

Regarding the fermionic correlator

If f�Y� =� dX�		:nF�X + Y/2�nF�X − Y/2�:		� , �12�

we note that it must exhibit the antibunching peaks, that is,
If f�Y�=0 for Y=0 �modulo the primitive vectors of the re-
ciprocal lattice� regardless of the nature of the ground state
because the normal product :nF�X�nF�X�: is zero �due to the
Pauli principle and the periodicity of the lattice�. This can be
verified directly with the help of Eqs. �A4� and �A3�. Then,
Eq. �12� becomes a periodic function If f�Y�, with the periods

determined by the primitive vectors of the reciprocal lattice,
and one finds If f�0��
dq�ijklexp�iq�xi+xk−x j

−xl���f i
†fk

†f lf j�=0 due to the Fermi statistics f lf j + f j f l=0.
The physical reason why the bosonic correlator �10�

shows bunching peaks �11� in a strongly interacting mixture
stems from a very general principle, which is best explained
by starting from the opposite case. In any noninteracting
pure quantum mechanical state the correlator
�	0	�nB�X��nB�Y�		0� �not taken in the normal order� must
be exactly zero. To understand this one must remember that
the density operators in the far zone are equivalent to the
momentum operators in the lattice and that noninteracting
systems are characterized by well defined momenta. Thus,
there are no fluctuations in each particular many-body �non-
interacting� eigenstate 		0� and the correlator
�	0	�nB�X��nB�Y�		0� is zero. In other words the operator
�5� is zero on space of states 		0� of the ideal systems: that
is, �nB�X�		0�=0. In the thermodynamical limit at low T the
normal ordering in Eq. �10� can be ignored for bosons �as
opposed to fermions�. Consequently, a weakly interacting
BEC of B atoms will lead to essentially uniform distributions
in Eq. �10� �27�.

Meanwhile in a quasimolecular phase of strongly interact-
ing Bose-Fermi mixtures the momenta of the original bosons
are undefined in each pure many-body state 		� in complete
analogy with the Mott insulator. Accordingly, the densities in
the far zone fluctuate strongly and produce the bunching be-
havior in Eq. �11�. In this case quantum fluctuations are re-
sponsible for the Hanbury Brown and Twiss effect. Setting it
more technically, in each many-body eigenstate the cor-
relator �	 	�nB�X��nB�Y� 		� is proportional to the interac-
tion vertex �28� and, if the interaction is small, the correlator
is, practically, zero. In general, having a strong interaction
regime is the requirement for observing the distinct patterns
�11� in pure states. This condition is more general than the
one for having an energy gap with respect to single-particle
excitations �18�. In the state mentioned in Sec. II C, where
all three types of quasiparticles are present, such a gap is
zero and the composites can still be well defined. Accord-
ingly, the Hanbury Brown, and Twiss pattern �11� should be
observable. Obviously, some care should be taken in order
not to confuse the pattern due to the composites with that
caused by thermal fluctuations �27�. However, the latter case
can be ruled out by determining the temperature in the lat-
tice, for example by measuring the molecule formation ratio
within the lattice �1�. If a Bragg pattern �11� persists well
below the BEC condensation temperature of the bosons, it
constitutes an indirect indication for the existence of com-
posite fermions in the strongly interacting mixture, providing
no particular information about the nature of their state.

IV. CONCLUSION

We have suggested the extended density-density cor-
relator method for the direct imaging of the composites in
optical lattice and have evaluated its feasibility for multi-
atomic fermionic and bosonic complexes. The method is ex-
pected to work well for fermionic composites consisting of
less than four atoms and for bosonic ones consisting of less
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than six atoms. Above these numbers, the uncorrelated noise
becomes too large.

As an indirect method for detecting the composites, mea-
suring the bosonic density-density correlators must reveal the
typical Hanbury Brown and Twiss structure first observed for
the bosonic Mott insulator. We point out that this observation
is a generic consequence of strong interactions in a two-
component mixture in optical lattices.
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APPENDIX A: STRONGLY BOUND FB AND FB̄ PAIRS

Here we will give a more extended treatment of the FB
case discussed in the introduction. It is important that the
correlator �1� turns out to be proportional to the Fourier rep-
resentation of the in situ two-body density matrix
��F

†�x1��B
†�x2��F�y1��B�y2�� with respect to the coordinate

x1−y1. As a matter of fact, since a boson can only be found
close to a fermion, one can set x1=x2, y1=y2 in this cor-
relator without affecting its low energy properties �as long as
am /r0�1�.

In the following we will justify the statement ICF�Q�
� �̃CF�Q�. We assume that the wave function of relative mo-
tion ��r� of a boson and a fermion in a pair is of the s-wave
type ��r��exp�−	r 	 /am� /am

3/2 with am being of the order of
the lattice constant. �In the case of the non-s-wave BF pair-
ing, the correlator �1� vanishes after integration over, say, q2
with Q kept constant. We do not consider such an exotic
possibility�. We will see in the following that once 	Qam	
�1, the extent of the wave function am has no effect on
ICF�Q� or �̃CF�Q�. In order to calculate ICF�Q�, we expand
the fermionic and bosonic operators in the optical lattice as

�F�x� = �
i

W0�x − xi�f i, �A1�

�B�x� = �
i

W0�x − xi�bi, �A2�

where W0�x−xi� stands for the Wannier function located at
ith site. For simplicity, we consider W0�x� to be the same for
fermions and bosons. Upon free expansion of a particle of
mass m, the Wannier function in the far zone becomes �apart
from a numerical coefficient�

Wt�X,xi� = �m

t
�3/2

e−iq·xi+imX2/2tW̃�q� , �A3�

where q=mX / t �we employ units in which �=1� and W̃�q�
=
dx� exp�−iq ·x��W0�x�� stands for the Fourier transform
of the Wannier function. In the far zone the operators �A1�
and �A2� become

�F�X� = �
i

Wt�X,xi�f i, �A4�

�B�X� = �
i

Wt�X,xi�bi, �A5�

where the corresponding mass mF, mB is replacing m.
Then, substitution of Eqs. �A4� and �A5� into the defini-

tion of the densities in the far zone �4� and �5� and employ-
ing them in Eq. �1� give

ICF�Q� =� dq2
mF

3 	W̃�Q − q2�W̃�q2�	2

t3 ��f†�Q − q2�b†�q2�f�Q

− q2�b�q2�� − �f†�Q − q2�f�Q − q2���b†�q2�b�q2��� ,

�A6�

where f�q�= �1�
N ��iexp�−iq ·xi�f i and b�q�
= �1�
N ��iexp�−iq ·xi�bi are the Fourier representations of
the onsite operators. We note that ICF�Q� scales with the
expansion radius R� t as �1/R3, that is, as though it is just
a density of some particle undergoing free expansion.

The momenta involved in W̃�q� are of the order of the
inverse lattice constant al. In fact, as the lattice is being
ramped down adiabatically with respect to the single particle
states, the Wannier function undergoes a transformation from
that corresponding to the deep lattice to the one in the very
shallow lattice. In the latter case, W�x� can be found explic-
itly from the definition �1� of Ref. �29�, where for the Bloch
function one can use just the exponential exp�ik ·x�. Then,

the square of the Fourier transform 	W̃�q�	2 trivially becomes
the volume of the elementary cell �BZ�al

3 when q belongs
to the first Brillouin zone and zero otherwise. Accordingly,
the integration 
dq2¯. in Eq. �A6� proceeds over the first

Brillouin zone 
BZdq2¯. with the factor 	W̃�Q−q2�W̃�q2�	2
=1 as long as the typical values of Q are much smaller than
the inverse lattice constant al �for Q being outside the first
zone, this factor is essentially zero, if the Fermi “sphere” has
a volume �QCF

3 much less than 1/�BZ�. In particular, this
implies that the “imaged” composites are localized mostly
within the first Brillouin zone similarly to the rampdown
procedures �25,26� used for the atomic imaging. As can be
seen, the spreading over the next zone is suppressed by the
factor QCF

3 �BZ�1 due to the small fraction of the phase
volume in the integral �A6� which allows access to the center
of the next zone.

If bosons and fermions do not bind together, the correlator
in Eq. �A6� is essentially zero. If, however, there are tightly
bound composites FB in the lattice, the correlator becomes
finite whenever a boson is found within the proximity am of
a fermion. This is indicated in a choice of the physical space

	1,�nQ�� = �
Q

�cQ
† �nQ	0� , �A7�

cQ
† =� dq�̃�q�f†�Q/2 + q�b†�Q/2 − q� , �A8�

with nQ=0,1, of weakly interacting composite fermions �in
the considered limit r0�am�. It is represented by the com-
posite creation-annihilation operators cQ

† ,cQ of a BF pair
with total momentum Q in terms of the Fourier components
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of the fermionic and bosonic operators and of the relative

wave function �̃�q�, which is the Fourier component of
��r�. It is important that the low energy properties do not

depend on details of �̃�q� in the limit of low density of the
composites. This can be seen by direct calculation of Eq.
�A6� over the state �A7�. Specifically, the state f�Q
−q2�b�q2�	1, �nQ�� contains contribution �̃�Q /2−q2�	0�
coming from the action of f�Q−q2�b�q2� on the term de-
scribing just single composite cQ

† 	0� without affecting the
others. It also contains the exchange terms involving pairs of
the composites with different momenta. These exchange
terms, however, can clearly be neglected because they con-
tribute factors �am /r0�3�1. Thus, we find

BZdq2��nQ� ,1	f†�Q−q2�b†�q2�f�Q−q2�b�q2�	1, �nQ��
=
BZdq2	�̃�q2�	2nQ= ��nQ� ,1	c†�Q�c�Q�	1, �nQ��, since


BZdq2	�̃�q2�	2=1 as the normalization condition. Thus, in
the physical space �A7� and �A8� the operator 
BZdq2f†�Q
−q2�b†�q2�f�Q−q2�b�q2� is equal to c†�Q�c�Q� and its aver-
aging produces the momentum distribution �̃CF�Q�
= ��nQ� ,1 	c†�Q�c�Q� 	1, �nQ�� of the composite fermions as
discussed in the Introduction below Eq. �1�.

As can be directly checked, the uncorrelated contribution

BZdq2�f†�Q−q2�f�Q−q2���b†�q2�b�q2�� in Eq. �A6� is inde-
pendent of Q as long as 	Q 	 �am

−1 and, thus, can be replaced
by a constant C. This constant can be restored from the nor-
malization on the density of fermions �and bosons�. Finally,
the expression �1� becomes ICF�Q�� �̃CF�Q�−C, which is a
particular case of a more general Eq. �3� discussed in the
Sec. II C.

We also comment on the case of purely repulsive interac-
tions when the pairing occurs between fermions and bosonic
holes �7�. The corresponding physical space, then, becomes

	1,�nQ�� = �
Q

�cQ
† �nQ�

i

�bi
†�k	0� , �A9�

cQ
† =� dq�̃�q�f†�Q/2 + q�b�q − Q/2� , �A10�

where k=1,2 , . . ., and �̃�q� is now a wave function of rela-
tive motion of a fermion and bosonic hole. Accordingly, the
total momentum Q is now the difference of the momenta
carried by the fermion Q /2+q and by the bosonic hole q
−Q /2. Then, as discussed in the Introduction, the momen-
tum Q in Eq. �1� is to be replaced by the difference of the
momenta: Q−=q1−q2.

APPENDIX B: THE PHYSICAL HILBERT SPACE FOR
STRONGLY BOUND COMPLEXES FBn

Insensitivity of the low energy physics to the internal
structure of the composites discussed in the Appendix A for
the case FB �as an example� allows a simplification of the
analysis by projecting the Hamiltonian as well as any mea-
surable quantity into states having either no particles on a
site or 1+n particles—one fermion and n bosons. In other
words, the constituents of a composite are located at the

same site and the probability to find an unbound boson or
fermion on another site is vanishingly small. This means that
the physical operators are

ci =
f ibi

n


n!
, ci

† =
f i

†bi
†n


n!
. �B1�

Then, the physical Hilbert space is represented by the basis

	n,�ni�� = �
i

�ci
†�ni	0� , �B2�

where the product is taken over all lattice sites and ni can
take only two values ni=0,1. As can be easily checked, the
annihilation and creation operators of the composite fermi-
ons obey the standard anticommutation relation �ci ,cj

†�+=�ij

in the space �B2�.
The projection of the measured quantities into the space

�B2� can be done by considering processes leading to jumps
of the composite fermions only. If the composites are
strongly bound and there are no free bosons or fermions, this
is a very accurate approximation. Then, we ignore bi

†bj and
f i

†f j acting on 	n , �ni�� unless i= j which gives onsite local
populations determined by presence or absence of a compos-
ite on the site i. So, in general,

bi
†bj = nci

†ci�ij , �B3�

f i
†f j = ci

†ci�ij . �B4�

Concerning the quartic operators f i
†f jbk

†bl in Eq. �1� which
are important for the detection of the FB quasimolecules,
they must be set to zero �if acting on the state �B2� and �B1�
with n=1� unless i= j, k= l or i=k, j= l. For n=1, the follow-
ing relation holds:

f i
†f jbk

†bl = �ik� jl�1 − �ij�ci
†cj + �ij�klci

†cick
†ck. �B5�

Similar relation can be established for any value of n for the
operator linear in f j

†f i and of the order n in bj
†bi. We will not,

however, present it explicitly here. Another set of useful re-
lations is

f i
†fk

†f lf j = ��ij�kl − �il�kj�ci
†ck

†ckci, �B6�

bi
†bk

†blbj = n2��ij�kl + �il�kj�ci
†ck

†ckci + n�n − 1��il�ij�ikci
†ci.

�B7�

As long as the low energy properties are concerned in the
low density limit, the introduced truncation of the phase-
space is accurate. Similar rules can be formulated for the

case of the FB̄n complexes. In the case of n�1 the deriva-
tion of Eq. �6� proceeds as follows. After substituting expres-
sions �A4� and �A5� into Eqs. �4� and �5�, then, into Eq. �2�,
we arrive at the multiple lattice sum of the correlators in Eq.
�2�

In+1�Q� � � dq2 ¯ dqn+1 �
i1¯in+1,j1¯jn+1

�ei��Q−q2¯−qn+1�xi1j1
+q2·xi2j2

+¯+qn+1xin+1jn+1
� � �		

��f i1
† f j1

− �		f i1
† f j1

		��:�bi2
† bj2
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− �		bi2
† bj2

		�� ¯ �bin+1

† bjn+1

− �		bin+1

† bjn+1
		��:		� . �B8�

It is enough to use the normal ordering :¯: for bosonic
operators only because just two fermionic operators are in-
volved. The terms with i1� j1 which project into the one-
particle density matrix of the composite fermions contain 2n
bosonic operators together with the fermionic pair under
�		¯ 		�. These are �		f i1

† f j1
:bi2

† bj2
¯bin+1

† bjn+1
: 		�

= �		f i1
† �bi1

† �nf j1
�bj1

�n		��i1i2,. . .,�i1in+1
� j1j2,. . .,� j1jn+1

= n!�		ci1
†

�cj1
		��i1i2,. . .,�i1in+1

� j1j2,. . .,� j1jn+1
, where the definition �B1�

is utilized. This generates the first term in the brackets of

Eq. �6�. The terms with i1= j1, after being summed,
produce zero due to the conservation of the total number
of fermions. This explains the presence of the last term
in the brackets of Eq. �6�. Other terms carry less
than 2n bosonic operators averaged together with the
fermionic ones. For example, one term which has
2�n−1� bosonic operators is �i2j2

�		bi2
† bi2

		��		�f i1
† f j1

− �		f i1
† f j1

		�� :bi3
† bj3

. . .bin+1

† bjn+1
: 		�, where the factor �i2j2

comes from the relation �B3�. It does not contribute to the
terms with i1� j1 because the integration over q2 in Eqs. �2�
and �B8� has a structure 
dq2 exp�i�Q−q2�xi1j1
+ iq2xi2j2

��i2j2
and, thus, selects only terms with i1= j1. The

same logic applies to other terms with fewer number of
bosonic operators.
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