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In the last several years considerable efforts have been devoted to developing Bose-Einstein-condensate-
based devices for applications such as fundamental research, precision measurements, and integrated atom
optics. Such devices, capable of complex functionality, can be designed from simpler building blocks as is
done in microelectronics. One of the most important components of microelectronics is a transistor. We
demonstrate that a Bose-Einstein condensate in a three-well potential structure where the tunneling of atoms
between two wells is controlled by the population in the third shows behavior similar to that of an electronic
field-effect transistor. Namely, it exhibits switching and both absolute and differential gain. The role of quan-
tum fluctuations is analyzed, and estimates of the switching time and parameters for the potential are presented.
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I. INTRODUCTION

Recent experimental realizations of atom optical devices
such as atomic waveguides, beam splitters �1–4�, on-chip
Bose-Einstein condensate �BEC� sources, and conveyor belts
�5,6� have opened a way for the development of more com-
plex devices such as, e.g., BEC-based interferometers �7,8�.
On-chip integrated cold-atom circuits capable of complex
functionality can be constructed from simpler building
blocks as is done in microelectronics to find applications in
fundamental physics, precision measurements, and quantum
information technology.

One of the most important components of a microelec-
tronic circuit is a transistor. In this paper we present a BEC-
based device which will be subsequently called a BEC tran-
sistor or an atom transistor. It enables one to control a large
number of atoms with a smaller number of atoms and dem-
onstrates switching and both differential and absolute gain,
thus showing behavior similar to that of an electronic tran-
sistor. The device is not optimized for performance but is
arguably the simplest possible geometry showing behavior
reminiscent of a transistor. This makes its experimental real-
ization relatively easy with existing atom chip techniques.

The BEC transistor uses a Bose-Einstein condensate in a
triple-well potential, as shown schematically in Fig. 1. In
fact, Fig. 1 refers to two subtly different possible experimen-
tal realizations of the device. In the trapped configuration,
the BEC is confined in all three dimensions in the potential
wells. The wells are allowed to interact for a time interval T.
This is done either spatially, bringing them together and
separating them apart after time T, or changing the shapes of
the potential wells so that the interaction is suppressed after
time T. In the waveguide configuration, the potential wells of
Fig. 1 represent three guides that converge, run parallel to
each other for distance L, and then diverge. The interaction
time T=L /v in this geometry is determined by the speed of
flow v of the BEC in the guides. In the following for defi-
niteness we will use terminology appropriate for the trapped
configuration.

The BEC transistor is similar to an electronic field-effect
transistor. The left well behaves like the source, the middle

as the gate, and the right well is equivalent to the drain. If
there are no atoms in the middle well, practically no atoms
tunnel from the left into the right well, as shown in Fig. 1�a�.
A small number of atoms placed into the middle well
switches the device, resulting in a strong flux of atoms from
the left well �the source� through the middle and into the
right well as shown in Fig. 1�b�. Increasing the number of
atoms in the middle well increases the number of atoms that
tunnel into the right well. Parameters of the triple-well struc-
ture are chosen so that the number of atoms having tunneled
into the right well at the end of the interaction period is much
larger that the number of atoms in the middle well. In the
subsequent sections we will show that the BEC transistor
exhibits both absolute and differential gain.

The physics of the operation of the BEC transistor is
based on atom-atom interactions and an appropriate design
of the potentials. The chemical potential of the left well is
chosen to be nearly equal to the ground-state energy level of

FIG. 1. �Color online� The geometry of a BEC transistor. When
the number of atoms in the middle well is small, tunneling from the
left into the right well is negligible �a�. This is due to the fact that
the chemical potential of the middle well does not match that of the
two other wells �c�. Placing atoms in the middle well increases the
chemical potential due to interatomic interactions �d� and enables
tunneling then atoms tunnel from the left into the right well. This
happens because atom-atom interactions increase the energy of the
middle guide �b�.
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the empty right well �in Fig. 1 we make them equal�. The
ground-state energy of the empty middle well is chosen to be
considerably lower than that in both the left and right wells.
Placing atoms in a well raises the value of the chemical
potential due to atom-atom interactions. Parameters of the
potential wells are chosen so that the chemical potential in
the middle well is considerably more sensitive to the change
in the number of atoms in the well than is the case for the left
and right wells.

When the middle and right wells are initially unpopulated,
tunneling of atoms from the left to the middle well is blocked
because of the energy mismatch as shown in Fig. 1�c�. If
some amount of atoms is placed into the middle well, the
atom-atom interactions will increase the energy of the atoms
in the middle well. When the chemical potential in the
middle well becomes nearly equal to that in the left and right
wells, the device switches and atoms become able to tunnel
from the left through the middle into the right well as shown
in Fig. 1�d�.

Using atom-atom interactions to block tunneling in a
double-well structure is often referred to as self-trapping.
This effect was first described in Ref. �9�. If a condensate is
placed in one of the two weakly coupled spatially separated
potential wells with matched energy levels, it can oscillate
between the wells by linear quantum tunneling. However,
due to atom-atom interactions, the tunneling is blocked when
the number of atoms in the condensate exceeds some critical
value. This suppression is due to the fact that interactions
increase the chemical potential of the atoms in the occupied
wells and introduce nonlinear energy mismatch. Self-
trapping has been analyzed for a large number of systems
including asymmetric double-well potentials �10� and sym-
metric three-well systems �11�. It has also been observed
experimentally for atoms in a one-dimensional optical lattice
�12�.

The quantum state of two trapped Bose-Einstein conden-
sates in a double-well potential has been analyzed in Ref.
�13�. It has been shown that when the two wells are separated
and the interaction between the atoms is repulsive, the
lowest-energy state is fragmented, which means that the co-
herence between the atoms in each well is lost. The depen-
dence of this fragmentation on the splitting rate and physical
parameters of the potential has been analyzed in Refs.
�14,15�. The visibility of interference fringes after splitting of
a condensate with both attractive and repulsive interactions
was analyzed in Ref. �16�, which showed a decrease in quan-
tum noise in the case of attractive interactions. The quantum
dynamics of atoms in a symmetric double-well potential,
where the atoms are in an initially fragmented state, was also
analyzed in �17�.

Bose-Einstein condensates in triple-well structures have
been analyzed and the stationary solutions in the mean-field
approximation were found in Ref. �18�. Three-well systems
show chaotic solutions �19,20�, and the dynamics of atoms in
a three-well potential is sensitive to the initial conditions of
the system �11�. This means that one can control the dynam-
ics of the system not only by varying the physical parameters
of the potential, but also by changing the initial conditions.

The authors of Ref. �21� have recently proposed a single-
atom transistor in a one-dimensional �1D� optical lattice. A

quantum interference phenomenon is used to switch the flux
of atoms in a lattice through a site containing a single impu-
rity atom. Finally, Ref. �22� discusses “atomtronic” diodes
and transistors which are direct analogs of their electronic
counterparts. These devices use cold atoms in an optical lat-
tice instead of electrons in a crystal.

The rest of the paper is organized as follows. Section II
contains a derivation of the general equations of motion for a
BEC in an n-well potential with arbitrary shapes of the wells
and a discussion of the limits of validity of the model. In
Sec. III we specialize our discussion to the case of a three-
well structure. Section III A is devoted to an analysis of the
equations of motion in the mean-field limit, and in Sec. III B
we will compare the results of the mean field to a second
quantization calculation. Section IV contains estimates of the
physical parameters for the device and discusses the possi-
bility of its experimental realization.

II. EQUATIONS OF MOTION

The Hamiltonian for a system of interacting bosons in an
external potential V�x� is of the form

H =� dx�̂†�−
�2

2m
�2 + V�x���̂ +

U0

2
� dx�̂†�̂†�̂�̂ .

�1�

Here �̂ is the field operator and U0=4�as�
2 /m, where m is

the atomic mass and as is the s-wave scattering length. For
notational simplicity we are considering the one-dimensional
case. Extension to two or three dimensions is straightfor-
ward.

In the standard basis of eigenfunctions �i of the linear part
of the Hamiltonian,

�−
�2

2m
�2 + V�x���i = ��i�i, �2�

the field operator is represented as

�̂ = �
i

�iai, �3�

where ai is the destruction operator for the mode �i. These
operators satisfy the canonical commutation relations

�ai,aj
†� = �ij , �ai,aj� = 0. �4�

The potential V�x� consists of n weakly coupled potential
wells. The eigenmodes �i are “nonlocal” and extend over
several potential wells. As discussed above, we are interested
in calculating the number of atoms in each well as a function
of time. A more convenient basis in this case corresponds to
a set of modes �i localized in each potential well with the
corresponding destruction operators bi so that

�̂ = �
i

�ibi. �5�

The operators b are linear superpositions of the operators a,
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bi = �
j

ujiaj , �6�

where u is the transformation matrix determined by the con-
dition of localization of the modes �i.

Requiring that the destruction operators bi satisfy the ca-
nonical commutation relations identical to those of Eq. �4�,

�bi,bj
†� = �ij , �bi,bj� = 0, �7�

implies unitarity of the transformation matrix u: �mumiumj
*

=�ij. For bound states all modes �i can be chosen real and
the transformation matrix u can be chosen real and orthogo-
nal.

The transformation from the “nonlocal” basis �i to the
“local” basis �i is given by the relations

�i = �
j

uji
* � j . �8�

The operators bi are associated with the local modes of the
n-well structure. For the purposes of the subsequent analysis
we will need to know only the lowest local mode in each
potential well. It means that there are n local modes �i and
the coefficients uij should be chosen so that the function �i is
localized in the ith potential well.

To quantify the degree of localization, we set points
x0 ,x1 , . . . ,xn somewhere between the wells where the ampli-
tudes of the modes �k are exponentially small. This proce-
dure is shown schematically in Fig. 2. The degree of local-
ization of the mode �k in the kth well is characterized by the
localization parameter

fk = �
xk−1

xk

dx	�k	2. �9�

The localization parameter fk can be rewritten in terms of the
transformation matrix u as

fk = �
m,l

umkulk
* Jk�l,m� , �10�

where the matrix Jk�l ,m� is given by the expression

Jk�l,m� = �
xk−1

xk

dx�m
* �l. �11�

To localize the modes �k, we maximize the function

f = �
k

fk = �
kml

umkulk
* Jk�l,m� �12�

subject to the constraints

�
k

umkulk
* = �ml. �13�

The maximization results in the set of n2 equations

�
m

�Jj�i,m� − �im�umj = 0, �14�

where 1	 i , j	n and where �im=�mi
* are Lagrangian multi-

pliers.
The set of equations �14� can be written in a more trans-

parent form as a set of n matrix equations �j=1,2 , . . . ,n�

�Ĵj − �̂�	uj
 = 0, �15�

where Ĵj and �̂ are Hermitian matrices with the elements
Jj�i ,m� and �im, respectively, and where 	uj
 is the column
vector of u with the elements umj �m=1,2 , . . . ,n�. The equa-
tion of constraints, Eq. �13�, becomes

�ui	uj
 = �ij . �16�

In the limit of negligibly small coupling between the wells,
the column vectors 	uk
 of the transformation matrix u are

exact eigenvectors of the operators Ĵj because the latter in

this limit reduce to Ĵj = 	uj
�uj	. The matrix of Lagrange mul-
tipliers in this limit becomes the identity matrix. This obser-
vation suggests that for nonzero coupling between the wells
the vectors 	uk
 can be found perturbatively starting from the

eigenvectors 	wk
 of Ĵk with eigenvalues close to 1:

Ĵk	wk
 = 
k	wk
 = �1 − �ak�	wk
 , �17�

where ��1 characterizes the relative coupling strength be-
tween the wells. The eigenvectors 	wk
 form a nonorthogonal
basis set with �wi 	wj
=O��� for i� j.

Solution of Eq. �17� in the 	uk
 basis to the first order in �
yields

	wk
 = 	uk
 + �
j�k

	uj
�uj	Ĵk	uk
 , �18�

where we have used the fact that Ĵk− 	uk
�uk	=O���. Inver-
sion of Eq. �18� yields

	ui
 = 	wi
 − �
j�i

	wj
�uj	Ĵi	ui
 . �19�

Using the orthogonality conditions for 	ui
 up to the first

order in � and the condition �ui	Ĵj	uj
= �ui	Ĵi	uj
 that follows
from Eq. �15� results in the relation

FIG. 2. A schematic of a multiwell nonsymmetric potential
structure with two adjacent wells shown. The points xk−1, xk, and
xk+1 are chosen between the wells where the eigenmodes �k are
exponentially small.
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�ui	Ĵj	uj
 =
1

2
�wi	wj
 , �20�

yielding the final expression for the vectors 	ui
 in terms of
	wi
:

	ui
 = 	wi
 −
1

2�
j�i

	wj
�wj	wi
 . �21�

To calculate the local modes, one thus finds eigenvectors 	wi

of Ĵi with eigenvalues close to 1 for i=1,2 , . . . ,n. The col-
umns of the transformation matrix are then given by Eq.
�21�. The local modes are found using Eq. �8�. An example
of such a calculation is shown in Fig. 3.

The overall signs of the local modes �i in Eq. �8� are
arbitrary, being determined by sign choices for the global
modes �i. These signs can be changed if needed because if
�i is a local eigenmode, so is −�i. Changing the sign of �i
amounts to changing the sign of the ith row of the transfor-
mation matrix u which leaves it unitary. To be able to unam-
biguously specify the value of the relative phase shift be-

tween condensates in different potential wells, the overall
signs of the local modes �i will be fixed by requiring that
each eigenmode �i be positive in the region of its localiza-
tion between xi and xi+1.

In terms of the destruction operators bi of the local modes
the Hamiltonian, Eq. �1�, can be written as

H = �
ijk

��kukiukj
* bi

†bj +
U0

2 �
i

i�bi
†�2bi

2, �22�

where �i is the eigenfrequency of the ith mode �i given by
Eq. �2�, uij is the transformation matrix, and i is the overlap
integral:

i =� dx	�i	4. �23�

The equations of motion for the operators bi in the Heisen-
berg picture are given by

i�
d

dt
bi = �

jk

��kukiukj
* bj + U0ibi

†bi
2. �24�

The diagonal terms

�i = �
k

�k	uki	2 �25�

in Eq. �22� have the meaning of eigenfrequencies of the local
eigenmodes in the absence of coupling between the wells,
and the nondiagonal terms

�ij = �
k

�kukiukj
* �26�

are coupling frequencies between the ith and jth wells. Since
for bound states u can be chosen real, the matrix of the
coupling frequencies is real and symmetric: �ij =� ji. The
coupling strength is exponentially dependent on the distance
between the wells and usually only the nearest-neighbor cou-
pling should be taken into account.

III. THREE-WELL STRUCTURE

In the following we shall specialize our analysis to the
case of a potential consisting of three potential wells. These
will be referred to as the left, middle, and right well, respec-
tively. The left well serves as a source of atoms. The number
of atoms, Nl, in this well is kept nearly constant and is con-
siderably larger than the number of atoms initially placed
and subsequently tunneling into the middle or the right wells.
The dynamics in the left well is therefore unaffected by that
in the other two wells. This dynamics is factored out, and the
destruction operator for the left well bl is replaced by a c
number: bl= →�Nl. This approximation is valid as long as
the depletion of the left well is small, Nl� �bm

† bm
+ �br
†br
.

The Hamiltonian, Eq. �22�, reduces to

−1 −0.5 0 0.5 1
−0.5

0

0.5

1 (a)

x (arb. units)

|ψ
1|2

−1 −0.5 0 0.5 1
−0.5

0

0.5

1 (d)

x (arb. uints)

|φ
1|2

−1 −0.5 0 0.5 1
−0.5
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0.5
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x (arb. units)

|ψ
2|2

−1 −0.5 0 0.5 1
−0.5
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0.5

1 (e)

x (arb. uints)

|φ
2|2

−1 −0.5 0 0.5 1
−0.5
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0.5
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|ψ
3|2

−1 −0.5 0 0.5 1
−0.5

0

0.5

1 (f)

x (arb. uints)

|φ
3|2

FIG. 3. An example of the calculation of local modes. Graphs
�a�–�c� show the three lowest global eigenmodes of the potential V
�dotted line�. These eigenmodes are nonlocal with large probability
density in two or more wells. Graphs �d�–�f� show local modes,
which are linear combinations of the nonlocal eigenmodes.
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H = ���m − 
�bm
† bm + ���r − 
�br

†br + ���lm
�Nlbm

+ �mrbm
† br + H.c.� +

U0

2
m�bm

† �2bm
2 +

U0

2
r�br

†�2br
2,

�27�

where �i, �i, and i are given by Eqs. �25�, �26�, and �23�,
respectively, H.c. means Hermitian conjugate, and 
=��l
+lU0Nl.

As discussed at the end of Sec. II, the overall sign of the
local modes �i has been fixed by requiring that they be posi-
tive in the region of their localization. With this choice, the
coupling frequencies �ij between different wells �see Eq.
�26�� are negative. This is easily ascertained using the sim-
plest example of a symmetric two-well structure where the
two local modes are proportional to a sum and a difference
of the two global modes. Normalizing the Hamiltonian, Eq.
�27�, to the positive energy −��mr=�	�mr	 brings it to its
final dimensionless form

H

�	�mr	
= �mbm

† bm + �rbr
†br − �Dbm + bm

† br + H.c.�

+
Zm

2
�bm

† �2bm
2 +

Zr

2
�br

†�2br
2, �28�

where Zi=−U0i /��mr, �i= �
−�i� /�mr, and D
=�lm

�Nl /�mr.
The Heisenberg equations of motion for the destruction

operators bl and br, Eq. �24�, in the dimensionless variables
take the form

i
d

d�
bm = ��m + Zmbm

† bm�bm − D − br,

i
d

d�
br = ��r + Zrbr

†br�br − bm, �29�

where the dimensionless time � is given by the relation �
= 	�mr	t.

A. Mean field

In this section we shall present results of the analysis of
Eq. �29� in the mean-field limit corresponding to relatively
large atomic populations in all wells, when the operators bm
and br can be treated as complex numbers.

Figure 4 demonstrates control of the atomic population in
the right well by the population in the middle well with an
absolute gain that is considerably larger than 1. Parameters
for Fig. 4 are �m=−1.3, �r=0.5, ZmD2=1, and ZrD

2=0. The
right well is initially empty, br�0�=0. Parameters of the wells
are chosen so that if no atoms are initially placed in the
middle well �bm�0�=0�, the tunneling from the source �the
left well� to the middle well is strongly suppressed and the
population in the right well remains at a low level. This
situation is illustrated by a dotted line in Fig. 4.

Placing some number of atoms in the middle well results
in a much larger tunneling rate from the left to the right well
through the middle well as shown by a solid line correspond-

ing to the initial condition bm�0�=D. The increase in the
tunneling rate can be observed for a range of values of the
relative phase of the condensates in the left and middle wells.
The dashed curve obtained for the initial condition bm�0�
=D exp�i� /2�—i.e., corresponding to the � /2 relative phase
shift between the condensates in the left and middle wells—
exhibits qualitatively similar behavior. Note that the output
number of atoms in the right well ��=20� is about 50–60
times larger than the input number of atoms in the middle
well. In other words, the output number of atoms in the right
is controlled by that in the middle well with the absolute gain
G=Nr,out /Nl,in50–60.

Populations in the middle and right wells as functions of
the interaction time are shown in Fig. 5 for bm�0�=D. All
other parameters are the same as in previous graphs. The
solid curve is the population of the right well, and the dashed
curve is the population of the middle well. Figure 5 demon-
strates that the population of the middle well stays about an
order of magnitude below that for the right well. The middle
well serves a gate controlling the rate of atomic flow from
the source to the right well. The atoms tunneling from the
source to the right well pass through the middle well without
being accumulated there.

The output number of atoms in the right well as a function
of the input number of atoms in the middle well is shown in
Fig. 6. Parameters for this figure are the same as for Fig.
4—i.e., �m=−1.3, �r=0.5, ZmD2=1, and ZrD

2=0. The solid
curve corresponds to the zero initial phase shift between the
condensates in the left and middle wells and the dotted curve
to the � /2 shift. This figure demonstrates rapid switching
from small to large tunneling rates in the region around
	bm,in	2D20.5 with subsequent saturation at the level G
=Nr,out /Nm,in50–60. In the switching region, a small
change in the population of the atoms in the middle well
results in a large difference in the population in the right
well.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

τ

|b
r|2 /D

2

b
m

(0) = 0

b
m

(0) = D

b
m

(0)= D ei π /2

FIG. 4. The number of atoms in the right well as a function of
interaction time for different initial number of atoms in the middle
well. The dotted curve corresponds to initially empty middle well,
bm�0�=0, and the solid curve to bm�0�=D. The dashed curve corre-
sponds to the initial condition bm�0�=D exp�i� /2�. For all curves
�m=−1.3, �r=0.5, ZmD2=1, and ZrD

2=0.
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Figure 7 shows the output population in the right well
��=20� as a function of the modal frequency �m of the mid-
dle guide for different values of the input number of atoms in
the middle well. This figure demonstrates switching for dif-
ferent values of the number of atoms initially in the middle
well. The dotted line corresponds to an initially empty
middle well. For this curve, the maximum tunneling rate
corresponds to the region around �m=−0.5. If the frequency
of the middle well is lowered beyond this value, the number
of atoms that tunnel into the right well becomes small. The
solid curve corresponds to the initial condition bm�0�=D.
This curve is qualitatively similar to that for an initially
empty middle well, but the maximum has moved to a lower
value of �m=−1.3. The dashed curve corresponds to the ini-
tial condition bm�0�=D exp�i� /2�. This curve still has a

maximum around �m=−1.3. For this value of �m, the num-
ber of atoms that tunnel into the right well when the initial
atoms have either zero or � /2 phase shift is about the same.
For the initially empty middle well, the population in the
right well remains small.

As opposed to an electronic transistor, the amplification
and switching in the three-well structure is a coherent effect
and depends on the relative phase between the condensates
in the left and middle wells. To investigate the sensitivity of
the previously obtained results to the value of the relative
phase angle, we kept the input number of atoms in the
middle well fixed at 	Am�0� /D	2=1.2 and changed the rela-
tive phase angle. The results are given by Fig. 8, showing the
output number of atoms in the right well ��=20� as a func-
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|b
|2 /D

2
|b
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(t)|2/D2

|b
m

(t)|2/D2

FIG. 5. The number of atoms in the middle �dashed� and right
�solid curve� well as a function of interaction time for �m=−1.3,
�r=0.5, ZmD2=1, ZrD

2=0, and bm=D.
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FIG. 6. The output number of atoms in the right well ��=20� as
a function of the number of atoms initially placed in the middle
well.
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FIG. 7. The output number of atoms in the right well ��=20� as
a function of the dimensionless frequency of the middle well �m.
The dotted line corresponds to the initially empty middle well,
bm�0�=0, the solid line to bm=D, and the dashed line to bm

=D exp�i� /2�.
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FIG. 8. The output number of atoms in the right well as a func-
tion of the relative phase of the atoms placed in the middle well.
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tion of the phase angle. All other parameters are the same as
in previous figures. Figure 8 demonstrates that in the ampli-
fication regime the number of atoms that tunnel into the right
well is nearly independent of the initial phase angle, as long
as this angle is roughly in the range between −� /2 and � /2.

B. Second-quantization results

This section presents results of the analysis of the three-
well structure in the framework of the second-quantization
formalism. This allows us to estimate the region of applica-
bility of the mean-field approach of Sec. III A, evaluate in-
trinsic quantum-mechanical uncertainty due to a finite num-
ber of atoms, and extend previous results to the limit of a
small number of atoms.

In the dimensionless variables, the state vector of the sys-
tem 	��t�
 evolves according to the equation

i
d

d�
	�
 = H	�
 , �30�

where H is the second-quantized Hamiltonian given by Eq.
�28�. The state vector can be represented in terms of the joint
number states �nm ,nr
 as

	�
 = �
i,j

ci,j	ni,nj
 , �31�

with the decomposition coefficients given by cm,r
= �nm ,nr 	�
. Equation �30� is transformed to the set of ordi-
nary differential equations that describe the evolution of the
decomposition coefficients:

i
d

d�
ci,j = �

i,j,k,l
�ni,nj	H	nk,nl
ck,l. �32�

In simulations, the set of equations �32� has been trun-
cated by keeping only the values of nm and nr such that nr
+nm	Nmax. The value of Nmax was chosen so that Nmax was
several times larger than the sum �nr
+ �nm
.

Initial conditions for the system of equations �32� corre-
sponded to a zero initial number of atoms in the right well
with the atoms in the middle well being in a coherent state:

	��0�
 = e−	�	2 �
n=0

Nmax �n

�n!
	n,0
 . �33�

Here the complex parameter � is given by �=��Nm
�0�ei�,
where �Nm
�0� is the average number of atoms initially
placed in the middle well and � is the phase difference be-
tween the atoms in the middle and left wells.

The transition to the mean-field limit corresponds to in-
creasing the input number of atoms in the middle well
�Nm
�0� while keeping the ratio �m /Zm�Nm
�0� constant.
Equation �28� shows that the results of the action of the
destruction operators on the state vector scales as D provided
the parameters ZmD2 and ZrD

2 are kept constant. Thus, the
transition to the mean-field limit can be implemented by set-
ting the initial number of atoms in the middle well propor-
tional to D2 and increasing the value of coupling D between
the left and middle wells while keeping the parameters ZmD2

and ZrD
2 constant.

The average number of atoms in the right well �Nr
 as a
function of the interaction time is shown in Fig. 9 for three
different values of D2. The parameters for this figure are
�r=1, �m=−0.5, ZmD2=1/4, ZrD

2=0, and 	�	2= �Nm
�0�
=D2. The phase angle of the coherent state is zero. The solid
line is the mean-field limit. The dotted, dash-dotted, and
dashed lines correspond to D2=1, D2=4, and D2=8, respec-
tively. Figure 9 demonstrates good convergence of the
second-quantization results to the mean-field limit as D2 is
increased. The D2=1 curve deviates from the mean-field
limit for large values of �, but all other curves lie progres-
sively closer to the mean-field curve as the parameter D in-
creases.

The output ��=10� probability distribution P�Nr� of find-
ing Nr atoms in the right well versus Nr is shown in Fig. 10.
The dash-dotted line corresponds to D2=1, the dashed line to
D2=4, and the sold line to D2=8. Since the number of output
atoms scales as D2, the horizontal axis is scaled as Nr /D2 to
keep the position of the maximum and the width of the
curves more or less the same for different values of D2. As a
result, the vertical axis shows not P�Nr�, but the product
P�Nr�D2 to keep the height of the curves approximately the
same for different values of D2. The total “area under the
curve” �strictly speaking it is a sum, not an integral� for all
curves is equal to 1. The dash-dotted curve corresponding to
D2=1 shows a bimodal distribution with a relatively large
probability of finding atoms near zero Nr in addition to the
main peak near Nr /D231, the latter being very close to the
mean-field result. The difference between the mean-field and
second-quantization results, previously seen in Fig. 9 for
D2=1, is due to the part of the probability distribution near
zero that pulls down the average. As the coupling D to the
source is increased, only the single-humped part of the prob-
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FIG. 9. The average number of atoms in the right well as a
function of the interaction time for three different values of the
coupling between the left and middle wells. Atoms in the middle
well are initially in a coherent state with �Nm
�0�=D2 and zero
phase. The solid line is the result of the mean-field calculation, the
dotted line is the result of the second-quantization calculation with
D2=1, the dashed line corresponds to D2=4, and the dash-dotted
line corresponds to D2=8.
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ability P�Nr� centered at the mean-field result remains. The
output relative standard deviation �Nr / �Nr
 is equal to 0.35,
0.08, and 0.04 for D2=1, 4, and 8, respectively.

Comparison of the mean-field and second-quantization re-
sults carried out for the same parameters as above but the
relative phase angle between the condensates equal to �
=� /2 yielded conclusions very similar to those summarized
by Figs. 9 and 10.

Figures 11 and 12 parallel analysis of Figs. 9 and 10 for
the case when the middle well is initially empty, 	�	2
= �Nm
�0�=0. These figures are aimed at verifying that the

rapid switching from the low- to high-amplification regime
predicted by the theory in the mean-field limit can be also
realized with only few controlling atoms.

Figure 11 demonstrates convergence of the second-
quantization results to the mean-field limit for �Nm
�0�=0 as
D2 is increased. This convergence is similar to that shown in
Fig. 9 except in this case the second-quantization approach
gives values somewhat larger than the mean-field limit. The
reason is explained by Fig. 12, which shows the probability
P�Nr� of finding Nr atoms in the right well at �=10. The
probability P�Nr� has a pronounced spike at low values of
Nr. Another noticeable feature of Fig. 12 is a wide, nearly flat
pedestal extending from small values of Nr to a maximum
value that is about twice larger than the average �cf. Fig. 11�.
The maximum value slightly decreases as D increases. This
explains why the second-quantization results are larger than
the mean-field results. The one-humped shape of P�Nr� in
Fig. 10 means that the uncertainty in the output number of
atoms in the high-amplification regime is small for even a
few controlling atoms in the middle well. Figures 11 and 12
show that the low-amplification region is characterized by
both low average number of output atoms and large uncer-
tainty corresponding to the average. Indeed, the output rela-
tive standard deviation �Nr / �Nr
 for the results of Fig. 12 is
equal to 1.3, 1.0, and 0.9 for D2=1, 4, and 8, respectively.
These results are in contrast to those for the large-
amplification regime of Fig. 10, where the standard deviation
rapidly goes down as the parameter D2 increases.

IV. DISCUSSION

The analysis of Sec. III demonstrates that a Bose-Einstein
condensate in a three-well potential shows transistorlike be-
havior with the middle well acting as a gate controlling the
flux of atoms from the source to the drain. In this section we
present estimates of the characteristic tunneling time for a
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FIG. 10. The probability P�Nr� of finding Nr atoms in the right
well ��=10�. Atoms in the middle well are initially in a coherent
state with �=D. The dash-dotted line corresponds to D2=1, the
dashed line to D2=4, and the solid line to D2=8.
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FIG. 11. The average number of atoms in the right well as a
function of the interaction time for three different values of the
coupling between the left and middle wells. The middle well is
initially empty. The solid curve is the result of the mean-field cal-
culation, the dotted curve is the result of the second-quantization
calculation with D2=1, the dashed curve corresponds to D2=4, and
the dash-dotted curve corresponds to D2=8.
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FIG. 12. The probability P�Nr� of finding Nr atoms in the right
well ��=10�. The middle well is initially empty. The dash-dotted
line corresponds to D2=1, the dashed line to D2=4, and the solid
line to D2=8.
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trapped-atom transistor and discuss possible gain in the total
number of atoms. The analysis will be extended to the case
of a waveguide device, where estimates will be presented for
the tunneling time, the length of the device, and the gain in
the output flux of atoms. Finally, we summarize the results
obtained.

A. Trapped-atom transistor

The parameter D in Eq. �29� characterizes the strength of
the coupling of the source �left well� to the gate �medium
well�. It is reasonable to expect that the operational param-
eters of the BEC transistor are such that the contributions of
the nonlinear and linear terms in Eq. �29� are of the same
order of magnitude—i.e., ZmD21.

The growth curve, shown in Fig. 6, shows the final popu-
lation of the right well as a function of the initial population
of the middle well, where the atoms are held in the traps for
a dimensionless time �=20. This figure demonstrates that a
change in the population of the middle well from Nm
=0.4D2 to Nm=0.8D2 results in a change in the final popula-
tion of the right well from Nr10D2 to Nr60D2. The
maximum number of atoms that tunnel into the right occurs
when the number of atoms initially in the middle well is
NmD2. We will refer to this number as the saturation num-
ber. For example, if we take D2=10, a change from 4 to 8
atoms in the middle well results in a change from 100 to 600
atoms in the right well.

Assume that the potential energy of the middle well is a
cigar-shaped potential of the form

V�r�,z� =
1

2
m���

2 r�
2 + �z

2z2� , �34�

where r� is the coordinate in the radial direction and z is the
coordinate in the axial direction. For this potential, the over-
lap integral given by Eq. �23� can be evaluated as

m =
1

�2��3/2

1

a�
2 az

, �35�

where a�=�� /m�� and az=�� /m�z are the harmonic oscil-
lator lengths. The nonlinearity parameter Zm in Eq. �28� is
given by the expression

Zm =
U0m

�	�mr	
, �36�

where U0=4�as�
2 /m. Using Eq. �35� in Eq. �36� allows one

to express the tunneling frequency between the middle and
right wells as

	�mr	 = as
Nm

az
��, �37�

where we have also used ZmNm1 to eliminate Zm in favor
of Nm.

If the middle well is a spherical trap with �z=��=2�
�103 Hz and the saturation number is D2=10, the tunneling
frequency between the middle and right wells is

�mr  � � 102 rad/sec. �38�

The dimensional time that it takes for atoms to tunnel from
the left to the right well is

t  2 � 10−1 sec. �39�

In other words, for the parameters chosen a trapped-atom
transistor can distinguish between 4 and 8 atoms in the gate
with a characteristic operational time of 10−1 sec. This time
can be decreased either by increasing the frequency of the
trap or increasing the value of the saturation number.

B. Waveguide transistor

In a waveguide transistor the potential wells of Fig. 1 are
the three guides that run parallel to each other for the dis-
tance L. The interaction time T=L /v is determined by the
speed of flow v of the BEC in the guides. The field operator
for this configuration can be expressed as

�̂�r,t� = exp�ikpz − i�pt��̂�r,t� , �40�

where kp and �p=�kp
2 /2m are the carrier wave number and

frequency, respectively, and �̂ is the field-operator envelope.
The Heisenberg equation of motion for the field operator

�̂ in the copropagating frame t�= t, z�=z−vt is of the form

i�
�

�t
�̂ = �−

�2

2m
���

2 +
�2

�z2� + V�r�� + U0�̂†�̂��̂ , �41�

where v=�kp /m is the velocity of the condensate and the
primes have been omitted.

Changes in density as the condensate propagates through
the transistor occur at a length scale LBEC. We assume that
the kinetic energy associated with the longitudinal direction
is small in comparison with the characteristic energy ��
associated with the transverse eigenmodes of the transistor:

�� �
�2

2mLBEC
2 . �42�

Next, we require that LBEC does not change appreciably dur-
ing the time interval L /v that it takes the condensate to
propagate through the transistor,

� �

�t
ln LBEC� �

v
L

. �43�

With Eqs. �42� and �43� fulfilled, the dispersive term
��2 /�z2� in Eq. �41� can be neglected and the coordinate z
becomes a parameter. Propagation of different “slices” of the
condensate �parametrized by the coordinate z� through the
transistor can be analyzed independently.

Represent the field operator �̂ as

�̂ = �
i

�i�r��bi�z,t� , �44�

where ��r�� is the ith transverse local mode and bi�z , t� is
the destruction operator that destroys an atom in the ith local
mode at the coordinate z. Note that bi now has dimension of
m−1/2.
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Using Eq. �44� in Eq. �41� with the dispersive term
dropped results in equations of motion in the Heisenberg
picture for the operators bi that are of the same form as Eq.
�24�:

i�
d

dt
bi�z,t� = �

i,j
��kukiukj

* bj + U0ibi
†bi. �45�

As in the case of a trapped device, the left guide will be
treated as a reservoir of atoms corresponding to the replace-
ment bl→�nl, where nl is the density of atoms �number of
atoms per unit length�. The equations of motion for the at-
oms in the middle and right guide, in dimensionless form,
become

i
d

d�
bm�z,t� = ��m + Zmbm

† bm�bm − D − br,

i
d

d�
br�z,t� = ��r + Zrbr

†br�br − bm, �46�

where the dimensionless parameters are Zi=−U0i /�L�mr,
�i= �
−�i� /�mr, and D=�lm

�Lnl /�mr and L is the length of
the transistor. The destruction operators are normalized to
bi�=bi /�L, and the primes have been dropped. Since the
equations for each slice in z are of the same form as Eq. �29�,
the analysis of Sec. III is valid for each slice separately.

As with the case of a trapped-atom transistor, we take
ZmD2=1 and use the fact that the largest tunneling rate cor-
responds to nmD2. We refer to this as the saturation den-
sity, since nm is the normalized density of atoms and not the
total number as it was with a trapped-atom device. Next, we
assume that the middle waveguide can be described by the
potential

V�r�� =
1

2
m��

2 r�
2 , �47�

where �� is the transverse frequency of the guide. The over-
lap integral associated with this potential is

m =
1

2�

1

a�
2 , �48�

where a� is the transverse oscillator length and a�

=�� /m��. Using Eqs. �36� and �48�, we evaluate the cou-
pling frequency between the middle and right guides as

	�mr	  as��

nm

L
. �49�

In terms of the velocity of the atoms, v, and the flux
entering the middle guide, �m, the density can be expressed
as nm /L=�m /v and Eq. �49� takes the form

	�mr	  as��

�m

v
. �50�

Assuming that the guide has a transverse frequency of
10 kHz, velocity 5 cm/sec, and saturation flux 105 atoms/
sec, we can evaluate the coupling frequency between the
right and middle guides as

�mr  2� � 102 rad/sec. �51�

The dimensional switching time is

t  2 � 10−1 sec, �52�

and the length of the device is

L  1 cm. �53�

This length can be decreased by slowing the velocity of the
atoms, increasing the saturation flux or increasing the trans-
verse frequency of the waveguide.

With the above numbers, a change in the input flux of the
middle guide from 0.4�105 atoms/sec to 0.8�105 atoms/
sec results in a change of flux in the output of the right guide
from 106 atoms/sec to about 107 atoms/sec.

To summarize, we have presented a theoretical analysis of
a Bose-Einstein condensate in a nonsymmetric three-well po-
tential which shows transistorlike behavior. We demonstrated
control of the atomic population in the right well by the
population in the middle well with an absolute and differen-
tial gains considerably larger than 1. The second-
quantization formalism was then used to evaluate the
quantum-mechanical uncertainty due to a finite number of
atoms and extend the mean-field results to the limit of a
small number of atoms.

Our model assumed repulsive nonlinearity with fixed
positive value of the scattering length. The possibility of us-
ing Feshbach resonances to vary the nonlinearity in space
and/or time makes the design of the BEC transistor consid-
erably more versatile. Additionally, changing the value or
even the sign of the nonlinearity opens the door to new in-
teresting dynamics �see, e.g., Ref. �23��.

The BEC transistor can turn out to be useful in precision
measurements. The number of atoms that tunnel from the
source to the drain is very sensitive to the number of atoms
in the gate. This fact can be used to detect and amplify small
changes in the number of atoms in the gate. A waveguide-
based transistor is capable of operating continuously and can
be used to measure time-dependent phenomena. Applications
of this device may include measurement of inertial changes
and electromagnetic fields. It is possible to envision poten-
tially more interesting applications by combining several
such devices so that, e.g., the amplified output of the first
transistor serves as control for the second.
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