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We address the issue of determining an effective two-body interaction for mean-field calculations of the
energies of many-body systems. We show that the effective interaction is proportional to the phase shift and
demonstrate this result in the quasiclassical approximation when there is a trapping potential in addition to the
short-range interaction between a pair of particles. We calculate numerically energy levels for the case of an
interaction with a short-range square well and a harmonic trapping potential and show that the numerical
results agree well with the analytical expression. We derive a generalized Gross-Pitaevskii equation which
includes effective range corrections and discuss the form of the electron-atom effective interaction to be used
in calculations of Rydberg atoms and molecules.
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I. INTRODUCTION

Ultracold gases represent an ideal environment to study
fundamental processes such as interparticle collisions and
molecule formation. These systems are generally dilute, in
the sense that the mean distance between particles, �n−1/3, is
typically larger than the range R of the interactions: under
these conditions many-body encounters are rare and interac-
tions can be satisfactorily modeled by two-body collisions.

Atomic interaction potentials have a complicated structure
and are generally not known exactly but, as shown by Fermi
�1�, the long-wavelength and low-energy properties of the
two-body system can be reproduced exactly if one replaces
the true potential by a suitable boundary condition for the
relative wave function at the origin,

��r� � 1 −
a

r
, �1�

where r= �r� is the modulus of the relative coordinate vector.
This boundary condition depends on a single parameter, the
scattering length a=−limk→0� /k, where � is the s-wave scat-
tering phase shift. When employed in the two-body problem,
this leads to an energy shift given by

�E =
2��2a

	
���0��2, �2�

where ��r� is the relative wave function in the absence of
two-body interactions and 	 is the reduced mass of the two
particles. This result leads to the interaction term in the
Gross-Pitaevskii �GP� equation for the mean-field wave
function of a Bose-Einstein condensed gas. The standard
Fermi treatment is justified as long as the relative momentum
k is so low that k�a�
1, but to deal with phenomena at
higher energies the theory must be improved.

An extension of the Fermi pseudopotential was proposed
in Refs. �2,3�, where the authors introduced a more general
contact pseudopotential which depends on energy and which
includes all partial waves l. Its s-wave component is given
by

Vps� = −
2��2

	

tan �

k
��r�

�r�

�r
. �3�

The solution of the Schrödinger equation for the pseudopo-
tential agrees with that for the actual potential in the region
where the actual potential vanishes. The magnitude of the
pseudopotential is specified in terms of the tangent of the
phase shift, tan ��k�, where the wave number k must be taken
to be that in the absence of the potential. As shown in �5–7�,
when the Schrödinger equation is solved for this pseudopo-
tential one obtains eigenenergies and wave functions that re-
produce very accurately the results obtained from integrating
the Schrödinger equation directly for the actual microscopic
potential. Following the suggestion of Ref. �8�, such a
pseudopotential has been employed in studies of Rydberg
atoms and molecules �9,10�. However, when used in mean-
field calculations of the energy, it yields divergent energy
shifts when a phase shift becomes close to � /2 �mod ��. A
further proposal for the relationship between an effective in-
teraction and the phase shift has been made in the context of
deriving a generalization of the GP equation, where it has
been argued that the energy shift should be proportional to
the real part of the forward scattering amplitude—i.e., �E
�sin � cos � �11�.

In this paper we explore the relationship between energy
shifts and phase shifts. We shall argue that the generalization
of Eq. �2� to nonzero k is to replace the scattering length by
−� /k, a result demonstrated long ago for particles in the
absence of a trapping potential �12�. In Sec. II we first dem-
onstrate this result for two particles whose relative motion is
confined to lie within a sphere and then show that in the
quasiclassical approximation it also holds if there is an addi-
tional trapping potential that depends on the relative coordi-
nate. Following that we calculate numerically the energy
shift for an interaction consisting of a short-range square
well plus a harmonic trapping potential and show that the
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analytical formula fits the data well. In Sec. III, we derive a
generalization of the GP equation that includes the effective
range of the interaction through a derivative term and com-
pare results with predictions based on the prescription of
Ref. �11�. In Sec. IV we analyze effective interactions for
ultracold Rydberg atoms and molecules. We summarize our
results in Sec. V.

II. ENERGY SHIFT

The relationship between energy shifts and phase shifts
for a particle interacting with a static impurity was analyzed
long ago �see, e.g., �12��, and we briefly review the argument
in the context of the two-particle problem. Consider two par-
ticles, with reduced mass 	, interacting via a spherically
symmetric potential. In the absence of interaction, the rela-
tive wave function for an s state is of the form

��r� = A
sin�k0r�

r
. �4�

For definiteness, we imagine the relative motion to be con-
fined to a sphere of radius R and we impose the boundary
condition that the wave function must vanish at r=R. This
implies that the wave number in the absence of interaction is
k0=n� /R and normalization of the wave function gives A
= �2�R�−1/2. In the presence of a short-ranged interaction
Vsr�r�, which we shall assume vanishes more rapidly than r−1

for large r, the asymptotic wave function will have the same
form as in Eq. �4�, but with a phase shift:

��r� = A
sin�kr + ��

r
. �5�

To satisfy the boundary condition at r=R, the wave number
must now obey the equation kR+�=n�, which implies that
the wave vector is shifted by an amount �k=k−k0=−� /R.
The energy shift is then given by

�E �
�2

	
k0�k =

2��2

	
�−

�

k0
	���0��2. �6�

Thus the energy shift due to interparticle interaction is pro-
portional to the phase shift �. In the limit of zero energy,
scattering theory �see, e.g., �13�� shows that the s-wave phase
shift is proportional to the wave vector ��−ka and one re-
covers the well-known result that the effective interaction
has a contact form with strength U0=2��2a /	.

A. Presence of an external confining potential

One may ask whether the result �6� applies in the presence
of a trapping potential. We therefore consider the same prob-
lem as above, but with an additional external potential Vex�r�
for the relative motion �14�. We shall assume that Vex�r�
increases with increasing r, and we shall impose the bound-
ary condition that the wave function tend to zero for large r.

The basic assumption we shall make is that the trapping
potential Vex�r� varies negligibly over both the range L of the
two-body potential Vsr�r� and over length scales ��� /k�,
which we shall show will play the role of an energy-

dependent scattering length. In addition, we assume that
Vex�r� varies sufficiently slowly in space and that the energy
of the state is sufficiently high that we may employ the qua-
siclassical approximation. As usual, it is convenient to work
with the quantity �=r�, and in terms of it, the Schrödinger
equation becomes

−
�2

2	

d2�

dr2 + V� = E� , �7�

and we may take � to be real. The quasiclassical approxima-
tion for the potential Vex�r� is

��r� =
A

r
p�r�
sin��

0

r

dr�
2	�E − Vex�r���
�2 
 , �8�

where p�r�=
2	�E−Vex�r�� is the classical relative momen-
tum of the two particles. The normalization constant A is
fixed by requiring that the norm of �—i.e., the volume inte-
gral of ���2 out to the classical turning point r=rc where
Vex�rc�=E—be unity. Since, in Eq. �8�, p−1/2 changes slowly
over a period of oscillation of the sine function, we obtain

�
0

rc

dr�2�r� = 2�A2�
0

rc dr

p�r�
= 1. �9�

By choosing the zero of energy such that Vex�0�=0, the am-
plitude of the wave function when the positions of the two
particles coincide is found to be

��0� =

4 2	E/�4


2��
0

rc

dr p−1�r�

. �10�

The phase of the semiclassical wave function obeys
Bohr’s quantization rule �13�

�
0

rc

dr
2	�E − Vex�r��
�2 = �n + ��� , �11�

where n is a positive integer and � is a constant that depends
on the nature of the potential in the vicinity of the classical
turning point. The presence of the potential Vsr�r� induces an
energy shift �E, and asymptotically the wave function ac-
quires a phase shift � that satisfies

�
0

rc�
dr
2	�E + �E − Vex�r��

�2 + ��E + �E� = �n + ��� ,

�12�

where rc� is the appropriate classical turning point in the pres-
ence of the short-range interaction. By taking the difference
between Eqs. �12� and �11�, expanding the integral to first
order in �E, and making use of Eq. �10�, one obtains the
result
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�E = −
2��2

	

��E + �E�

2	E/�2

���0��2, �13�

in agreement with Eq. �6�. The difference between rc and rc�
plays no role since the integrand vanishes at the turning
point.

B. A numerical example

We now perform numerical calculations of the energy
shift for a model potential. For the trapping potential, we
choose a harmonic potential of frequency 
, Vex�r�
=	
2r2 /2, while for the particle-particle interaction we take
an attractive spherically symmetric potential which is equal
to a constant V0�0 for r�L, and zero otherwise. The prob-
lem is similar to that considered in Refs. �5–7�, but with a
simplified short-range interaction. For r�L, the solution
with energy E that is regular at the origin is given by Eq. �4�
with wave vector k=
2	�E−V0� /�2,

�in�r� �
sin�kr�

r
. �14�

For r�L, the wave function is the general solution of the
Schrödinger equation for the harmonic potential,

�out�r� � e−r2/2aho
2 
�

aho
�1F1�3 − �

4
,
3

2
,

r2

aho
2 	

− C
aho

r 1F1�1 − �

4
,
1

2
,

r2

aho
2 	
 , �15�

where �=2E /�
, 1F1�� ,� ,z� is the confluent hypergeomet-
ric function of the first kind �15�, and the constant C
=�� 1−�

4
� /2�� 3−�

4
� is chosen to ensure that �out�r� vanishes at

infinity �16,17�. The allowed energies are found by matching
at the boundary r=L the logarithmic derivatives of the solu-
tions inside and outside the well.

The phase shift � for a given energy E may be found by
equating at r=L the logarithmic derivatives of �in and of the
solution outside the core in the absence of the smooth
potential—i.e., a spherical wave with wave vector k0
=
2	E /�2. This yields the relation

��E� = arctan� k0

k
tan�kL�
 − k0L . �16�

In Fig. 1 we show results for the energy of a few states
with many nodes, obtained by direct calculation. The energy
levels of our model are closely reproduced by Eq. �6�, while
the predictions given in Ref. �9�,

�E = −
2��2

	
� tan �

k

���0��2, �17�

and in Ref. �11�,

�E = −
2��2

	
� sin � cos �

k

���0��2, �18�

are correct only for small values of ��� �mod ��. Note that if
����� /2 and �� /�−n�
1 �where n is a suitable integer�, the

theoretical values of the energy given by expressions �17�
and �18� agree with an energy eigenvalue of the system, but
one with a different number of nodes inside the short-range
potential.

III. GENERALIZED GROSS-PITAEVSKII EQUATION

In the numerical example above, we considered a state
with many nodes. For applications to Bose-Einstein conden-
sates �BEC’s�, the relevant wave numbers are usually small,
and therefore it is interesting to look at the opposite case of
small but nonzero wave numbers. When the Wigner thresh-
old condition k�a�
1 is violated, the s-wave phase shift is no
longer linear in the wave vector and its energy dependence
can be written for potentials that fall off more rapidly than
r−5 for large r as

k cot � = −
1

a
+

1

2
rek

2 + o�k2� , �19�

where re is the effective range of the interaction �18�. For
small phase shifts �� tan �−tan3 � /3 and we find

−
�

k
= a�1 − g2k2� , �20�

where we have introduced

g2 =
a2

3
−

are

2
. �21�

The energy shift is then given by
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FIG. 1. �Color online� Energy levels for the model potential
described in the text as a function of phase shift, which is given by
Eq. �16�. Levels are indexed by the principal quantum number n.
The symbols indicate the results of numerically solving the match-
ing condition for the Schrödinger equation at r=L. The values of
the energies E�Vsr�=E�0�+�E�Vsr� calculated using Eq. �13� �solid
lines� are indistinguishable from the values �symbols�. As a com-
parison, we also show the energy shifts given by Eq. �17� �dashed
line� and Eq. �18� �dash-dotted line�. The energy is measured in
units of �
, and the core width is L=2aho.
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�E =
2��2a

	
�1 − g2k2����0��2. �22�

It is interesting to note that in the case of hard spheres of
diameter a the boundary condition on the surface of the
sphere implies that �=−ka for all k and therefore g2 �and all
higher terms in an expansion of � in powers of k� should
vanish. Since from Eq. �19� re=2a /3 for the hard-sphere
potential, one indeed finds g2=0 from Eq. �21�. Our result is
to be contrasted with the expression g2=a2−are /2 based on
the approximation �18� for the interaction energy �11�.

As shown in Ref. �11�, the energy shift can be inserted
into the energy functional to obtain a generalization of the
GP equation for the condensate wave function � that con-
tains a derivative term in the interaction energy:

i�
�

�t
� = �−

�2

2m
�2 + V�r� + U0����2 + g2�

2���2�
� .

�23�

Contributions from higher partial waves may be included
through the addition of higher-derivative terms, as described
for Fermi systems in Ref. �4�.

To test the validity of this prediction, we have performed
numerical integrations of the relative motion for the two-
body problem considered above, with a harmonic trapping
potential and a short-range square well potential, but for the
lowest state rather than the excited states considered in Sec.
II. The results are compared with those obtained from ana-
lytical approximations. Figure 2 shows that the inclusion of
the effective range correction with g2 given by Eq. �21�
greatly improves the prediction given by the simple scatter-

ing length approximation as soon as the condition k�a�
1 is
violated.

IV. APPLICATION TO RYDBERG MOLECULES

In Rydberg atoms the valence electron is in a highly ex-
cited state with principal quantum number n�20, and within
quantum defect theory it is described in terms of generalized
hydrogenic wave functions. By analogy with the structures
created around positive ions in liquid helium �20� or BEC’s
�21,22�, a Rydberg atom with a large electric-dipole moment
inside a BEC may create remarkable deformations of the
condensate density in its surroundings. The additional degree
of freedom introduced by the permanent electric-dipole mo-
ment could also be used to realize conditional logic gates for
quantum information processing �23�.

On the experimental side, Rydberg atoms have already
been created in an ultracold environment �24� and there is a
proposal to excite and trap single Rydberg atoms inside a
BEC �25�. Being overall electrically neutral, Rydberg atoms
are not accelerated by the stray electric fields which are un-
avoidable in experimental vacuum chambers. This is particu-
larly relevant since, in a typical apparatus for ultracold at-
oms, stray fields would drag an ion outside the condensate in
a time much less than 1 ms, making difficult the observation
of the induced density disturbances.

In recent work �9,10�, it has been predicted that the tai-
lored excitation of single atoms in a BEC towards a Rydberg
state would induce the formation of molecules characterized
by ultralong ranges �R�2000 a.u.� and very large permanent
electric-dipole moments. In these papers, the s-wave molecu-
lar potential between a ground-state atom and a Rydberg
atom was taken to be

Vs�r�,R� � = −
2��2

	

tan �0�k�R��
k

��r� − R� � , �24�

where r� and R� are the positions of the electron and of the
ground-state atom relative to the Rydberg ion, �0�k�R�� is the
energy-dependent phase shift, and the electron wave number
k�R� is given by the hydrogenic relation k2�R� /2−1/R=
−1/2n2. The authors of �9,10� follow Omont �8� and con-
clude that the appropriate potential for the excited electron is
given, in the Born-Oppenheimer approximation, by

Us�R� � = Enl −
2��2

	

tan �0�k�R��
k

��nl0�R� ��2, �25�

where Enl and �nl0 are the unperturbed atomic Rydberg en-
ergy and wave function �with quantum numbers n�30, l
�2, and m=0�. As discussed above, while the potential in
Eq. �24� reproduces accurately eigenenergies and wave func-
tions of the Schrödinger equation, it should not be used in
mean-field calculations, where it yields unphysical divergent
energy shifts in the presence of a resonance.

This issue is particularly relevant for the scattering in the
p-wave channel, where the e-Rb�5s� scattering phase shift
�l=1 has a resonance at an energy of approximately 30 meV,
corresponding to a distance between the Rb ion and the
ground-state atom of about 700 a.u.: here Omont’s expres-

0 0.05 0.1 0.15 0.2

−0.6

−0.4

−0.2
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0.2

Phase shift δ/π 

∆ 
E

k|a|≈ 0.1

FIG. 2. �Color online� Energy shift for the ground state �n=0� of
the combined potential discussed in the text. The exact results
�crosses� are compared with the energy shifts given by the formula
�E=2��2f ���0��2 /	, where f =a �circles�, f =−tan � /k �dotted
line�, f =−� /k �solid line�, by the result that includes the effective
range correction, f =a�1−g2k2� �dash-dotted line�, and by the result
of Ref. �11�, f =a�1− g̃2k2� �dashed line�. The energy is measured in
units of �
, and the core width is L=0.25aho.
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sion for the energy shift �E�R� �� ��� �nl0�R� ��2 tan �1�k� /k3 di-
verges. However, according to the arguments we have given,
the appropriate effective interaction for a mean-field calcula-
tion is not given by this expression, but rather by one with
the tangent of the phase shift replaced by the phase shift
itself, and consequently there are no divergence problems.

V. CONCLUSION

In this paper we have studied the expression for the effec-
tive two-body interaction to be used in mean-field calcula-
tions of the energy of a state. All results agree in the limit of
zero energy, but there are differences at higher energies. We
have argued that the appropriate effective interaction is pro-
portional to the phase shift, rather than other expressions that
have been suggested, and we show that this holds analyti-
cally for the states of two particles in a trap in the quasiclas-
sical approximation. We have calculated energy levels nu-
merically for the problem of two particles interacting via a
short-range square-well potential in the presence of a har-
monic confining potential and have demonstrated that the
analytical expression in terms of the phase shift agrees well

with the numerical data, both for the ground state and for
excited states with many nodes. Since an effective interac-
tion proportional to tan � gives the correct wave functions
and energy eigenvalues when inserted in the Schrödinger
equation, our results show that the choice of effective inter-
action depends on the application.

In this article, we have also considered corrections to the
Gross-Pitaevskii equation to allow for the nonzero energy of
the relative motion of two particles and have derived a gen-
eralized Gross-Pitaevskii equation that takes into account the
effective range. This equation gives a better approximation to
the numerical results for energy eigenvalues than does an
earlier proposal �11�. A problem for future work is to include
contributions from higher partial waves in the GP equation.
Finally, we have argued that the effective two-body interac-
tion to be used in calculations of Rydberg atoms and mol-
ecules should be taken to be proportional to the phase shift.
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