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An interferometer using fermions with transverse momentum is analyzed. It is shown that the phase uncer-
tainty �� of such a fermion interferometer with either two-dimensional �2D� or one-dimensional �1D� trans-
verse momentum states can be lower than that of an interferometer using fermions with the longitudinal
momentum state. The improvement is due to the fact that the transit time for the transverse momentum states
is a constant and thus the phase evolution factor is a quadratic function of the dispersive momentum compared
to the linear dependence of phase evolution on the dispersive momentum for the longitudinal momentum state.
Furthermore, 2D transverse momentum state may have lower phase uncertainty than 1D transverse momentum
state because of dimensional effects.
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In recent years ultracold atomic gases have been success-
fully employed to perform high-precision interferometry
�1–7�. Atom interferometers offer a potential sensitivity that
exceeds that of their optical counterparts by as much as
Mc2 /���1010 �8,9�. Theoretical analysis of the sensitivity
of atom interferometers has shown that phase uncertainty of
matter-wave Mach-Zehnder interferometer for uncorrelated
inputs is 1 /�N, while correlated inputs can achieve the
Heisenberg limit �1/N �10,11�. These are true when the
atomic beam is quasi-monochromatic �9,11,12�. The quasi-
monochromatism is justified when the atomic wave functions
do not overlap, which means quantum statistics does not play
a role and thus bosons and fermions give the same result.

Clearly, to decrease phase uncertainty, increasing N is de-
sired, which will make the wave functions of different atoms
overlap when N is large. Thus treatment with quantum sta-
tistics of atoms is necessary, and bosons and fermions will
give different results. For bosonic atoms, the interference
pattern and phase sensitivity is degraded because of the
atom-atom interactions, which give rise to a nonlinear phase
shift as the atoms propagate along the arms of the interfer-
ometer. For identical fermions, although there is no s-wave
collisions between degenerate identical fermions, one still
might expect that the phase sensitivity is also degraded, since
they have different momentum according to Pauli exclusion
principle �13�. However, Search and Meystre �14� have
shown that for fermions, the phase uncertainty of a Mach-
Zehnder interferometer using a degenerate beam of fermions
can be noticeably smaller than what can be achieved by us-
ing BEC or nonoverlapping wave functions. The lowering of
noise for the fermions can be attributed to the antibunching
of the fermions between the two arms of the interferometer.
Successive fermions entering the interferometer will have a
greater probability of being found in different arms of the
interferometer rather than in the same arm as would be the
case for bosons. On the other hand, this antibunching is
modified by the broadband �or “white light�� nature of the
Fermi gas in k space, which limits the range of the measured
phases over which the phase uncertainty is improved.

All the analysis �9,11,12� so far considers an effective
one-dimensional system: the motion of atoms transverse to
the interferometer arms is ignored. In this paper, we will

show that atoms with transverse momentum can decrease the
phase uncertainty of a single-port-input Mach-Zehnder inter-
ferometer. In the following, a short review of the atomic
Mach-Zehnder interferometer with atoms having longitudi-
nal momentums is presented first. It is followed by showing
that both two-dimensional and one-dimensional transverse
momentum states can reduce the phase uncertainty of the
interferometer. It is then followed by the discussion and
conclusion.

Figure 1 shows the atomic Mach-Zehnder interferometer
that we consider, with input ports A and B. We introduce

the annihilation �creation� operators âk� �âk�
†� and b̂k� �b̂k�

†� for
atoms entering the input ports A and B, respectively, with
momentum �kz directed along either the upper or lower
interferometer path, each of which defines a z direction of its

own. âk� and b̂k� satisfy anticommutation relations �âk� , âk��
† �+

=�k�,k�� and �b̂k� , b̂k��
† �+=�k�,k��, respectively. The beam splitters 1

and 2 are both 50/50 beam splitters, and, e.g., the first one
has the action

�âu,k�

âl,k�
� =

1
�2

� i − 1

− 1 i
��âk�

b̂k�
� , �1�

here âu,k��âl,k�� are the operators for the upper �lower� paths of
the interferometer. We assume that, upon reflection from a
beam-splitter surface, the atoms undergo an unimportant
phase shift which we take to be � /2, and upon passage

Mirror 1

BS1 BS2

Detector D

Detector C
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FIG. 1. Mach-Zehnder interferometer. lu and ll are the path
lengths for the upper and lower arms, respectively. BS1 and BS2 are
50/50 beam splitters.
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through a beam splitter, the atoms undergo zero phase. After
the beams are recombined at the second beam splitter, the
atoms are counted by detectors located at the output ports C
and D. The observable is the difference in the numbers of
counts

N̂ = N̂C − N̂D = 	
k�

�ĉk�
†ĉk� − d̂k�

†d̂k�� , �2�

where ĉk� and d̂k� are the annihilation operators for the output

ports C and D, respectively. We call N̂ the differential num-

ber operator and 
N̂� the differential number. For single port
input �
bk�

†bk��=0, 
ak�
†ak��=NA,k�� which we consider in this

paper, the differential number becomes


N̂� = 	
k�


ak�
†ak��cos �kt0, �3�

where

��k = �2�kx
2 + ky

2 + kz
2�/2m �4�

is the energy of a fermion of mass m with momentum
�k� =��kx ,ky ,kz�, and

t0 = m�l/�kz �5�

is its time to travel through the two arms, and �l is the path
length difference between the upper and lower arms of the
interferometer. For clarity, ak� will be specified for different
states �see Eqs. �7�, �11�, and �14��. The phase uncertainty in
a Mach-Zehnder interferometer is defined as �14�

�� = �N/��
N̂�/��� �6�

with �N= �
N̂2�− 
N̂�2�1/2. In the following, the vector in k�

will be suppressed for simplicity. Before we proceed to spe-
cific states, we stress the key difference of different states.
When Eqs. �4� and �5� are substituted into Eq. �3�, we see
that without transverse momentum broadening �kx=ky =0�,
the phase factor for mode k� is linear in kz; while for case
without longitudinal momentum broadening �kz=k0 are con-
stants�, the phase factor is quadratic in kx and ky. This differ-
ence together with its counterpart in the expression of �N, as
will be shown in the following, can reduce the phase uncer-
tainty of states with transverse momentum broadening
�kx�0 and/or ky �0�.

Longitudinal momentum state. When the momentum
broadening is along the z axis, as was considered in Refs.
�12,14�, the quantum state for the incident fermions at zero
temperature is given by

���z = 	�kz−k0�
kF
âkz

† �0� �7�

which will be called as the longitudinal momentum state.
Here, �kF is the one-dimensional Fermi momentum, and �k0
is the average momentum. It can be seen from Eq. �5� that t0
in Eq. �4� are different for fermions with different momenta.
Following Eq. �3�, the differential number for ���z is


N̂� =
LF

2�


k0−kF

k0+kF

cos��k2

2m

m�l

�k
�dk �8�

=NA cos � sinc�n̄A�/2� , �9�

where we defined the function sinc�x�=sin�x� /x, the phase
difference between the two arms for a fermion with average
momentum �k0 in the z direction �=k0�l /2, dimensionless
density n̄A=2�NA /LF, k0=2kF /k0, with LF being the length
of the incident beam. Note that, as seen from Eq. �8�, to
make the atoms travel from the input to the output, one must
make sure that k0�kF. Thus we have n̄A
2, which was not
taken into account in Ref. �14�. Furthermore, it can be seen
that NA cannot be bigger than NA

m=2koLF /� for the interfer-
ometer with longitudinal momentum state. Following Eq.
�6�, the corresponding phase uncertainty �� for this state is

�2NA�� =
��2�1 − cos 2� sinc�n̄A���

�cos � cos��n̄A/2� − sinc�n̄A�/2��� sin � + cos ���
.

�10�

Note that Eq. �10� is the same as that in Ref. �14� except
that our � is one-half of that in Ref. �14�. Since there is no
s-wave interaction between degenerate identical fermions,
increasing their density does not cause unfavorable phase
shift as bosons do. As was shown in Ref. �14�, the larger the
dimensionless density n̄A is, the smaller the phase uncertainty
is. This is why fermions are preferable to bosons in atom
interferometry �14�.

XY transverse momentum state. When the momentum in z
is �k0 and the transverse momentum �k� is filled up to
Fermi momentum �kF at zero temperature, the state is

���XY = 	�k��
kF
âk�

† �0� �11�
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FIG. 2. Dimensionless differential number 
N� /NA as a function
of phase difference � for ideal single momentum state �solid line�,
fermions with the longitudinal state ���z �dashed-dotted line�, fer-
mions with the XY transverse momentum state ���XY �dashed line�
and fermions with the X transverse momentum state ���x �dotted
line�. Reduced contrast for momentum broadened states, which is
due to Pauli’s principle, can be clearly seen. But for fermions,

N� /NA drops faster, which means smaller phase uncertainty. In the
plot, n̄A=2, r=1.31 �r=1.32� for the XY �X� transverse state are
used.
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which will be called the XY transverse momentum state in
the following. It can be seen from Eq. �5� that t0 in Eq. �4�
are the same for fermions with different transverse momen-
tum in the state ���XY as well as in the following X trans-
verse momentum state ���X. It follows from Eq. �3� that the
differential number for the state ���XY is


N̂� = �Lxy
2

2�
�

0

kxy

cos���k2 + k0
2�

2m

m�l

�k0
�kdk

= NA�sinc�r2��cos � +
cos�r2�� − 1

r2�
sin �� , �12�

where r=
kF

k0
is a parameter comparable to n̄A. However, r

can be varied from 0 to � because the transverse momentum
is independent of the longitudinal momentum, while n̄A is
limited from 0 to 2 as explained in the section for the longi-
tudinal momentum state. Of course, compared to longitudi-
nal momentum, large transverse momentum in an interfer-
ometer makes the straightforward experimental realization of
such an interferometer difficult, although there is no physical
principle against it. Figure 2 shows that the broadening of the
momentum, which is due to the Pauli exclusion principle,

makes the contrast of 
N̂� for state ���XY smaller than that of
atoms with identical momentum. But for fermions, 
N� /NA

drops faster, which means smaller phase uncertainty �� for
state ���XY �Eq. �13��,

�2NA�� =

�cos 2��1 − sinc�2r2�� − sin 2�
cos�2r2�� − 1

2r2�
�

�cos ��− 1 + cos�r2��
r2�

+
cos�r2��

�
−

sin�r2��
r2�2 � − sin ��− 1 + cos�r2��

r2�2 +
sin�r2��

�
+

sin�r2��
r2�

�� . �13�

While Eq. �13� shows that �� scales as 1 /�NA, Fig. 3�a�
quantitatively shows that �� does not decrease monotoni-
cally as r increases. Rather, �� as a function of r and � has
many minima and resonant maxima. Figure 3�b� shows that
the phase uncertainty is reasonably low for �
� /3 and thus
we use �=� /3 from now on. For this �, the minimum occurs
at r=1.31, which will be used throughout this paper. We also
note that the divergent maxima of the phase uncertainty are
determined by the denominator in Eq. �6�.

Figure 4 shows the comparison of �� between the longi-
tudinal momentum state and the XY transverse momentum
state. Clearly, the XY transverse momentum state has smaller
phase uncertainty than the longitudinal momentum state.
This is mainly due to the fact that the transverse momentum
states have constant transit time and thus the phase evolution
factor is a quadratic function of the dispersive momentum.
Another cause, as will be shown in the next paragraph, is that
the broadening of momentum from one dimensional to two
dimensional also helps to improve the phase uncertainty. To
understand the dimensional effect, we come to the next trans-
verse momentum state.

X transverse momentum state. In this state, the momen-
tum in z direction is �k0, the motion in y is suppressed by a
potential �14�, and the momentum in x is filled up to Fermi
momentum �kF at zero temperature. Mathematically, the
state reads

���X = 	�kx�
kF
âkx

† �0� �14�

which is called the X transverse momentum state in the fol-
lowing. This state is similar to the state ���XY with the dif-

ference of momentum broadening only in X direction. It then
follows that the differential number is


N̂� =
Lx

2�


−kFX

kFX

cos���k2 + k0
2�

2m

m�l

�k0
�dk �15�

=NA
0

1

cos��1 + r2k2���dk �16�

and the phase uncertainty is

�2NA�� =

�1 − 
0

1

cos�2�1 + r2k2���dk

�
0

1

sin��1 + r2k2����1 + r2k2�dk� . �17�

Figures 2 and 3 demonstrate that the X transverse momentum
state and the XY transverse momentum state have very simi-
lar r and � dependence. For �=� /3, however, the former one
has a larger phase uncertainty than the XY transverse mo-
mentum state for the chosen parameters as shown in Fig. 4.
This is due to the difference in the density of states. It is
obvious from Fig. 4 that all �� for fermions are smaller than
that of interaction-free boson. And we know from previous
work that interaction will even degrade the phase uncertainty
of interferometer with boson �14�. The important conclusion
for this paper as shown from Fig. 4 is that the phase uncer-
tainty of atomic interferometer can be decreased more by
using transverse momentum states than by using longitudinal
momentum states.
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In Fig. 4, different atom statistics and/or different momen-
tum states are compared by assuming the same total number
of atoms NA through the interferometer. Different from the
interferometer with the longitudinal momentum state in
which the throughput of atoms NA has its maximum NA

m, the
interferometer with transverse momentum state has no limi-
tation on NA. Thus, it is possible to make the phase uncer-
tainty even smaller than that shown in Fig. 4 by increasing
NA with the transverse momentum state.

To conclude, transverse motion of atoms as a new twist
for reducing the phase uncertainty of atomic interferometer is
introduced. The reason for the improvement is that for fer-
mions in the transverse momentum states ���XY or ���X,
transit time t0 is a constant, and the phase evolution comes
only from the energy spectrum ��k, while for longitudinal
momentum state ���z, transit time varies as well, which
destructively interferes with ��k to degrade the phase uncer-
tainty. Furthermore, XY transverse momentum state
may have lower phase uncertainty than X transverse momen-
tum state because of dimensional effects. Effect of correlated
inputs �10,11� using these transverse momentum states
on phase uncertainty is under further investigation. The big
question that remains is how to realize such a system
experimentally.
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FIG. 3. The phase uncertainty �NA�� for ���XY �thick line� and
���X �thin line� as function of r with �=� /3 �a� and as function of
� with r=1.31 �r=1.32� for ���XY ����X�, �b�. Other parameters for
the plots are n̄A=2, r=1.31 �r=1.32� for the XY �X� transverse
states.
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FIG. 4. The phase uncertainty �� for interaction-free bosons
�thick solid line�, the longitudinal momentum state �dashed-dotted
line�, the XY transverse momentum state �dashed line� and the X
transverse momentum state �dotted line�. Clearly, the XY transverse
momentum state and the X transverse momentum state have smaller
phase uncertainty than the longitudinal momentum state. The pa-
rameters in plots are 1/�NA=0.03, �=� /3, r=1.31 �r=1.32� for the
XY �X� transverse states.
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