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We study the process of associating molecules from atomic gases using a magnetic field modulation that is
resonant with the molecular binding energy. We show that maximal conversion is obtained by optimizing the
amplitude and frequency of the modulation for the particular temperature and density of the gas. For small
modulation amplitudes, resonant coupling of an unbound atom pair to a molecule occurs at a modulation
frequency corresponding to the sum of the molecular binding energy and the relative kinetic energy of the atom
pair. An atom pair with an off-resonant energy has a probability of association which oscillates with a fre-
quency and time-varying amplitude which are primarily dependent on its detuning. Increasing the amplitude of
the modulation tends to result in less energetic atom pairs being resonantly coupled to the molecular state and
also alters the dynamics of the transfer from continuum states with off-resonant energies. This leads to maxima
and minima in the total conversion from the gas as a function of the modulation amplitude. Increasing the
temperature of the gas leads to an increase in the modulation frequency providing the best fit to the thermal
distribution, and weakens the resonant frequency dependence of the conversion. Mean-field effects can alter
the optimal modulation frequency and lead to the excitation of higher modes. Our simulations predict that
resonant association can be effective for binding energies of order h�1 MHz.
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I. INTRODUCTION

Cold diatomic molecules are often produced from atomic
gases by varying a magnetic field around a zero-energy reso-
nance �1–3� or by photoassociation �4�. Generally applicable
implementations of the former technique are linear ramps of
the magnetic field across the resonance �2,5–14� and fast
switches to fields close to the resonance �1�. In addition, the
long lifetime of cold 6Li2 dimers allows them to be created
by holding the magnetic field close to resonance, causing
thermalization of the atomic into a molecular gas �15�. In
recent experiments, dimers of 85Rb2 �16� and 85Rb-87Rb �17�
were associated from cold atomic gases by applying a mag-
netic field modulation resonant with the molecular binding
energy. This technique eliminates the need for the magnetic
field to spend time in the near-resonant, strongly interacting
region. It therefore reduces the unwanted effect of heating
�16,18� during the production of molecules. The narrow Fou-
rier spectrum of the pulse accurately targets the molecular
state, minimizing the coupling to deeper bound states and
highly energetic continuum states. In a direct comparison to
a linear ramp using the same apparatus, Thompson et al.
reported more efficient conversion using resonant association
�16�. This technique has also been used as an accurate probe
of molecular binding energy �16,17�. In addition, radio-
frequency pulses have been used to associate 40K-87Rb
dimers �19�.

In this paper we study the resonant association of mol-
ecules from thermal and condensed gases. Our approach pre-
cisely accounts for the continuum of states in a gas. The
transition amplitude from a pair of unbound atoms to the
bound molecular state depends on the relative kinetic energy
of the atom pair. A resonant continuum energy exists, at
which the transition amplitude to the molecular state in-
creases linearly with time. At small modulation amplitudes,
the resonant continuum energy is given by the difference

between the energy corresponding to the modulation fre-
quency and the molecular binding energy. The distribution of
atoms in different continuum states, all contributing to the
molecular production, gives the total conversion a depen-
dence on temperature. The width of the thermal distribution
increases with the temperature of the gas, weakening the
resonant behaviour of the molecular production. The con-
tinuum distinguishes the current case from the association of
atom pairs held in optical lattices �20�, where the resonant
modulation couples the discrete ground state of the tightly
confining potential to the molecular bound state.

We find damped oscillations in the number of molecules
produced in the short-time limit, as observed in Ref. �16�.
The damping is caused by the dephasing of the transition
amplitudes from states across the continuum. After the
damping out of the initial oscillations, the conversion in-
creases at a rate which displays resonant dependence on the
modulation frequency. Maximal conversion is achieved
when the frequency and amplitude of the magnetic field
modulation are together optimized for the temperature and
density of the gas. The modulation amplitude required de-
pends on the sensitivity of the molecular state to the mag-
netic field. As the modulation amplitude increases states of
lower continuum energy are resonantly coupled, until the
zero-energy continuum state is reached. Beyond this point all
continuum states are coupled in a non resonant manner.
There remain some modulation amplitudes where, for mo-
menta close to the peak of the thermal distribution, the tran-
sition amplitude is large enough to lead to a revival in con-
version efficiency. Our calculations of molecular production
for binding energies ranging from h�5 kHz to h�1 MHz
predict that resonant association can be effective over this
range. We also examine short pulses in pure condensates,
where the mean-field shift and the excitation of higher modes
alter the dynamics. In condensates, the damping of oscilla-
tions in conversion due to the dephasing of the transition
amplitudes from different continuum states is suppressed.
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In Sec. II we introduce the magnetic field profile used for
resonant association and also set up the notation used in our
calculations. We then discuss the dynamics of the transition
amplitude for a pair of atoms to a molecule, and the depen-
dence this has on the continuum, in Sec. III. In Sec. IV we
examine in turn the effects of altering the duration, fre-
quency, and amplitude of the modulation on the efficiency of
the molecular production. We also discuss the dependence of
the conversion efficiency on the temperature and density of
the atomic gas. In each section we discuss the results of
Thompson et al. �16�, which formed the original motivation
for our studies, and then consider resonant association under
a broader range of conditions. We conclude in Sec. V.

II. MAGNETIC FIELD SEQUENCE

In this section we introduce the magnetic field sequence
used in resonant association, as well as the notation used in
this paper. Our calculations of molecular production from
thermal gases use a two-channel approach �21–25�. In the
implementation of Ref. �26�, the two-channel, two-body
Hamiltonian for the case of a time-varying magnetic field
B�t� is given by

H2B„B�t�… = �bg�Hbg�bg� + W�bg��cl� + �cl��bg�W

+ �cl�Hcl„B�t�…�cl� . �1�

Here, W is the interchannel coupling between the entrance
and closed channel spin configurations which are indicated
by “bg” and “cl,” respectively. Choosing the zero of energy
to coincide with the dissociation threshold of the entrance
channel makes the closed-channel Hamiltonian contain all
of the magnetic field dependence of H2B(B�t�). We make
the single-resonance approximation �26�, neglecting all
closed-channel states which are far detuned from E=0. The
single closed-channel state retained is referred to as the reso-
nance level ��res� and is degenerate with the entrance-
channel dissociation threshold at the field strength Bres—i.e.,
Eres�Bres�=0. The closed-channel Hamiltonian is then given
by

Hcl„B�t�… = ��res��Eres
av + Eres

mod�t����res� . �2�

Here Eres
av =

�Eres

�B �Bav−Bres�, Eres
mod�t�=

�Eres

�B �B�t�−Bav�, Bav is the

average magnetic field during the pulse, and
�Eres

�B is the dif-
ference in magnetic moment between the entrance and closed
channels. The measurable location B0 of the singularity in
the scattering length a is shifted from Bres by the interchannel
coupling.

A schematic of the magnetic field sequence used in the
experiments of Thompson et al. �16� is shown in Fig. 1,
which also summarizes our notation. Gases of 85Rb atoms in
the �F=2,mF=−2� excited Zeeman state were prepared at
162 G. Experiments were performed using thermal gases of
temperature T=20–80 nK, as well as partially and wholly
condensed gases. Following a 5 ms ramp to an average field
in the range 156–157 G, a sinusoidal magnetic field pulse
was applied for a duration of up to 38 ms. The pulse reso-
nantly associated molecules in the highest excited vibrational

bound state, which we term Feshbach molecules. The mag-
netic field was then ramped back to 162 G in 5 ms, and the
gas held until all molecules were lost due to spin relaxation
�14,16,27�. Absorption imaging before and after this se-
quence showed the depletion of the atomic gas.

In our calculations of molecular conversion from thermal
gases we neglect the 5 ms ramps on either side of the pulse,
which were found in Ref. �16� not to lead to molecular pro-
duction. We have verified that including the ramps in our
calculations causes only a negligible difference to the final
result. The magnetic field pulse is taken to have the form
B�t�=Bav+Bmod sin��modt�, where Bmod and �mod are the
amplitude and angular frequency of the modulation, as
shown in Fig. 1. B�t� is assumed to satisfy B�0�=B�tf�=Bav.
Where B�tf��Bav, a sudden jump at tf returning to Bav is
assumed, as illustrated in Fig. 1. Consequently, we analyze
the initial and final states in terms of the eigenstates of
H2B

av =H2B�Bav�. The local density approximation is valid for
weakly confining traps such as that used by Thompson et al.
�16,28�, and for simplicity we assume a homogeneous gas.
The eigenstate describing the continuum state of a free pair
of atoms with relative momentum p is the dressed scattering
state ��p

av� satisfying H2B
av ��p

av�= �p2 /m���p
av�, where m is the

atomic mass. The boundary conditions of ��p
av� correspond to

an incoming plane wave plus an outgoing spherical wave
�26,29�. The Feshbach molecular state at Bav, ��b

av�, satisfies
H2B

av ��b
av�=Eb

av ��b
av�, where Eb

av=Eb�Bav� is the molecular
bound state energy �26�.

III. DYNAMICS OF AN ATOM PAIR

In this section we discuss the two-body dynamics of a pair
of atoms in the presence of a continuum, due to the magnetic
field pulse introduced above. Numerically integrating the
Schrödinger equation associated with the Hamiltonian of
Eq. �1� for a particular pulse gives the two-body time evolu-
tion operator U2B�tf ,0�, linked to H2B(B�t�) by
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FIG. 1. �Color online� A schematic of the magnetic field se-
quence used in Ref. �16�. The ramps before and after the resonant
pulse were shown not to create molecules. We assume a jump in
B�t� at tf when B�tf��Bav.
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i�
�

�t
U2B�t,t�� = H2B„B�t�…U2B�t,t�� . �3�

After the pulse, the wave function of a pair of atoms that
were initially in the state ��p

av� has an overlap with the
Feshbach molecular state given by the transition amplitude

T�p,tf� = ��b
av�U2B�tf,0���p

av� . �4�

This in turn gives the probability density for a transition
between a free pair of atoms of relative momentum p and a
Feshbach molecule to be

��p,tf� = �T�p,tf��2. �5�

In this paper we consider resonances where a spherically
symmetric resonance level is coupled to the entrance channel
by spin exchange �3�. Consequently, the transition amplitude
and probability density depend only on the modulus of the
momentum. The transition probability density gives the dy-
namics of only one state in the continuum. This is to be
distinguished from the conversion itself, which includes the
contributions of all the continuum states.

In the limit of short pulse durations and a small modula-
tion amplitude, U2B�tf ,0� may be approximated using time-
dependent perturbation theory. Treating the oscillating com-
ponent of the Hamiltonian of Eq. �2� as a perturbation to H2B

av

gives the first-order approximation to the two-body evolution
operator:

U2B
�1��tf,0� � U2B

av �tf� +
1

i�
	

0

tf

dtU2B
av �tf − t���res�Eres

mod�t�

���res�U2B
av �t� . �6�

Here, the two-body evolution operator at Bav is given by
U2B

av �t�=exp�−iH2B
av t /��. Projecting the estimate of Eq. �6�

onto ��b
av� on the left and ��p

av� on the right gives an approxi-
mation to the transition amplitude of Eq. �4�:

T�1��p,tf� = −
1

2�

�Eres

�B
Bmode

−iEb
avtf/�C�p�

� 
ei�+tf
sin��+tf�

�+
− ei�−tf

sin��−tf�
�−

� . �7�

Here

�± = �Eb
av ± ��mod − p2/m�/�2�� , �8�

and C�p�= ��b
av ��res���res ��p

av� is the product of the overlaps
of the resonance state with the bound and scattering states at
Bav. Since Eb

av, ��mod and p2 /m can all be of the same order
of magnitude, it is not in general possible to make the rotat-
ing wave approximation and neglect the �− term in Eq. �7�.

As implied by the first-order estimate of Eq. �7�, the fast-
est growth in the transition probability density ��p , t� for
small Bmod occurs for the resonant continuum energy pres

2 /m,
which satisfies

Eb
av + ��mod −

pres
2

m
= 0. �9�

This corresponds to the sum of the relative kinetic energy of
the atom pair and the molecular binding energy �Eb

av� being
exactly matched by the modulation frequency. As shown in
Fig. 2, the growth in the transition probability density ��p , t�
for p2 / �mh�=0.73 kHz is quadratic. This corresponds to the
transition amplitude of Eq. �4� having a linearly increasing
amplitude, similar to a resonantly driven harmonic oscillator.

At sufficiently short times, ��p , t� grows quadratically for
states detuned from the resonant continuum energy. Figure 2
shows that ��p , t� displays behavior different from ��pres , t�
after a time of order � / ��p2− pres

2 � /m�. The inset of Fig. 2
shows the oscillatory nature of ��p , t�, reproduced at short
times by the analytic estimate of Eq. �7�. The numerical
approach, accounting precisely for the continuum of states,
yields an envelope in the oscillation amplitude as well as
a frequency shift from the estimate of Eq. �7�. The ther-
mal gases measured in Ref. �16� had temperatures in the
range 20–80 nK. The energy kB�50 nK corresponds to
h�1 kHz. Consequently, the phase difference between the
continuum states spread over the thermal distribution be-
comes significant after times of the order of milliseconds.
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FIG. 2. �Color online� Evolution of the transition prob-
ability density ��p , t� in a 85Rb gas for near-resonant continu-
um energies. The resonance condition of Eq. �9� is fulfilled at
p2 /m=h�0.73 kHz. The solid lines show the numerical results,
and the dashed lines show the perturbative estimate of Eq. �7�.
The transition probability densities shown are labeled with the en-
ergy of the continuum state in h�kHz. The inset shows the evolu-
tion of ��p , t� for the 0.98 kHz continuum state at longer times.
Here, Bav=156.45 G, Bmod=0.065 G, Eb

av/h=−5.77 kHz, and
�mod/2�=6.5 kHz.
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IV. EXPERIMENTAL PARAMETERS AFFECTING
THE CONVERSION EFFICIENCY

In this section we study the variation of the molecular
production with the duration, frequency, and amplitude of the
magnetic field modulation and the temperature and density
of a thermal or fully condensed gas. We refer to the fraction
of atoms converted to molecules as the conversion efficiency.
In the limit of small depletion of a thermal atomic gas, this is
given by a weighted average of the transition probability
density ��p , tf� over a Maxwell distribution:

2Nmol

N
= 2n�2���3� �

�m
3/2	 dp exp�− �p2

m
��p,tf� .

�10�

Here, �=1/kBT, n is the density of the atomic gas, N is the
initial number of atoms, and Nmol is the final number of
molecules. In this limit the conversion efficiency is propor-
tional to the density of the atomic gas. We note that this
approach does not lead to saturation of the conversion effi-
ciency, which would require the inclusion of genuinely
many-body effects. This requires the solution of non-
Markovian Boltzmann-like equations, whose Markov limit
has previously been used to study the special case of satura-
tion of molecular production from magnetic field ramps �30�.

A. Pulse duration

1. Thermal gas

We first consider the conversion efficiency from a thermal
gas. The averaging of Eq. �10� gives a contribution from
��p , t� for each p, weighted according to the thermal distri-
bution. Figure 3 shows the resulting conversion efficiency
for gases of 20, 50, and 80 nK as a function of pulse dura-
tion. The resonance condition of Eq. �9� is fulfilled at a con-
tinuum energy of h�0.73 kHz, which corresponds to 37 nK.
Of the gas temperatures quoted in Ref. �16�, 20 nK gives the
highest conversion efficiency because the most atom pairs
have energies close to the resonant continuum energy.

In the experiments of Ref. �16�, damped oscillations in the
conversion efficiency as a function of time were observed
over the first few milliseconds. In our calculations, damped
oscillations are visible over approximately 2 ms for a tem-
perature of 20 nK. We have verified for several values of Bav
and �mod that the frequency of the damped oscillations, fconv,
for the thermal gas case is close to pres

2 / �mh�. This is the
value of �+ /2� for p=0 in Eq. �8�, corresponding to the
detuning of the zero-momentum state from the resonant con-
tinuum energy. Increasing the temperature causes a negative
shift in the frequency of the damped oscillations, together
with faster damping. For 50 and 80 nK gases our calcula-
tions do not predict damped oscillations large enough to be
observed. The main cause of damping is the variation in the
oscillation frequency of ��p , t� with p, as shown in Fig. 2 and
discussed in Sec. III. A wider thermal distribution corre-
sponds to a wider spread in momentum of the atom pairs
contributing to the conversion efficiency, and so the initial

coherence in ��p , t� across the distribution is destroyed more
quickly.

2. Condensed gas

The critical temperature reported in Ref. �16� is 14 nK,
with average densities of order 1011 cm−3. For a density of
1011 cm−3, which we use in our thermal gas calculations, and
a magnetic field of 156.45 G, the dilute gas parameter �na3

is 0.02. For such gases, which are close to condensation or
partially condensed, there will be a mean-field shift in the
frequency of the oscillations in conversion efficiency. We
have analyzed this effect for the case of a pure, homoge-
neous condensate. For our studies of condensed gases we use
the cumulant approach �31–33�. In this approach, the atomic
mean field 	�t� is given by a non-Markovian, nonlinear
Schrödinger equation �31�

i�
�

�t
	�t� = H1B	�t� − 	*�t�	

0




d�	2���
�

��
h�t,�� . �11�

The coupling function h�t ,�� contains the exact two-body
dynamics and is given by

h�t,�� = �2���3�0�V�t�U2B�t,���0���t − �� . �12�

Here, the evolution operator U2B�t ,�� is defined in Eq. �3�,
�0� is the plane wave of zero momentum, V�t� is the diatomic
potential, and ��t−�� is the step function, yielding 1 for
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FIG. 3. �Color online� Conversion efficiency from a thermal
85Rb gas as a function of pulse duration, for a density of
n=1011 cm−3. All other parameters are the same as those of the data
represented in Fig. 2, which has been thermally averaged according
to Eq. �10� to give the conversion efficiency. The inset shows
damped oscillations in the conversion efficiency, visible for
T=20 nK but washed out for 50 nK by the dephasing of the tran-
sition amplitudes from different continuum states. The dotted lines
show the results given by thermally averaging the perturbative es-
timate of Eq. �7�.
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t� and 0 otherwise. The molecular conversion is given by
a molecular mean field,

	b�t� = −
1
�2
	

0




d�	2���
�

��
hb�t,�� , �13�

where the bound-state coupling function is given by

hb�t,�� = �2���3/2��b�U2B�t,���0���t − �� . �14�

The coupling functions of Eqs. �12� and �14� have been de-
termined from the single-channel approach of Ref. �31�. The
magnetic fields used in this calculation are within the range
for which single-channel approaches have been shown to be
valid for the 155 G resonance of 85Rb �34�.

The oscillation frequency of the conversion efficiency at
short times, fconv, has a mean-field shift, as shown in Fig. 4.
In the low-density limit, the value of fconv expected from the
two-body picture is recovered. The oscillations in conversion
efficiency are clearer and have weaker damping than those in
thermal gases, as shown in the inset of Fig. 4. This is due to
suppression of the dephasing between the transition ampli-
tudes from different continuum states. The main cause of
damping in this case is the decay of the condensate and mo-
lecular populations into the continuum. In these calculations
we have included a 0.5 ms ramp from Bav+1 G to Bav, in

analogy to the ramp shown in Fig. 1. Neglecting the ramp
and simulating only the pulse corresponds to instantly turn-
ing on the interactions at the beginning of the pulse. For the
parameters used here, this results in strong excitation of
higher modes. The ramp reduces but does not completely
eliminate the excitations, which are visible in the inset of
Fig. 4 as high-frequency oscillations whose amplitude in-
creases with condensate density. We have extracted the fre-
quency of the damped oscillations using the fit procedure of
Claussen et al. �35�, which includes exponential damping of
the oscillations and a linear decay. Strong decay of the con-
densate into the continuum at higher densities makes the fit
less reliable and meaningful, and we have therefore limited
the analysis using this technique to densities below
1012 cm−3.

B. Modulation frequency

Resonant behavior was observed in Ref. �16� in the strong
variation of the conversion efficiency with modulation fre-
quency, which is reproduced by our calculations. The con-
version efficiency from a thermal gas due to a pulse of fixed
duration and varying frequency is shown in Fig. 5. For the
resonance curve representing 6 ms pulses, the full width at
half maximum is 0.75 kHz. From the Lorentzian fit to the
6 ms pulse in Fig. 1 of Ref. �16� we extract 0.9 kHz. At
longer times many-body effects may lead to the production
of molecules by thermalization. This could lead, for ex-
ample, to the production of molecules for modulation fre-
quencies smaller than −Eb

av/h and so increase the width of
the resonance curve. The inset of Fig. 5 shows estimates of
the conversion efficiency using the perturbative estimate of
the transition amplitude in Eq. �7�. The agreement with
the numerical result is significantly better than that of the
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FIG. 4. �Color online� Frequency of the oscillations in con-
version efficiency at short times for a pure 85Rb condensate as a
function of the initial density. The mean-field shift lowers the
frequency of the oscillations in conversion efficiency from that
given by the two-body approach, which is recovered in the limit of
low density. The oscillations are, however, much clearer than those
in a thermal gas due to the suppression of the contributions of
different continuum states to the molecular production. The inset
shows the variation in time of the conversion efficiency for densi-
ties of 1010 ��50 for clarity�, 4�1011, and 8�1011 cm−3. The 0.5
ms ramp from B=157.45 G to Bav=156.45 G, not shown here,
gives a density-dependent initial phase to the oscillations. Here
Bmod=0.065 G, Eb

av/h=−5.86 kHz, and �mod/2�=7 kHz. Because
a single-channel approach is used in the condensed gas case, the
bound-state energy is slightly different to that given by the two-
channel, thermal gas calculations above.
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dashed curves are thermal averages of the perturbative estimate of
Eq. �7� for 6 ms pulses.
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transition probability density, shown in Fig. 2, due to the
effect of thermally averaging over all of the continuum
states.

The maximum of a thermal distribution is at a higher
energy in a warmer gas, and so the optimal modulation fre-
quency increases with temperature. However, the depen-
dence of the conversion efficiency on modulation frequency
weakens at higher temperatures, as shown in the inset of
Fig. 5. This is caused by the changes in the thermal distribu-
tion of the gas, which has a decreasing maximum and an
increasing width as the temperature rises. The decreasing
maximum of the distribution leads to less being gained by
optimizing the modulation frequency �mod/2�. Conversely,
the increasing width means that a wider range of �mod have a
significant population of atoms close to the resonant con-
tinuum energy pres

2 /m=Eb
av+��mod. In general, the stronger

resonant behavior in colder gases allows more efficient con-
version.

We have studied the possible conversion efficiency for
molecular binding energies of h�100 kHz and found that it
is similar to that at the binding energies examined above.
85Rb2, though, is unstable with respect to inelastic spin re-
laxation �14,27�. We have therefore also performed the cal-
culation for 133Cs atoms in the �F=3, mF=3� Zeeman ground
state for a molecular bound-state energy of −h�1 MHz. A
similar resonance curve is obtained, as shown in Fig. 6. It is
broader and has a lower maximum than the comparable cal-
culations for 6 ms pulses in 85Rb, which had an identical
modulation amplitude and gas density. Despite the deeper
binding energy, the conversion efficiency grows at a similar
rate. The evolution of the transition probability density for a
continuum state depends primarily upon its detuning from
the resonant continuum energy. Consequently, it is primarily
the width of the thermal distribution, rather than the molecu-
lar bound state energy, that determines the order of magni-
tude of the pulse duration necessary for association. Our cal-

culations indicate that resonant association can be efficient
for binding energies ranging from h�5 kHz to h�1 MHz.
It is necessary, however, that the chosen molecular binding
energy be sensitive to variations in the magnetic field. If this
is not the case, the magnetic field modulation has little or no
effect on the diatomic level spectrum, and so significant tran-
sitions between the continuum states and the molecular
bound state do not occur. Such a weak dependence on the
magnetic field can occur due to an avoided crossing with
another bound state, as occurs for 133Cs2 at some binding
energies �36�. In some cases, it may be possible to compen-
sate for this by using a larger modulation amplitude.

C. Modulation amplitude

In the experiments of Thompson et al., increasing the
modulation amplitude Bmod with a fixed frequency and pulse
duration gave a point of maximum conversion, and after
reaching a minimum a partial revival was observed �37�.
Examining the transition probability density of Eq. �5� for
different Bmod shows that as Bmod is increased, the resonant
growth of ��pres , t� is at first amplified, as shown in Fig. 7�a�.
The faster resonant growth is also reflected in the proportion-
ality of the analytic estimate of T�p , t� in Eq. �7� to Bmod. For
Bmod=0.35 G, there is no longer resonant growth in ��pres , t�
over a 1 ms pulse duration, although this modulation ampli-
tude does maximize ��pres ,1 ms�. The changing amplitude
and position of the maximum as Bmod varies alters the quality
of the fit to the thermal distribution and consequently the
conversion efficiency.

For Bmod�0.9 G, resonant growth is still observed; how-
ever, the continuum energy of the resonantly growing state is
negatively shifted from that predicted by Eq. �9�. As shown
in Fig. 7�b�, ��p ,1 ms� has a peak in momentum which, as
Bmod is increased, at first grows in amplitude and retains its
width and position, before being shifted towards p=0. Fully
destructive interference for continuum energies up to a few
kHz occurs when Bmod�1.0 G and so a minimum in conver-
sion efficiency is produced, as reflected in Fig. 8. Beyond
this modulation amplitude, there is no continuum energy for
which quadratic growth of ��p , t� is observed. Figure 7�b�
also shows two bands of constructive interference in ��p , t�.
These bands have a peak energy which is also dependent on
Bmod. Consequently, at the modulation amplitudes for which
these peaks coincide with the thermal distribution, a revival
of the conversion efficiency occurs.

The maximum, minimum, and revival in conversion
efficiency are shown for three different modulation frequen-
cies in Fig. 8. The absolute conversion efficiency at the
maximum is strongly temperature dependent, as shown for
Bmod=0.065 G in Fig. 5; however, the modulation amplitude
giving the maximum conversion has a weak variation with
temperature above 20 nK. The continuum energy of the reso-
nantly growing state varies with the modulation amplitude,
and so both frequency and amplitude should be matched to
the temperature of the gas for maximum conversion. Of the
plots shown in Fig. 8, for example, the best conversion is
achieved for Bmod=0.7 G and �mod/2�=6.5 kHz. The re-
vival in conversion efficiency for larger modulation ampli-
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FIG. 6. �Color online� Conversion efficiency vs modulation
frequency for a thermal 133Cs gas, from a 6 ms pulse. The gas
density and modulation amplitude are identical to the 85Rb curve
shown in Fig. 5. Here T=20 nK, n=1�1011 cm−3, Bav=21.37 G,
Bmod=0.065 G, and Eb

av/h=−1 MHz.
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tudes occurs in a peak that is narrower and is due to the
constructive interference shown in Fig. 7�b�. We note that for
Bmod1.352 G the resonance position B0 is being crossed
during the pulse.

V. CONCLUSIONS

Resonant association has been experimentally shown to
be an effective technique of producing molecules �16,17�.
Here we have studied the dependence of the conversion ef-

ficiency on the duration, frequency, and amplitude of the
pulse and the density and temperature of the gas. We have
shown that for a homogeneous gas, the continuum shapes the
dynamics of the association in such a way that it is unlike a
two-level system, in contrast to the case of resonant associa-
tion in strongly confining optical lattices. The presence of
other continuum states around that resonantly coupled to the
Feshbach molecule leads to the requirement of optimising
the properties of the pulse for the gas in question. Maximum
conversion requires the amplitude and frequency of the
modulation to be together optimized for the density and tem-
perature of the gas. Colder gases have narrower thermal dis-
tributions and so display stronger resonant behavior. The
width of the thermal distribution also leads to the dephasing
of the oscillations in conversion efficiency observed at short
times in Ref. �16�. An increase in temperature causes a posi-
tive shift in the optimal frequency for association, but also
lowers the maximum possible conversion efficiency.

The amplitude of the modulation and mean-field shifts
lead to the resonant coupling of continuum states of different
energy and thus also affect the conversion efficiency. A
higher modulation amplitude causes a less energetic con-
tinuum state to be resonantly coupled. Beyond a certain am-
plitude, no resonant growth in transition probability density
occurs; however, for the parameters of Ref. �16� a revival in
conversion efficiency is seen due to a region of constructive
interference between the different continuum states. A weak
dependence of the molecular binding energy on magnetic
field limits the effectiveness of resonant association,
although this can sometimes be compensated for by an in-
crease in the modulation amplitude. The evolution of the
transition probability density from a state is primarily deter-
mined by its detuning from the resonant continuum energy.
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FIG. 7. �Color online� The transition probability density ��p , t�
in a 85Rb gas for different values of Bmod. Here Bav=156.352 G,
�mod/2�=6.5 kHz, and Eb

av/h=−4.88 kHz. �a� The evolution of
��p , t� for the continuum state of energy satisfying the resonance
condition of Eq. �9�. Quadratic growth ceases to be observed when
the modulation amplitude becomes too great. �b� The transition
probability density distribution ��p ,1 ms� for Bmod= 0.15, 0.3, 0.8,
and 1.5 G, as indicated in the contour plot shown in the inset. For
each Bmod�0.9 G, the peak in energy of ��p , t� grows resonantly
on a timescale of 1 ms. The continuum energy of the maximal
��p ,1 ms� is negatively shifted from pres

2 /m with increasing Bmod.
Two bands of revival in ��p , t� can be seen in the inset, as well as in
the distributions of ��p , t� for Bmod=0.8 and 1.5 G.
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FIG. 8. �Color online� Conversion from a thermal 85Rb gas
as a function of modulation amplitude for Bav=156.352 G,
n=1011 cm−3, T=20 nk, and �mod/2�= 4.9, 5.5, and 6.5 kHz. The
solid line ��mod/2�=6.5 kHz� is a thermal average of the data
shown in Fig. 7. The variation in conversion efficiency with Bmod is
caused by the changes in the distribution of ��p , t� shown in Fig.
7�b�. The revivals are caused by the regions of constructive inter-
ference, shown in Fig. 7�b�, coinciding with the thermal
distribution.
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Consequently, the pulse duration necessary for association
does not vary significantly with the molecular binding en-
ergy. We have performed calculations for molecular binding
energies ranging from h�5 kHz to h�1 MHz and pre-
dicted that resonant association can be effective over this
range.
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