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We explore theoretically the consequence of the presence of structured multiple continua on the electromag-
netically induced transparency �EIT� effect with pulsed lasers. The theory is developed in a rigorous manner
using the overlapping resonances perspective. As one consequence of the theory we show that due to the
structure in the continuum �which can also be induced optically� the EIT line shapes become asymmetric for
a strong coupling piulse.
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I. INTRODUCTION

Electromagnetically induced transparency �EIT� ��1–9�� is
one of the prime examples for the use of quantum interfer-
ences in changing the optical properties of material systems.
In the original EIT scenario �1,2�, one allows two light
beams to interact with a three-level material system so as to
minimize, and often completely eliminate, the absorption of
the same light beams as they pass through a thick sample.

The EIT phenomenon is intimately related to the forma-
tion of resonances—the broadening of spectral lines due to
the interaction of bound states with a �radiative or nonradia-
tive� continuum of states. When the broadening becomes
comparable to the spacing between the lines, the resonances
are said to overlap. This property can be controlled optically
due to the �Autler Townes �10�� splitting of dressed states,
which depends on the intensity of the light field used to
induce the Autler Townes �AT� splitting. Once the relative
positions of the various levels are known, there is a well-
established theory �11–15� for dealing with interferences be-
tween overlapping resonances.

It was realized early on �14�, following the analysis of
Fano �11�, that the interference between overlapping reso-
nances can give rise to “dark states.” Such dark states, which
are characterized by the vanishing of photoabsorption, were
found experimentally a few years later �16,17�. They feature
very highly in many applications in coherent optics and in
particular in “lasing without inversion” �1,18,19� and adia-
batic passage phenomena �5,20�.

The emergence of dark states as a result of overlapping
resonances was at the heart of the original EIT idea of Harris
et al. �1,2�. However, only limited use of the general theory
of overlapping resonances has been subsequently made. In
particular, the Wigner Weisskopf approximation �21�, ac-
cording to which the resonance width is independent of the
energy �“unstructured continuum”� was invariably assumed.
The widths of the various levels were thus represented �7� as
constant imaginary additions to the Hamiltonian matrix ele-
ments, or, in the density-matrix description of the process, as
decay and dephasing rates.

An immediate consequence of this approximation is the
neglect of the resonance level shifts. The reason is that the
shifts, which are given as the Hilbert transform of the level
widths, vanish for a constant function. Past treatments of EIT
have also neglected multichannel effects, arising when each
level is coupled to a multiplicity of continua.

The above are important effects because structure and
multiplicity of continua abound in real �molecular� systems
�22�. One finds in such systems that levels decay indirectly
due to the existence of “tierlike” coupling schemes where
levels belonging to a given vibrational mode �“tier”� are
coupled to levels belonging to just one other tier, which are
coupled to yet another limited set of levels, and so on, until
one reaches the continuum tiers. The tierlike scheme thus
leads to highly “structured” continua, which are in addition,
often coupled to one another, leading to “multichannel” scat-
tering �13� and dissociation �23�.

In this paper we present a more complete theory of EIT,
based on the overlapping resonances perspective, in which
structured multiple continua are considered. One of the out-
comes of our theory is that the existence of structures �which
can also be induced optically—as in the “laser-induced con-
tinuum structure” �LICS� effect �24�� may change the EIT
line shapes and renders them asymmetric.

II. ELEMENTS OF THE THEORY OF MULTICHANNEL
OVERLAPPING RESONANCES

We start by briefly reviewing elements of “partitioning�
theory �11–15,25� used in the remainder of this paper to treat
the interference between overlapping resonances. The physi-
cal situation we address is illustrated in Fig. 1 in which �as
explained in Sec. III below� two overlapping resonances are
created by optically splitting a single resonance. Assuming
that we have a situation in which bound states interact with
continuum states, we define, according to this approach, two
hermitian projection operators Q and P, satisfying the equali-
ties

Q† = Q, P† = P, QQ = Q, PP = P,

PQ = QP = 0,P + Q = I , �1�

where I is the identity operator. The Q and P operators are
chosen to project out the subspaces spanned by the bound
states and the continuum states, respectively. Further, as Eq.
�1� indicates, they are orthogonal, e.g., they may project onto
the vacuum photon states and the one-photon states, or any
two subspaces known to be orthogonal.

The full scattering incoming states �E ,n−�, are eigenstates
of the Schrödinger equation
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�E − i� − H��E,n−� = 0, �2�

where −i� gives rise to “incoming� boundary conditions
�13,26�. Using the orthogonality of P and Q, we obtain two
coupled equations,

�E − i� − PHP�P�E,n−� = PHQ�E,n−� , �3�

�E − i� − QHQ�Q�E,n−� = QHP�E,n−� . �4�

We define two basis sets, �E ,n1
−� and ��s�, which are the

solutions of the homogeneous �decoupled� parts of Eqs. �3�
and �4�. That is,

�E − i� − PHP��E,n1
−� = 0, �5�

�Es − QHQ���s� = 0. �6�

Implicit in Eqs. �5� and �6� is that �E ,n1
−�� P and ��s��Q

and as such they are orthogonal to one another. We, in fact,
assume that each basis set spans the entire subspace to which
it belongs, hence we can write an explicit representation of Q
and P as

Q = �
s

��s���s�, P = �
n
	 dE�E,n1

−��E,n1
−� . �7�

Using Eq. �7� we can therefore write

�E,n−� = �P + Q��E,n−�

in terms of Q and P as

�E,n−� = �
s

��s���s�E,n−� + �
n�
	 dE��E�,n1�

−�

��E�,n1�
−�E,n−� . �8�

We now solve for P �E ,n−� by writing it as a sum of the

homogeneous solution of Eq. �5� and a particular solution of
Eq. �3� obtained by inverting �E− i�− PHP�,

P�E,n−� = P�E,n1
−� + �E − i� − PHP�−1PHQ�E,n−� . �9�

Substituting this solution into Eq. �4� we obtain that

Q�E,n−� = �E − i� − QHQ�−1QHP�E,n1
−� , �10�

where

QHQ 
 QHQ + QHP�E − i� − PHP�−1PHQ . �11�

An explicit representation of Eq. �10� is obtained by using
the well-known identity,

�E − i� − PHP�−1 = P��E − PHP�−1 + i���E − PHP� ,

�12�

with P� denoting a Cauchy principal-value integral, as

QHQ = QHQ + QHPP��E − PHP�−1PHQ

+ i�QHP��E − PHP�PHQ . �13�

Given Eqs. �9� and �13� we can express, via Eq. �8�, the full
scattering wave function �E ,n−� in terms of ��s� and �E ,n1

−�.

III. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY

We consider the situation illustrated in Fig. 1 in which a
ground state �E1�, a resonance state �E0� �decaying radiatively
or nonradiatively� coupled optically to a third state �E2�
�which can also decay radiatively or nonradiatively� by a
strong guiding field

E2�t� 
 �̂2�2�t� = �̂2ReE2�t�exp�− i�2t� , �14�

where �̂2 is the polarization direction vector. We probe the
system by a weaker laser pulse

E1�t� 
 �̂1�1�t� = �̂1ReE1�t�exp�− i�1t� , �15�

satisfying the E1�t�	E2�t� condition. Accordingly, we can
treat �1�t� as a perturbation and obtain first the adiabatic
eigenstates resulting from the �2�t�-induced interaction be-
tween the �E0� and �E2� states.

Therefore, temporarily neglecting �1�t�, we can expand
the system wave function in just two states,

�
�t�� = b0�t��E0�exp�− iE0t� + b2�t��E2�exp�− iE2t� , �16�

where a.u. ��=1� are used here and throughout this paper.
Using the expansion of Eq. �16� we obtain from the time-
dependent Schrödinger equation

i
�
�t�

�t
= H
�t� = �HM + HMR�
�t� , �17�

where HM is the material Hamiltonian and HMR is the matter-
radiation interaction, given in the dipole approximation as

HMR = − �� · E�t� , �18�

the usual set of ordinary coupled differential equations for
the b� 
�b0 ,b2� coefficients vector,

FIG. 1. A ground state �E1� is excited by a weak laser pulse �1 to
a resonance state �E0��Q decaying radiatively or nonradiatively to
space P. The �E0� state is coupled optically to a third state �E2� by a
strong guiding field �2 and undergoes as a result Autler-Townes
splitting. As a result of the splitting and the decay, an EIT “hole” is
formed at E=E0.
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d

dt
b� = iH= · b� �t� , �19�

where H= is given in the “rotating waves approximation” as

H= = � 0 2
*�t�ei�2t

2�t�e−i�2t 0
� , �20�

with the detuning and the Rabi frequency given, respectively
as

�2 
 �2 − �E0 − E2�, 2�t� 
 �� · �̂2E2�t� . �21�

We now transform H= to a form that does not contain the
highly oscillatory e−i�2t terms, which might invalidate the
adiabatic approximation. Multiplying Eq. �19� by a diagonal

matrix, exp�i�̂t /2�, with �̂ being the diagonal detuning ma-
trix,

�̂ 
 �− �2 0

0 �2
� , �22�

results in the following:

exp�i�̂t/2�
d

dt
b� = i exp�i�̂t/2� · H= exp�− i�̂t/2�exp�i�̂t/2�b� �t� .

�23�

We can eliminate the oscillatory terms by defining

c� 
 exp�i�̂t/2�b� , �24�

and obtain from Eq. �23� that,

d

dt
c� = iH�

=
· c��t� , �25�

where

H�
=

= �− �2/2 2
*�t�

2�t� �2/2
� . �26�

Having removed the oscillatory exp�±i�2t� terms, we now
build adiabatic solutions by diagonalizing Eq. �26� using a
2�2 unitary matrix,

U= = � cos � e−i�2 sin �

− ei�2 sin � cos �
� . �27�

The corresponding diagonal eigenvalue matrix �̂ is com-
posed of the two roots,

�1,2�t� = ± ��t� = ± ��2
2/4 + �2�t��2�1/2. �28�

The � and �2 angles of U= are given as

tan � =
�2�t��

− ��2
2/4 + �2�t��2�1/2 + �2/2

, �29�

with �2 being the argument of 2 �Eq. �21��.
Operating with U= † on Eq. �25� and defining a� 
�a1 ,a2�


U= † ·c� we obtain by neglecting A= =U= ·dU= † /dt, the nonadia-
batic coupling matrix, the adiabatic approximation for a� ,

d

dt
a� = i�̂�t�a��t� , �30�

whose solution is,

a1,2�t� = exp±i	
0

t

��t��dt��a1,2�0�

= exp±i	
0

t

��2
2/4 + �2�t���2�1/2dt��a1,2�0� . �31�

To gain insight into requirements for the validity of the
adiabatic approximation we consider the case of �2=0 for
which the nonadiabatic coupling matrix A= is given as

A= = � 0 �̇

− �̇ 0
� . �32�

Thus, in order for adiabaticity to hold, the time derivative of
the mixing angle must be small with respect to the gap be-
tween the eigenvalues,

��̇�t�� 	 ��2�t� − �1�t�� . �33�

We now introduce the �weak� �1�t� pulse. Since �E1� is the
initially populated state, in the absence of �1�t�, neither the
�E0� or �E2� states, nor the ��1� and ��2� adiabatic states can
ever be populated. Thus, in the absence of the �1�t� pulse, the
only noticeable effect of the �2�t� pulse is to change the
spectrum of the Hamiltonian.

Assuming that the adiabatic condition �Eq. �33�� indeed
holds, the states seen by the �1�t� pulse with �2�t� on, are
the adiabatic states ��1� and ��2�, rather than the �E0� and
�E2� material states. Using the definition of a� �Eqs. �24� and
�27��, we can write the adiabatic states, using the identity

b� =e−i�̂t/2 /U= · a� , as

��1�t�� = ei�0
t ��t��dt�+i�2t/2−iE0t

��cos ��E0� + sin �e−i�2�t�−i�2,0t�E2�� ,

��2�t�� = e−i�0
t ��t��dt�−i�2t/2−iE0t

��− sin �ei�2�t��E0� + cos �e−i�2,0t�E2�� . �34�

Here ��1�t�� and ��2�t�� are obtained by setting either a�
= �a1 0� or a� = �0 a2� and �2,0
�E2−E0� /�.

When �2=0 �i.e., when �2 is exactly resonant with the
�E2� to �E0� transition�, it follows from Eq. �29� that �
=3� /4. If, in addition, we assume that the pulse has no chirp
�i.e., that the phase of E2�t�, �2�t�=0�, we have that

��1�t�� = ei�0
t �2�t���dt�−iE0t��E0� − e−i�2,0t�E2��/�2,

��2�t�� = e−i�0
t �2�t���dt�−iE0t��E0� + e−i�2,0t�E2��/�2. �35�

We see that the time evolution of the �E0� component of
��1�t�� is governed by a “quasienergy” of E0− �2�t��,
whereas the time evolution of the �E0� component of ��2�t��
is governed by a “quasienergy” of E0+ �2�t��. We say that
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the two levels are “Autler-Townes” split by an amount equal
to 2 �2�t��.

We now consider the broadening of the adiabatic levels
due to the decay channels considered in Sec. II. When this
broadening is comparable to, or in excess of the 2 �2�t��
splitting �see Fig. 3� the switch on of the �1�t� pulse results in
the simultaneous excitation of the two adiabatic eigenstates.
The probability of a one-photon absorption to each scattering
state is given in first-order perturbation theory as,

Pn�E� = �2��1��E,1��1,n�E��2, �36�

where �1,n�E� are bound-free dipole matrix elements be-
tween the ground �g� and excited �e� electronic states, given
as

�1,n�E� = �E1��� e,g�̂�E,n−� . �37�

�E,1 of Eq. �36� is the transition frequency between E1 and a
continuum energy E, �E,1= �E−E1� /�. �1��� is the temporal
Fourier transform of the pulse,

�1��� 

1

2�
	 dt�1�t�exp�− i��z/c − t�� , �38�

where z is the direction of propagation of the light. Assuming
for simplicity that no direct transitions to the continuum oc-
cur, i.e., that only the Q space of Eq. �7� is coupled radia-
tively to �E1�, we have that

�1,n�E� = �
s

�E1��� e,g�̂��s���s�E,n−� . �39�

If we now identify the ��s� bound states �which become
resonances due to the interaction with the continuum� with
the adiabatic states of Eq. �34�, we can write that,

�1,n�E� = �
s=1,2

�E1��� e,g�̂��s���s�E,n−� , �40�

where we have specialized the treatment to the interaction of
just two resonances. Using Eq. �34� and the fact that
�E2��̂ ·�� �E1�=0, we have that

�1,n�E� = �E1��� e,g�̂�E0�e−iE0t�cos �ei�2t/2+i�0
t ��t��dt���1�E,n−�

− sin �e−i�2t/2−i�0
t ��t��dt�+i�2��2�E,n−�� . �41�

When �2=�2,0, i.e., it is exactly on resonance, and �2=0,
this expression reduces to

�1,n�E� =
1
�2

e−iE0t�E1��� e,g�̂�E0����1�E,n−�ei�0
t �2�t���dt�

− ��2�E,n−�e−i�0
t �2�t���dt�� . �42�

Using Eq. �10� we can write an exact expression for the
amplitude of observing the ��s� states as

��s�E,n−� = �
s�

��s��E − i� − QHQ�−1��s����s��H�E,n1
−� .

�43�

Following Ref. �14� we can write the E−QHQ matrix of
Eq. �13� in the two overlapping resonances case as

E − QHQ = �E − E0 − �1 − �1,1 − i�1,1/2 − �1,2 − i�1,2/2

− �2,1 − i�2,1/2 E − E0 − �2 − �2,2 − i�2,2/2
� , �44�

where

�s,s��E� = 2��
n

��s�H�E,n1
−��E,n1

−�H��s�� �45�

and

�s,s��E� = P�	 dE��
n

��s�H�E�,n1
−��E�,n1

−�H��s��

E − E�
. �46�

We obtain that the inverse matrix is given as

�E − QHQ�−1 =
1

D�E − E0 − �2 − �2,2 − i�2,2/2 �1,2 + i�1,2/2

�2,1 + i�2,1/2 E − E0 − �1 − �1,1 − i�1,1/2
� , �47�

where

D = �E − E0 − �1 − �1,1 − i�1,1/2��E − E0 − �2 − �2,2 − i�2,2/2� − ��1,2 + i�1,2/2���2,1 + i�2,1/2� . �48�

Using Eq. �43� we obtain that

��1�E,n−� =
1

D
��E − E0 − �2 − �2,2 − i�2,2/2���1�H�E,n1

−� + ��1,2 + i�1,2/2���2�H�E,n1
−�� ,

��2�E,n−� =
1

D
���2,1 + i�2,1/2���1�H�E,n1

−� + �E − E0 − �1 − �1,1 − i�1,1/2���2�H�E,n1
−�� . �49�
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It follows from Eq. �34� that

��1�H�E,n1
−� = e−i�0

t ��t��dt�−i�2t/2+iE0t

��cos �V0,n + sin �ei�2+i�2,0tV2,n� ,

��2�H�E,n1
−� = ei�0

t ��t��dt�+i�2t/2+iE0t

��− sin �e−i�2V0,n + cos �ei�2,0tV2,n� ,

�50�

where

V0,n�E� 
 �E0�H�E,n1
−�, V2,n�E� 
 �E2�H�E,n1

−� . �51�

Using Eq. �50� and neglecting the terms containing the
highly oscillatory e±i�2,0t factors, we obtain that

�1,1 = �0 cos2 � + �2 sin2 �, �2,2 = �0 sin2 � + �2 cos2 � ,

�1,2 = �− �0 + �2�e−2i�0
t ��t��dt�−i�2t+i�2 sin � cos � , �52�

where

�0�E� 
 2��
n

��E,n1
−�H�E0��2,

�2�E� 
 2��
n

��E,n1
−�H�E2��2. �53�

In the same manner

�1,1 = �0 cos2 � + �2 sin2 �, �2,2 = �0 sin2 � + �2 cos2 � ,

�1,2 = �− �0 + �2�e−2i�0
t ��t��dt�−i�2t+i�2 sin � cos � , �54�

where

�i�E� 
 � 1

2�
�P�	 dE�

�i�E��
E − E�

, i = 0,2. �55�

Hence from Eq. �49�

��1�E,n−� =
eiE0t

D
��E − E0 − �2 − �2,2 − i�2,2/2�e−i�0

t ��t��dt�−i�2t/2�cos �V0,n + sin �ei�2+i�2,0tV2,n�

+ ��1,2 + i�1,2/2�ei�0
t ��t��dt�+i�2t/2�− sin �e−i�2V0,n + cos �ei�2,0tV2,n�� ,

��2�E,n−� =
eiE0t

D
���2,1 + i�2,1/2�e−i�0

t ��t��dt�−i�2t/2�cos �V0,n + sin �ei�2+i�2,0tV2,n�

+ �E − E0 − �1 − �1,1 − i�1,1/2�ei�0
t ��t��dt�+i�2t/2�− sin �e−i�2V0,n + cos �ei�2,0tV2,n�� . �56�

It follows from Eq. �41� that

�1,n�E� =
�1,0

D
�cos ���E − E0 − �2 − ��0 + i�0/2�sin2 � − ��2 + i�2/2�cos2 ���cos �V0,n + sin �ei�2+i�2,0tV2,n�

+ �− �0 − i�0/2 + �2 + i�2/2�ei�2 sin � cos ��− sin �e−i�2V0,n + cos �ei�2,0tV2,n��

− sin �ei�2��− �0 − i�0/2 + �2 + i�2/2�e−i�2 sin � cos ��cos �V0,n + sin �ei�2+i�2,0tV2,n�

+ �E − E0 − �1 − ��0 + i�0/2�cos2 � − ��2 + i�2/2�sin2 ���− sin �e−i�2V0,n + cos �ei�2,0tV2,n��� . �57�

When we neglect the highly oscillatory ei�2,0t terms, we
obtain

�1,n�E� =
�1,0V0,n

D
�E − E0 + � cos 2� − ��2 + i�2/2�� .

�58�

Thus, if state �E2� is unstable, giving rise to the i�2 term,
there is no real E for which the transition dipole matrix ele-
ment vanishes.

When the detuning �2=0, cos 2�=0 and

�1,n�E� =
1

D
�1,0V0,n�E − E0 − ��2 + i�2/2�� . �59�

When we substitute the explicit form of D, as given by Eq.
�48�, and the values of �i,j as given by Eq. �52�, we obtain
that
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D = �E − E0 − � − �0 cos2 � − �2 sin2 � − i��0 cos2 � + �2 sin2 ��/2�

��E − E0 + � − �0 sin2 � − �2 cos2 � − i��0 sin2 � + �2 cos2 ��/2� − ��0 − �2 + i��0 − �2�/2�2 sin2 �cos2 � . �60�

When we irradiate exactly on resonance, �2=0, and we have that cos2 �=sin2 �=1/2. We obtain in that case that

D�t� = �E − E0 − ��0 + �2�/2 − i��0 + �2�/4�2 − ���0 − �2�/2 + i��0 − �2�/4�2 − �2�t� . �61�

A. Unstructured continua

If we neglect the variation of �0,2�E� with energy, and assume that E�0, we have that the integrand defining �0,2 is
antisymmetric about E and is essentially zero at the integration limits, hence �i�0. In that case

D�t� = �E − E0 − i��0 + �2�/4�2 + ��0 − �2�2/16 − �2�t��2 �62�

or

D�t� = �E − E0�2 − i�E − E0���0 + �2�/2 − �0�2/4 − �2�t��2. �63�

Hence

�D�t��2 = ��E − E0�2 − �0�2/4 − �2�t��2�2

+ ��E − E0���0 + �2��2/4. �64�

The channel-specific probability of absorption of a photon of energy E−E1 from state �E1� is given, using Eqs. �59�, �64�,
and �36� �assuming �2=0� as

Pn�E� =
�2��1,0V0,n�1��E,1��2��E − E0�2 + ��2

2/4��
��E − E0�2 − �2�t��2 − �0�2/4�2 + ��E − E0���0 + �2�/2�2 . �65�

P�E�, the total probability for absorbing a photon of energy E−E1 from state �E1�, given as P=�nPn�E�, is

P�E� =
2��0��1,0�1��E,1��2��E − E0�2 + ��2

2/4��
��E − E0�2 − �2�t��2 − �0�2/4�2 + ��E − E0���0 + �2�/2�2 , �66�

where we have used Eq. �53�, according to which, �0
=2��n �V0,n�2. We see that the basic form of the total photon-
absorption probability remains essentially the same as in the
single continuum case, with sums over channel-specific
widths and shifts replacing the single-channel entities.

B. Structured continua

When the variation of �0,2�E� with energy cannot be ne-
glected we cannot assume that �0,2�E� vanish. In that case
we need to compute D according to Eq. �60�. Assuming that
�0,2�E� can be parametrized, for example, as a sum of
Lorentzian functions

�i�E� = �
j

Ai,j�i,j

�E − ei,j�2 + �i,j
2 /4

, i = 0,2, �67�

we have that

�i�E� =
1

2�
P�	

−�

�

dE�
�i�E��
E − E�

=
1

2�
P�	

−�

�

dE��
j

�
Ai,j�i,j

�E� − ei,j + i�i,j/2��E� − ei,j − i�i,j/2��E − E��

= �
j

Ai,j�E − ei,j�
�E − ei,j�2 + �i,j

2 /4
. �68�

An illustration of a typical case of structured continua of
the dressed AT split pair of states is given in Fig. 2. We see

FIG. 2. An example of the widths and shifts of a case of “highly
structured” continua, characterized by �0=�2=0.05, coupled to the
Autler-Townes �AT� split pair. Shown are �0�E�, �2�E�, �0�E�, and
�2�E�.
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that the shift function is antisymmetric about ei, i=0,2. As a
result, as shown e.g., in Figs. 7 and 8, the probability of
absorption, given as the square of �1,n�E� of Eq. �58�, is no
longer symmetric about the line center. Thus the appearance
of asymmetry in the EIT absorption line shape is a hallmark
of a structured continuum.

IV. NUMERICAL EXAMPLES

We present illustrative calculations on a three-level sys-
tem of the type depicted in Fig. 1. We plot Pn�E�, the ab-
sorption probability from the ground state ��E1��, which is
electric-dipole coupled to an upper state ��E0��, that is in turn
linked by a strong optical pulse to a third level ��E2��. The

absorption line shapes are plotted as a function of the detun-
ing from the E1−E0 resonance at three different times in the
history of the Gaussian pulse linking �E0� to �E2�, with t=0
being the pulse maximum. The �E0� and �E2� states are
coupled nonradiatively to some continuum channels repre-
senting the P space.

We first analyze the situation for unstructured continua.
Figure 3 shows the situation when only the �E0� level �the
one with the dipole-allowed transition to the ground state� is
broadened ��0=0.05�. We assume no detuning ��2=0� of the
center of the strong pulse connecting the �E0�↔ �E2� states. A
perfect EIT dip is seen to arise. In contrast, Fig. 4 shows the
zero-detuning ��2=0� situation when both levels ��E0� and
�E2�� are broadened ��0=0.05, �2=0.01�. In this case, as
clearly shown in Eqs. �65� and �66�, the line shape does not
dip to zero. Figure 5 pertains to the case when both levels
��E0� and �E2�� are broadened ��0=0.05, �2=0.01� in the
presence of detuning ��2=0.005�. Here, the EIT does not dip
to zero and the whole line shape is asymmetrically biased to
the blue by an amount that depends on the intensity of the
�E0�↔ �E2� guiding field.

FIG. 3. The formation of the EIT “hole” for unstructured con-
tinuum. �0=0.05, �2=0, and �2=0. Shown is the absorption line
shape �P�E��, i.e., the absorption probability per unit energy, at
three different times in the history of the guiding pulse ��2�t��:
�x�—at the peak of the guiding pulse t=0, �� �� as the pulse begins
to wane, t=0.75, and �unmarked line�—at the tail of the pulse, t
=1.5. A simple Gaussian pulse of the form E2�t�=E0 exp�−t2� was
assumed.

FIG. 4. The same as in Fig. 3 for a broadened �E2� ��2=0.01�
with zero detuning ��2=0�.

FIG. 5. The same as in Fig. 3 for a broadened �E2� ��2=0.01�
with finite detuning ��2=0.005�.

FIG. 6. EIT for slightly structured continuum ��0=�2=0.5� with
no detuning ��2=0�. The other parameters are as in Fig. 4.

ELECTROMAGNETICALLY INDUCED TRANSPARENCY WITH… PHYSICAL REVIEW A 75, 013424 �2007�

013424-7



We now turn our attention to the structured continua case.
Figure 6 displays the absorption of two AT split levels for
slightly structured continuum ��0=�2=0.5� with no detuning
��2=0�. A slightly asymmetric line shape biased to the red is
seen to arise. We next sharpen the continuum structure by
letting �0=�2=0.05, while applying the �E0�↔ �E2� linking
field on resonance ��2=0�. As shown in Fig. 7, the line
shapes are now highly asymmetric. This asymmetry is due,
as shown in Fig. 2, to the asymmetry in the shift functions,
�0,2�E�.

Finally, in Fig. 8 we show EIT for a highly structured
continuum ��0=�2=0.05� with detuning ��2=0.005�. As al-
ready shown in Fig. 5, the detuning introduces a bias to the
blue, which counters the bias to the red introduced by the
continuum structures. As a result, in comparison with Fig. 7,
the line-shape asymmetry is somewhat reduced.

V. CONCLUSIONS

We have presented a comprehensive theory of EIT in
which both the structure and multiplicity of �coupled� con-
tinua are taken into account. The present treatment empha-
sizes the fact that EIT is a manifestation of interferences in
the continuum. As such, it is a property of the way the full
continuum eigenfunctions are convoluted with the matter-
radiation Hamiltonian and the initial bound states. The exact
nature of this convolution depends on the type of spectros-
copy used to probe the continuum; whether it is linear, or
nonlinear, but the EIT line shapes, and especially the EIT
dips, are properties of the continuum. They do not exist in
purely bound state systems.
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