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We study spontaneous radiative decay of translational levels of an atom in the vicinity of a semi-infinite
dielectric. We systematically derive the microscopic dynamical equations for the spontaneous decay process.
We calculate analytically and numerically the radiative linewidths and the spontaneous transition rates for the
translational levels. The roles of the interference between the emitted and reflected fields and of the transmis-
sion into the evanescent modes are clearly identified. Our numerical calculations for the silica-cesium interac-
tion show that the radiative linewidths of the bound excited levels with large enough but not too large
vibrational quantum numbers are moderately enhanced by the emission into the evanescent modes and those
for the deep bound levels are substantially reduced by the surface-induced redshift of the transition frequency.
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I. INTRODUCTION

Due to recent progress in atom optics and nanotechnol-
ogy, the study of individual neutral atoms in the vicinities of
material surfaces has gained renewed interest �1–5�. A
method for microscopic trapping and guiding individual at-
oms along a nanofiber has been proposed �1�. An optical
technique for loading atoms into quantum adsorption states
of a dielectric surface has been suggested �2,3�. An effective
transfer of optical energy to kinetic energy has been demon-
strated �6�. The possibility to control and manipulate indi-
vidual atoms near surfaces can find applications for quantum
information �7–9� and atom chips �10,11�. Cold atoms can be
used as a probe that is very sensitive to surface-induced per-
turbations �12�. Many applications require a deep under-
standing and an effective control of spontaneous emission.
However, a systematic microscopic theory for spontaneous
radiative decay of an atom moving in a confining potential is
still missing.

It is well known that the spontaneous emission rate of an
atom is modified by the presence of an interface �13–20�.
Such a phenomenon has been demonstrated experimentally
�13�. A semiclassical approach to the problem of surface-
modified radiative properties has been presented �14�. A
quantum-mechanical linear-response formalism has been de-
veloped for an atom close to an arbitrary interface �15–17�.
An alternative approach based on the mode expansion has
been used for an atom near a perfect conductor �18� or a
dielectric �19�. A quantum treatment for the internal dynam-
ics of a multilevel atom near a multilayered dielectric me-
dium has been performed �20�. In previous treatments
�14–20�, the effect of the center-of-mass motion of the atom
on the spontaneous emission process was neglected. In this
condition, the effects of the surface on the spontaneous ra-
diative decay of the atom manifest simply as a quantum elec-
trodynamic enhancement due to the mode modification and a
frequency shift due to the surface-atom van der Waals inter-
action, with no change in the level structure �16,17�.

Lately translational levels of an atom in a surface-induced
potential have been studied �2,3�. An experimental observa-
tion of the excitation spectrum of cesium atoms in quantum
adsorption states of a nanofiber surface has been reported
�21�. In the theoretical treatments of Refs. �2,3�, the quantum
electrodynamic enhancement of spontaneous emission due to
the mode modification was completely neglected and a set of
equations with phenomenologically added decay terms was
used for describing the dynamics of the loading process. A
more rigorous theory requires a deeper knowledge of the
structure of the decay equations and the magnitudes of the
decay coefficients for the translational levels of the atom.

In this paper, we study spontaneous radiative decay of
translational levels of an atom in the vicinity of a semi-
infinite dielectric. Our study is general in the sense that it
incorporates the quantum nature of the radiation field in the
presence of the dielectric as well as the quantum center-of-
mass motion of the atom. We systematically derive the mi-
croscopic dynamical equations for the spontaneous decay
process, which reflect the complexity of the translational lev-
els of the atom in the potential. We focus our attention on the
radiative linewidths and the spontaneous transition rates. Our
results obtained by the quantum mode-expansion approach
allow us to identify the roles of the interference between the
emitted and reflected fields and of the transmission into the
evanescent modes. Our formalism and analytical results are,
in principle, applicable to any confining potential for the
center-of-mass motion. As an example, we pick a particular
model for the surface-atom potential and present numerical
results pertaining to the radiative decay rates.

The paper is organized as follows. In Sec. II we describe
the model. In Sec. III we derive the basic dynamical equa-
tions for the spontaneous radiative decay process. In Sec. IV
we study analytically the decay rates. In Sec. V we present
the results of numerical calculations. Our conclusions are
given in Sec. VI.

II. MODEL

We consider a space with one interface. The half-space
x�0 is occupied by a nondispersive nonabsorbing dielectric
medium �medium 1�. The half-space x�0 is occupied by
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vacuum �medium 2�. We examine an atom, with an upper
internal level e and a lower internal level g, moving in the
empty half-space x�0. The energies of the internal levels e
and g are denoted by ��e and ��g, respectively.

A. Quantum translational states of the atom

We consider the quantum center-of-mass motion of the
atom in a confining potential induced by the surface-atom
interaction. Despite a large volume of research on the
surface-atom interaction, due to the complexity of surface
physics and the lack of data, the actual form of the potential
is yet to be ascertained �22�. For the purpose of numerical
demonstration of our formalism, we choose the following
model for the potential �2,22�:

Vj�x� = Aje
−�jx −

C3j

x3 . �1�

Here, j=e or g labels the internal state of the atom, C3j is the
van der Waals coefficient, and Aj and � j determine the height
and range, respectively, of the short-range repulsion. Note
that the potential �1� depends on the internal state j of the
atom �see Fig. 1�.

The potential parameters C3j, Aj, and � j depend on the
dielectric and the atom. In numerical calculations, we use the
parameters of fused silica, for the dielectric, and the param-
eters of atomic cesium with the D2 line, for the two-level
atomic model. The refractive index of fused silica is n1
=1.45, the mass of atomic cesium is m=132.9 a.u., and the
free-space wavelength of the cesium D2 line is �0=852 nm.
In Appendix A, the parameters of the ground- and excited-
state potentials for the silica-cesium interaction are estimated
to be C3g=1.56 kHz �m3, C3e=3.09 kHz �m3, Ag=1.6
	1018 Hz, Ae=3.17	1018 Hz, and �g=�e=53 nm−1. The
potential depths are Dg=159.6 THz and De=316 THz. The
minimum positions for both potentials are assumed to be the
same, equal to xm=0.19 nm.

The ground-state van der Waals coefficient C3g
=1.56 kHz �m3 was extrapolated from the result of Ref. �23�

for the interaction between a ground-state cesium atom and a
perfect metal surface. The excited-state van der Waals coef-
ficient C3e=3.09 kHz �m3 was obtained as a result of the
assumption C3e /C3g=1.98 for cesium. This ratio was in-
ferred from the results of Ref. �24� �see also �25��, where the
core contributions were neglected. The huge repulsive am-
plitude Ag=1.6	1018 Hz and the large decay coefficient
�g=53 nm−1 were chosen because, when combined with the
van der Waals coefficient C3g=1.56 kHz �m3, they lead to a
ground-state potential Vg with depth equal to the experimen-
tal value Dg=0.66 eV=159.6 THz �26�. Because of the lack
of data for the excited-state potential parameters, we have
assumed that Ae /Ag=De /Dg=Ce /Cg and �e=�g. Due to this
assumption, the potentials for the excited and ground states
look homothetic.

We emphasize that, due to the interplay between the re-
pulsive part and the van der Waals part, the distance at which
the combined potential Vg goes down to the minimum is
xm=0.19 nm, which is one order of magnitude different from
the value �g

−1=0.019 nm. We note that, although the depth
De=316 THz of the excited-state potential is huge, it is still
smaller than the energy separation �eg�352 THz between
the excited and ground internal states, thus avoiding the level
crossing problem. For higher electronic levels, since the
surface-atom interaction quickly increases with increasing
atomic excitation �24,27�, level crossing may occur at small
atom-surface distances. In this regime, the atomic model
with two internal levels breaks down and, consequently, a
multilevel description is required. Such an issue is beyond
the scope of our present paper.

It is pertinent to make a few comments regarding the ap-
plicability of Eq. �1� as a suitable model for the surface-atom
interaction. There is a lot of controversy regarding the shape
of the potential. For example, the review by Hoinkes �22�
mentioned eight different potential shapes for the surface-
atom interaction, including the one given by Eq. �1�. Even
very recently, a simple potential like the Morse potential has
been used to explain many of the physical aspects �3�. The
parameters of a given form of the potential can be obtained
by fitting the calculated and experimental values of observ-
able quantities such as the intensities of diffracted atomic
beams, the depth and range of the potential, and the energy
levels. The focus of the debate is the shape and the range of
the repulsive potential since very little experimental and the-
oretical data are available at small distances.

The theoretical justification of the potential �1� was the
asymptotic behavior of an atom very near to or away from
the surface �2,22�. This particular form is a superposition of
the two dependences: the short-range repulsive potential and
the long-range attractive van der Waals potential. It is clear
that, when the atom is very close to the surface, the discrete
structure of the solid cannot be neglected. Due to the broken
translational symmetry at the surface, the external fields can
couple to the surface excitations with different wave vectors.
Therefore, the surface-atom interaction becomes nonlocal at
short distances. The nonlocal response may lead to spatial
dispersion which in principle should be accounted for in es-
timating the fields reflected from or transmitted through the
surface and, consequently, in calculating the van der Waals
interaction �28�. In addition, the van der Waals coefficient C3
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FIG. 1. Surface-induced potentials for ground- and excited-state
atoms. The parameters are C3g=1.56 kHz �m3, C3e

=3.09 kHz �m3, Ag=1.6	1018 Hz, Ae=3.17	1018 Hz, and �g

=�e=53 nm−1. They are taken for the case of a D2-line cesium
atom in the vicinity of a semi-infinite silica medium.
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varies with the distance of the atom from the surface because
of the distance-dependent influence of the electronic core
transitions �29�. However, we neglect such effects.

Keeping the aforesaid in view, we ignore all the details of
the surface assuming the translational invariance to be valid.
Moreover, we model the surface-atom interaction by Eq. �1�
since we are not aware of any better approximation for the
same interaction. Another important issue is the sensitivity of
the results to the parameters of the repulsive potential. Cal-
culations in this direction carried out by Lima et al. �2� show
the robustness of the results against variations of the repul-
sive potential parameters. According to their calculations, a
change by a factor of 104 in A or by a factor of 5 in �
practically does not affect the vibrational levels that are close
to the dissociation limit. Such shallow levels are mainly de-
termined by the van der Waals part of the potential.

The Hamiltonian of the atom in the surface-induced po-
tential is given by

HA =
p2

2m
+ �

j=e,g
��� j + Vj�x���j�	j� . �2�

Here, p and m are the momentum and mass of the atom,
respectively, and � j is the frequency of the internal level j.
We introduce the notation �
a� and �
b� for the eigenstates of
the center-of-mass motion of the atom in the potentials Ve�x�
and Vg�x�, respectively. The wave functions 
a�x� and 
b�x�
are determined by the stationary Schrödinger equations


−
�2

2m

d2

dx2 + Ve�x��
a�x� = Ea
a�x� ,


−
�2

2m

d2

dx2 + Vg�x��
b�x� = Eb
b�x� , �3�

respectively. The eigenvalues Ea and Eb characterize the en-
ergies of the translational levels of the excited and ground
states, respectively. Without loss of generality, we assume
that the center-of-mass eigenfunctions 
a and 
b are real
functions.

We introduce the combined eigenstates �a�= �e� � �
a� and
�b�= �g� � �
b�, which are formed from the internal and trans-
lational eigenstates. The corresponding energies are ��a
=��e+Ea and ��b=��g+Eb. Then, we can represent the
Hamiltonian �2� in the diagonal form HA=�a��a�a�	a�
+�b��b�b�	b�. We emphasize that the summations over a
and b include both the discrete �Ea,b�0� and continuous
�Ea,b�0� spectra. The levels a with Ea�0 and the levels b
with Eb�0 are called the bound �or vibrational� levels of the
excited and ground states, respectively. In such a state, the
atom is bound to the surface. It is vibrating or, more exactly,
moving back and forth between the walls formed by the van
der Waals potential and the repulsion potential. The levels a
with Ea�0 and the levels b with Eb�0 are called the free �or
continuum� levels of the excited and ground states, respec-
tively. The center-of-mass wave functions of the bound lev-
els are normalized to unity. The center-of-mass wave func-
tions of the free levels are normalized per unit energy. For
bound states, the center-of-mass wave functions 
a and 
b

can be labeled by the quantum numbers �a and �b, respec-
tively. For free levels, the conventional sums over a and b
must be replaced by the integrals over Ea and Eb, respec-
tively.

The center-of-mass wave functions with energies in the
range from −1 GHz to −5 MHz are plotted in Fig. 2. The
center-of-mass eigenvalues in the range from −1 GHz to
−20 kHz are displayed in Fig. 3. Note that the energy levels
in the above range are very high compared to the depths
De=316 THz and Dg=159.6 THz of the potentials Ve and
Vg, respectively. Therefore, the corresponding wave func-
tions are mainly determined by the long-range van der Waals
interaction �2�. We find that the maximum quantum numbers
for the excited- and ground-state potentials are 437 and 311,
respectively. When the vibrational quantum number � is
small—that is, when the translational energy level E� is
deep—the wave function 
� depends strongly on the short-
range repulsion �see Fig. 4�. For such bound states, the
center-of-mass wave functions are well confined to the prox-
imity of the surface and the surface-induced frequency shifts
of the atomic transitions are substantial compared to the op-
tical frequency �0=�e−�g�352 THz of the cesium D2 line
�see Figs. 4 and 5�.
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FIG. 2. Energies and wave functions of the center-of-mass mo-
tion of the ground- and excited-state atoms in the surface-induced
potentials. The parameters of the potentials are as in Fig. 1. The
mass of atomic cesium, m=132.9 a.u., is used. We plot only the
bound levels of the ground and excited states with energies in the
range from −1 GHz to −5 MHz and the free ground-state level
with energy of about 4.25 MHz.
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In the remaining part of this paper, we study the radiative
properties of the translational levels. Before we proceed, we
note that one of the main mechanisms of the relaxation to
deeper translational levels of the surface-atom potential is the
interaction with the surface phonons of the solid �30,31�. We
also note that, due to surface-polariton modes �17,32,33�,
some energy transfer between different internal states may
occur for very small atom-surface distances. We do not con-
sider such nonradiative decay mechanisms in this paper.

B. Quantum radiation field and
its interaction with the atom

We use the formalism of Ref. �34� to describe the quan-
tum radiation field in the space with one interface. We label
the modes of the field by the index �= ��Kqj�, where � is
the mode frequency, K= �0,ky ,kz� is the wave-vector compo-
nent in the surface plane, q=s , p is the mode polarization,
and j=1,2 stands for the medium of the input. For each
mode �= ��Kqj�, the condition K�knj must be satisfied.
Here, k=� /c is the wave number in free space, n1�1 is the
refractive index of the dielectric, and n2=1 is the refractive
index of the vacuum. We neglect the dependence of the di-
electric refractive index n1 on the frequency and the wave
number, like the previous works �14–20�. The neglect of
spatial dispersion means the use of a local picture for the
dielectric response. This local picture is not consistent with
the nonlocal nature of the repulsive part of the potential.
However, we expect that this inconsistency does not affect
much the underlying physics of atomic translational levels,
especially those levels which are close to the dissociation
limit.

The mode functions are given, for x�0, by �34�

U�Ks1�x� = �ei1x + e−i1xr12
s �ŝ ,

U�Kp1�x� = ei1xp̂1+ + e−i1xr12
p p̂1−,

U�Ks2�x� = e−i1xt21
s ŝ ,

U�Kp2�x� = e−i1xt21
p p̂1−, �4�

and, for x�0, by

U�Ks1�x� = ei2xt12
s ŝ ,

U�Kp1�x� = ei2xt12
p p̂2+,

U�Ks2�x� = �e−i2x + ei2xr21
s �ŝ ,
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FIG. 3. Eigenvalues for the bound levels of the ground and
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The parameters used are as for Fig. 2.
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U�Kp2�x� = e−i2xp̂2− + ei2xr21
p p̂2+. �5�

In Eqs. �4� and �5�, the quantity  j = �k2nj
2−K2�1/2, with

Re  j �0 and Im  j �0, is the magnitude of the x component
of the wave vector in the medium j. The quantities rij

s = �i

− j� / �i+ j� and tij
s =2i / �i+ j� are the reflection and

transmission Fresnel coefficients for a TE mode, while
the quantities rij

p = �inj
2− jni

2� / �inj
2+ jni

2� and tij
p

=2ninji / �inj
2+ jni

2� are the reflection and transmission

Fresnel coefficients for a TM mode. The vector ŝ= �K̂	 x̂� is
the unit vector for the electric field in a TE mode, while the

vectors p̂ j�±= �Kx̂� j�K̂� /knj� are the unit vectors for the
rightward- and leftward-propagating components of the elec-
tric field in a TM mode in the medium j�.

Note that a light beam propagating from the dielectric to
the interface may be totally reflected because n1�n2=1.
This phenomenon occurs for the modes �= ��Kqj� with j
=1 and k�K�kn1. For such a mode, the magnitude of the x
component of the wave vector in medium 2 is 2= i�K2−k2,
an imaginary number. This mode does not propagate in the x
direction in the vacuum side of the interface but decays ex-
ponentially. Such a mode is an evanescent mode.

The total quantized electric field is given by �34�

E�r� = i�
�

k

4�
� �

��0 j
eiK·RU��x�a�e−i�t + H.c., �6�

where a� is the photon operator for the mode � and ��

=�qj0
�d�0

knjKdK0
2�d� is the generalized summation over

the modes. Here, � is the azimuthal angle of the vector K in
the yz plane. The commutation rule for the photon operators
is �a� ,a��

† �=���−�����K−K���qq�� j j�. When dispersion
in the region around the frequencies of interest is
negligible, the mode functions U� satisfy the relation
−�

� dx n2�x�U�Kqj
* �x�U��Kq�j��x� = 2�c2� j /��� ��−����qq�

	� j j�. Here, n�x�=n1 for x�0 and n�x�=n2 for x�0.
Hence, we can show that the energy of the field
is �0dr n2�x��E�r��2=���a�

† a�+a�a�
† � /2. Here, dr

=−�
� dx−�

� dy−�
� dz is the integral over the whole space.

We now present the Hamiltonian for the atom-field inter-
action. In the dipole and rotating-wave approximations and
in the interaction picture, the atom-field interaction Hamil-
tonian is

Hint = − i��
�ab

G�ab�aba�e−i��−�ab�t + H.c. �7�

Here, �ab= �a�	b� describes the atomic transition from the
level b to the level a, �ab=�a−�b is the angular frequency
of the transition, and

G�ab =
k

4����0� j

eiK·R	
a�U� · deg�
b� �8�

is the coupling coefficient. In expression �8�, deg is the dipole
moment of the atom and R= �y ,z� is the projection of the
position vector r= �x ,y ,z� of the atom onto the interface
plane.

III. BASIC EQUATIONS FOR SPONTANEOUS RADIATIVE
DECAY OF THE ATOM

We use the mode expansion approach and the Weisskopf-
Wigner formalism �35� to derive the microscopic dynamical
equations for spontaneous radiative decay of the atom in the
surfaced-induced potential. For convenience, we introduce
the notation ����= ���	��� and ����=��−��� for the transition
operator and the transition frequency, respectively, of an ar-
bitrary pair of levels � and ��. We first study the time evo-
lution of an arbitrary atomic operator O. The Heisenberg
equation for this operator is

Ȯ = �
�ab

�G�ab��ab,O�a�e−i��−�ab�t

+ G�ab
* a�

† �O,�ba�ei��−�ab�t� . �9�

Meanwhile, the Heisenberg equation for the photon operator
a� is ȧ�=�abG�ab

* �baei��−�ab�t. Integrating this equation, we
find

a��t� = a��t0� + �
ab

G�ab
* �

t0

t

dt��ba�t��ei��−�ab�t�. �10�

We consider the situation where the field is initially in the
vacuum state. We assume that the evolution time t− t0 and
the characteristic atomic lifetime � are large as compared to
the characteristic optical period T. Under these conditions,
since the continuum of the field modes is broadband, the
Markov approximation �ba�t��=�ba�t� can be applied to de-
scribe the back action of the second term in Eq. �10� on the
atom �35�. Under the condition t− t0�T, we calculate the
integral with respect to t� in the limit t− t0→�. We set aside
the imaginary part of the integral, which describes the fre-
quency shift. Such a shift is usually small. We can effectively
account for it by incorporating it into the atomic frequency
and the surface-atom potential. With the above approxima-
tions, we obtain

a��t� = a��t0� + ��
ab

G�ab
* �ba�t���� − �ab� . �11�

Inserting Eq. �11� into Eq. �9� yields the Heisenberg-
Langevin equation

Ȯ =
1

2 �
aa�bb�

��aa�bb���a�b�,O��bae−i��ab−�a�b��t

+ �aa�bb�
*

�ab�O,�b�a��e
i��ab−�a�b��t� + �O. �12�

Here,

�aa�bb� = 2��
�

G�ab
* G�a�b���� − �ab� �13�

are the decay coefficients and �O is the noise operator. We
emphasize that Eq. �12� can be applied to any atomic opera-
tors.

We now examine the time evolution of the reduced den-
sity operator � of the atomic system. We multiply Eq. �12� by
��0�, take the trace of the result, use the relation
Tr�O�t���0��=Tr�O�0���t��, transform to arrange the opera-
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tor O�0� at the first position in each operator product, and
eliminate O�0�. Then, we obtain the Liouville equation

�̇ =
1

2 �
aa�bb�

��aa�bb���ba��a�b� − �bb��a�a��e−i��ab−�a�b��t

+ �aa�bb�
* ��b�a���ab − �bb���aa��e

i��ab−�a�b��t� . �14�

For the matrix elements ����= 	�������, the above equations
yields

�̇aa� = −
1

2�
a�

��a�aei�aa�t�a�a� + �a�a�
* ei�a�a�t�aa�� ,

�̇ab = −
1

2�
a�

�a�aei�aa�t�a�b,

�̇bb� =
1

2�
aa�

��aa�bb� + �a�ab�b
* �ei��bb�−�aa��t�aa�, �15�

where �aa�=�b�aa�bb=2���bG�ab
* G�a�b���−�ab�. Equa-

tions �15� show that the spontaneous decay rate for a transi-
tion a→b is given by �ab=�aabb=2����G�ab�2���−�ab�.
Meanwhile, the total decay rate for an excited level a is �a
=�aa=2���b�G�ab�2���−�ab�. It is obvious that �a=�b�ab.

Equations �15� correspond to the incoherent radiative de-
cay part of the master equation for an atom interacting with
external fields in the proximity of a surface. A set of more
general equations is presented in Appendix B for the case
where the atom is driven by classical coherent plane-wave
fields. We note that the terms in Eqs. �15� are different from
and much more complicated than the conventional phenom-
enological decay terms �36�. The unusual structure of Eqs.
�15� results from the complexity of the translational levels of
the atom in the surface-induced potential. Similar structures
are also observed in the case of a multilevel alkali-metal
atom �4,37�.

It is worth noting that the inclusion of the imaginary part
of the integral in Eq. �10� would lead to the dependence of
the surface-atom potential on the transition between transla-
tional levels. The study of such frequency shifts is beyond
the scope of the present paper.

We emphasize that the results of this section do not de-
pend on the specific form of the confining potential. There-
fore, these results can, in principle, be extended to describe
the radiative decay of vibrational levels of a molecule.

IV. SPONTANEOUS RADIATIVE DECAY RATES

In the half-space x�0, where the atom is restricted to, the
mode functions of the radiation field are described by expres-
sions �5�. We insert these expressions into Eq. �8� and then
the result into Eq. �13�. We perform the summation with
respect to the mode index �. Then, in the case where the
dipole moment deg is perpendicular to the interface, we ob-
tain

�aa�bb�
� =

3

2
� f��ab���

0

1

Re��1 − �2�Fab��kab�Fa�b�
* ��kab�

+ r����Fab��kab�Fa�b���kab��d�

+ �
0

�n1
2−1

T����Iab��kab�Ia�b���kab�d�� , �16�

and, in the case where the dipole moment deg is parallel to
the interface, we find

�aa�bb�
�

=
3

4
� f��ab���

0

1

Re��1 + �2�Fab��kab�Fa�b�
* ��kab�

+ r����Fab��kab�Fa�b���kab��d�

+ �
0

�n1
2−1

T����Iab��kab�Ia�b���kab�d�� . �17�

Here we have introduced the notation

r���� = �1 − �2�
n1

2� − �n1
2 − 1 + �2

n1
2� + �n1

2 − 1 + �2
,

r���� =
� − �n1

2 − 1 + �2

� + �n1
2 − 1 + �2

− �2n1
2� − �n1

2 − 1 + �2

n1
2� + �n1

2 − 1 + �2
�18�

and

T���� =
2n1

2

n1
2 − 1

�n1
2 − 1 − �2

�n1
2 + 1��2 + 1

��1 + �2� ,

T���� =
2

n1
2 − 1

�1 +
n1

2�2

�n1
2 + 1��2 + 1

���n1
2 − 1 − �2. �19�

The quantity

� f��� =
deg

2 �3

3��0�c3 �20�

is the natural linewidth of a two-level atom with the transi-
tion frequency � and the dipole moment deg. The matrix
elements

Fab�� = 	
a�eix�
b� ,

Iab�� = 	
a�e−x�
b� �21�

for the transitions between the translational eigenstates �
a�
and �
b� have been introduced. In deriving Eqs. �16� and �17�
we have changed the integration variable K to �=��1−�2�.
Here the parameter �=K /kab with kab=�ab /c has been intro-
duced.

The functions r� and r� are related to the reflection coef-
ficients r21

s = ��−�� / ��+�� and r21
p = �n1

2�−�� / �n1
2�+�� as

given by r�=�2r21
p and r� =r21

s −�2r21
p . Here, �=�1−�2 and

�=�n1
2−1+�2. Hence, the terms that contain r� and r� in

Eqs. �16� and �17� are the results of the interference between
the emitted and reflected fields. Meanwhile, the functions T�

and T� are related to the transmission coefficients t12
s
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=2� / ��+ i�� and t12
p =2n1� / ��+ in1

2�� of the evanescent
modes as given by T�= �� /2���2�t12

p �2 and T� = �� /2����t12
s �2

+�2�t12
p �2�. Here, �=�1+�2 and �=�n1

2−1−�2. Hence, the
terms that contain T� and T� in Eqs. �16� and �17� are the
results of emission into the evanescent modes.

According to Eqs. �21�, the factors Fab�� and Iab�� are
determined by the overlap and interference between the
translational wave functions 
a and 
b. Such an overlap and
interference can be physically interpreted as the overlap and
interference between the de Broglie waves of the atom. The
factors �Fab�0��2 and �Iab�0��2, with the argument =0, are
equal to each other and coincide with the Franck-Condon
factors �	
a �
b��2. The exponential factors eix and e−x in
Eqs. �21� take into account the momentum of the photon
emitted or absorbed by the atom �see Appendix B�. The fac-
tor eix corresponds to the case where the mode is a propa-
gating mode, and the factor e−x corresponds to the case
where the mode is an evanescent mode. Thus, Fab�� char-
acterizes the strength of the translational transition with the
participation of a propagating-mode photon, and Iab�� cor-
responds to the case of an evanescent-mode photon.

We assume that the orientation of the atomic dipole mo-
ment is completely random. In this case, the averaged decay
parameters are given by �aa�bb�= ��aa�bb�

� +2�aa�bb�
� � /3. Using

Eqs. �16� and �17�, we find

�aa�bb� = � f��ab���
0

1

Re�Fab��kab�Fa�b�
* ��kab�

+
r���� + r����

2
Fab��kab�Fa�b���kab��d�

+ �
0

�n1
2−1 T���� + T����

2
Iab��kab�Ia�b���kab�d�� .

�22�

We note that all the decay coefficients are real quantities.
When we set a�=a and b�=b in Eq. �22�, we obtain the

following expression for the spontaneous transition rate:

�ab = � f��ab���
0

1 ��Fab��kab��2

+
r���� + r����

2
Re�Fab

2 ��kab���d�

+ �
0

�n1
2−1 T���� + T����

2
Iab

2 ��kab�d�� . �23�

Equation �23� shows that the effects of the dielectric on the
spontaneous transition rate �ab appear through �a� the shift of
the transition frequency �ab, �b� the overlap and interference
between the center-of-mass wave functions, �c� the interfer-
ence between the emitted and reflected fields, and �d� the
transmission into the evanescent modes.

The cross decay coefficient �aa�=�b�aa�bb is the sum of
�aa�bb over the ground-state levels b. The summation can be
simplified if, for each fixed index a, the overlapping factors
Fab and Iab are substantial only in a small region of b. In this

case, the transition frequency �ab in expression �22� can be
replaced by an effective frequency �ab̄ that does not depend
on b. We use this approximation, set b�=b, and sum up the
result with respect to b. Then, with the help of the relation
�b�
b�	
b�=1, we obtain

�aa� = 	
a��x��ab̄��
a�� . �24�

Here,

�x��� = � f����1 + �
0

1 r���� + r����
2

cos�2�kx�d�

+ �
0

�n1
2−1 T���� + T����

2
e−2�kxd�� �25�

is the spontaneous emission rate of a two-level atom with
frequency �, being at rest in the vicinity of the dielectric
�16,17�. In order to find the linewidth �a, we set a=a� in Eq.
�24�. Then, we obtain

�a = 	
a��x��ab̄��
a� . �26�

The above equation means that the radiative linewidth �a can
be approximately considered as the average of the atom-at-
rest decay rate �x��ab̄� with respect to the center-of-mass
wave function 
a�x�.

We note that, in the case where the refractive index n1 of
the dielectric is not large, the reflection of light from the
interface and the emission of light into the evanescent modes
are not strong. In this case, �x��� with a fixed argument � is
a slowly varying function of x. Hence, for a�a�, since �a�
and �a�� are orthogonal to each other, the quantity �aa� is
usually small compared to �a and �a�.

We emphasize that the first integral in Eq. �25� results
from the interference between the emitted and reflected
fields. The second integral in Eq. �25� results from the emis-
sion into the evanescent modes. We note that expression �25�
for �x is in full agreement with the results of the linear-
response formalism �16,17�. However, the results of Refs.
�16,17� are written in a different form that is difficult to
identify the origins and physical meanings of the contribu-
tions.

If we neglect reflection from the interface and emission
into the evanescent modes and limit ourselves to considering
only levels with negligible surfaced-induced frequency
shifts, then Eq. �22� reduces to

�aa�bb� = �0faa�bb�, �27�

where �0=� f��0�, �0=�e−�g, and

faa�bb� =
1

2
�

−1

1

d�	
a�ei�k0x�
b�	
b��e
−i�k0x�
a��

= �
−�

� �
−�

�

dxdx�
sin k0�x − x��

k0�x − x��

	
a�x�
b�x�
a��x��
b��x�� . �28�

Setting b�=b in expressions �27� and �28� and summing up
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the resultant expressions over b, we find �aa�=�0	a �a��
=�0�aa�.

V. NUMERICAL RESULTS

In what follows, we present the results of our numerical
calculations for the spontaneous radiative decay characteris-
tics of the atom. As stated in Sec. II, we use the parameters
of fused silica, for the dielectric, and the parameters of
atomic cesium with the D2 line, for the atom. The parameters
are given in Sec. II.

We first consider the case where the atom is at rest
�14,16,17�. We plot in Fig. 6 the normalized decay rate
�x��� /� f��� as a function of the normalized surface-atom
distance kx. The figure shows that �x��� /� f��� varies slowly
with kx. We observe not only enhancement, �x /� f �1, but
also inhibition, �x /� f �1, of spontaneous emission, depend-
ing on the position of the atom. As pointed in Refs.
�14,16,17�, such changes are quantum electrodynamic effects
resulting from modifications of the field modes in the pres-
ence of the dielectric. The maximum value of �x��� /� f��� is
about 1.6, achieved at kx=0. Such a quantum enhancement is
moderate. It is not dramatic. The reason is that the refractive
index of silica, n1=1.45, is not large. We observe small os-
cillations in �x��� /� f��� as kx increases. Such oscillations
are due to the interference between the emitted and reflected
fields.

The deviation of �x��� /� f��� from unity is caused by the
interference between the emitted and reflected fields and by
the emission into the evanescent modes, which are expressed
by the first and second integrals in Eq. �25�, respectively. We
calculate these integrals separately and plot the results in Fig.
7. The solid curve of the figure shows that, for kx�8, the
first integral is negative. Thus, in the close vicinity of the
interface, the interference between the emitted and reflected
fields is destructive and hence tends to reduce the spontane-
ous decay rate. The solid curve of the figure also shows that,
in the region of large kx, the first integral can become
positive—that is, the interference can be constructive—

depending on the position of the atom. Meanwhile, the
dashed curve of the figure shows that the second integral in
Eq. �25� is always positive. Thus, the emission into the eva-
nescent modes always enhances the spontaneous decay rate.
Such an enhancement is due to the existence and confine-
ment of the evanescent modes.

Due to the surface-atom potentials Ve and Vg, the transi-
tion frequency of the atom varies in space as given by �
=�x=�0+ �Ve�x�−Vg�x�� /�. Consequently, when we take
into account the frequency shift, the decay rate of the atom is
�x��x�. The spatial dependence of �x��x� is determined not
only by the change in the mode structure but also by the
change in the atomic transition frequency �x. We plot the
spatial dependence of �x��x� in Fig. 8. The figure and the
inset show that, when x decreases from 1 nm to 0.2 nm, the
decay rate drops quickly from its peak value. The reason is
that, in this region of space, the surface-induced frequency
shift of the transition is negative �redshift� and substantial.
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FIG. 6. Normalized decay rate �x��� /� f��� of a two-level atom
rested at a point in the vicinity of a semi-infinite dielectric medium
as a function of the normalized surface-atom distance kx. The re-
fractive index of the medium is n1=1.45.
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FIG. 7. Contributions of the first �solid line� and second �dashed
line� integrals in Eq. �25� to the normalized decay rate �x��� /� f���
of Fig. 6.
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FIG. 8. Normalized decay rate �x��x� /�0 of a two-level atom
with a space-dependent frequency, rested at a point in the vicinity of
a semi-infinite medium. The transition frequency �x is shifted from
the free-space transition frequency �0 by the surface-atom interac-
tion. The parameters of the potentials are as in Fig. 1. The refractive
index of the medium is n1=1.45. The wavelength of the transition
of the atom in free space is �0=852 nm.
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Such a shift of �x reduces the natural linewidth � f��x� �see
Eq. �20�� and hence reduces the decay rate �x��x� �see Eq.
�25��. The effects of the transition frequency shift and the
quantum enhancement on the decay are substantial in
the regions x� ��C3e−C3g� /��0�1/3=0.16 nm and x��0

=852 nm, respectively. The two scales are quite different
from each other: ��C3e−C3g� /��0�1/3��0. In the region x
�1 nm, the frequency shift of the transition is small and
hence the spatial dependence of the decay rate is mainly
determined by the mode structure of the field. Meanwhile, in
the region from 1 nm to 0.2 nm, the effect of the frequency
shift is dominant. We note that, in the region x�0.2 nm,
which is not shown in the figure, the transition frequency
shift may become positive, leading to an enhancement of the
decay rate �x��x�. In this region, the potential slope is steep,
the force is large, and consequently consideration of the
center-of-mass motion of the atom must be included. Due to
the lack of quantitative information about the silica-cesium
repulsive potential and due to the need to include the center-
of-mass motion of the atom, we do not plot the decay rate
�x��x� in the region x�0.2 nm. The cutoff value of 0.2 nm
is chosen because it is close to the position xm=0.19 nm of
the minima of the potentials Ve and Vg.

In the close vicinity of the surface, the atom cannot be at
rest because of the force resulting from the gradient of the
surface-induced potential. In this region, we must take into
account the center-of-mass motion of the atom. To do this in
a fully quantum treatment, we must consider the sets of com-
bined states ��a�� and ��b�� instead of the internal states �e�
and �g�. We plot in Fig. 9 the spontaneous transition rate �ab
for various pairs of shallow levels a and b, which have large
vibrational quantum numbers. The figure shows that each

upper level a can be substantially coupled to a number of
lower levels b in a finite interval of �b. The boundary values
of this interval tend to become larger when �a increases. In
general, �ab varies unevenly with increasing �a or �b. Such
features are due to the fact that the rate �ab substantially
depends on the factors Fab and Iab �see Eq. �23��, which
describe the overlap and interference between the de Broglie
waves of the atomic center-of-mass states 
a and 
b �see
Eqs. �21��. When the overlap is large and the interference is
constructive, the factors Fab and Iab are substantial. In this
case, the transition rate �ab is large. When the overlap is
small or the interference is destructive, the factors Fab and
Iab are small. In this case, the transition rate �ab is small. The
interval of �b that can be coupled to a given �a is determined
by the condition for the spatial overlap between the de Bro-
glie waves. The modulations in magnitude of �ab in this in-
terval are caused by the effect of the interference between the
de Broglie waves. Note that, in the case of shallow bound
levels, the transition frequency shift �ab−�0 is small com-
pared to the free-space optical frequency �0 �see Fig. 3�. In
this case, the effect of the frequency shift on the spontaneous
transition rate is negligible.

We use the approximate equation �26� to calculate the
linewidths �a of shallow bound excited-state levels a, with
large quantum numbers �a, in the range from 385 to 429, and
plot the results in Fig. 10. The figure shows that �a /�0 in-
creases slowly from 1 to 1.53 as �a reduces from 429 to 385.
The observed enhancement of �a is the average of the quan-
tum enhancement of the atom-at-rest decay rate �x��ab̄� with
respect to the center-of-mass wave function 
a�x� �see Eq.
�26��. When �a is large enough, the surface-induced transi-
tion frequency shift is small, i.e., �ab̄��0. In this case, the
magnitude of �a is mainly determined by the mode structure.
When �a is not too large, the center-of-mass wave function

a�x� is confined to a small spatial region close to the surface
and, hence, quantum enhancement of �a is observed. The
spatial spread of 
a�x� increases with increasing �a. This
explains why �a reduces with increasing �a in Fig. 10. When
�a is very large, the quantum enhancement is negligible and,
hence, we have �a��0.
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FIG. 9. Spontaneous transition rates �ab for levels with large
vibrational quantum numbers. The rates are normalized to the free-
space spontaneous decay rate �0. The parameters used are as in
Figs. 1, 2, and 8.
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FIG. 10. Radiative linewidths �a of bound excited-state levels
with large vibrational quantum numbers. The linewidths are nor-
malized to the free-space spontaneous decay rate �0. The param-
eters used are as in Figs. 1, 2, and 8.
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The spectra of translational levels of ground and excited
states include not only bound levels but also free levels. Both
types of levels can be coupled to each other. Since the center-
of-mass wave functions of free excited-state levels af and
free ground-state levels bf are normalized per unit energy,
the quantities �abf

, �afb
, and �afbf

are the densities of the
spontaneous decay rates for the transitions a→bf, af →b,
and af →bf, respectively. Knowledge of these quantities is
required for the study of the dynamical and spectroscopic
characteristics of moving atoms. In this connection, we plot
in Fig. 11 the normalized density �abf

/�0 for the rate of
spontaneous decay from a bound excited-state level a to a
free ground-state level bf as a function of the vibrational
quantum number �a. Figure 11 shows irregular modulations
in the dependence of �abf

on �a. Similar to the case of Fig. 9,

such modulations are caused by the effect of the interference
between the excited- and ground-state atomic de Broglie
waves. Due to the destructive interference, the factors Fabf
and Iabf

and, consequently, the transition rate density �abf
can

become almost negligible for some specific values of �a.
The effect of the surface-induced shifts of the transition

frequencies on the transition rates and linewidths becomes
substantial when the translational eigenfunctions of the atom
are close to the surface—that is, when the levels are deep.
We plot in Figs. 12 and 13 the spontaneous transition rates
�ab and the linewidths �a, respectively, for deep bound lev-
els, with small vibrational quantum numbers. Our additional
numerical calculations �not presented here� show that the
transitions from bound excited-state levels with small �a to
free ground-state levels are negligible. Due to this fact, the
sum of the values of the individual transition rates �ab pre-
sented in each fixed row of Fig. 12 almost coincides with the
corresponding value of the linewidth �a in Fig. 13. Figure 13
shows that, for small �a, the surface-modified linewidth �a is
smaller than the free-space linewidth �0, and �a reduces with
decreasing �a. Such a reduction of the radiative linewidth �a
is caused by the surface-induced redshifts of the significant-
component transition frequencies �ab�. Indeed, �ab� reduces
with decreasing �a and becomes substantially smaller than
�0 when the level a is deep enough. This decrease of �ab�
leads to a reduction of � f��ab�� �see Eq. �20�� through a
decrease of the mode density �35�. When such a reduction is
substantial enough, it may result in a reduction of �ab� �see
Eq. �23��. This in turn leads to a reduction of �a. We note that
the minimum value of the radiative linewidth �a is observed
for �a=0 and is about 0.28�0. This value is substantially
�about 3.6 times� smaller than the natural linewidth �0 of the
atom. We note that, when the atomic center-of-mass states
are close to the surface and the surface temperature is high,
the decay of the atom due to the interaction with the phonons
of the solid may become important �3�. However, the study
of the decay due to phonons is beyond the scope of this
paper.

VI. CONCLUSIONS

We have studied spontaneous radiative decay of transla-
tional levels of an atom in the vicinity of a semi-infinite
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radiative decay from a bound excited-state level a to a free ground-
state level bf as a function of the vibrational quantum number �a.
The parameters used are as in Figs. 1, 2, and 8.
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dielectric. We have systematically derived the microscopic
dynamical equations for the spontaneous decay process. Our
general formalism is applicable, in principle, to any confin-
ing potential. We have calculated analytically and numeri-
cally the spontaneous transition rates between the transla-
tional excited and ground states and the radiative linewidths
of the bound excited states. We have shown that the effects
of the dielectric on the spontaneous transition rates and ra-
diative linewidths appear through �a� the shift of the transi-
tion frequency, �b� the overlap and interference between the
center-of-mass wave functions, �c� the interference between
the emitted and reflected fields, and �d� the transmission into
the evanescent modes. Our numerical calculations for the
silica-cesium interaction have demonstrated that the radiative
linewidths of the bound excited levels with large enough but
not too large vibrational quantum numbers are moderately
enhanced by the emission into the evanescent modes and
those for the deep bound levels are substantially reduced by
the surface-induced redshift of the transition frequency. In
the numerical calculations, because of the complexity of sur-
face physics and the lack of data, we were forced to use a
specific potential model whose parameters may be different
from the actual ones. However, we believe that the quantita-
tive differences are not dramatic and, therefore, the qualita-
tive aspects are correctly reflected, at least for shallow bound
and free states, in which the atom spends most of its time far
away from the interface. We also recognize that our model
does not take into account the effect of surface-induced level
crossing, which may occur at small atom-surface distances,
with the participation of high-lying internal levels. Because
of various limitations, our model is not adequate for very
small atom-surface distances. Nevertheless, our approach can
be extended and our results can provide an impetus for sci-
entific debate.
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APPENDIX A: PARAMETERS OF THE
SILICA-CESIUM POTENTIAL

The actual form of the surface-atom potential is unknown
�22�. For the purpose of numerical demonstration of our for-
malism, we choose the model V�x�=Ae−�x−C3 /x3 �2,22�.
Under the condition �3C3 /A�256/3e4, this potential has a
peak at xp=�p /� and a local minimum at xm=�m /�, where
�p�4 and �m�4 are solutions to the equation �4e−�

=3�3C3 /A. The peak value V�xp� should be positive and
large enough to create a steep slope for the potential V�x� in
the small interval �xp ,xm�. Such a slope leads to a substantial
repulsive force on the atom in the close vicinity of the sur-
face. We discard the region x�xp, assuming that the atom is
outside and cannot penetrate into this region of space.

The depth of the potential is defined by D=−V�xm�
=−Ae−�xm +C3 /xm

3 . We find the relation

A =
3D

�xm − 3
e�xm. �A1�

In terms of the parameter xa=�3C3 /D, we have

� =
3

xm�1 − �xm/xa�3�
. �A2�

Equations �A1� and �A2� allow us to determine the param-
eters A and � from the parameters C3, D, and xm. Since �
�0 and �xm�4, the condition

xa

�3 4
� xm � xa �A3�

must be satisfied.
Many parameters of the silica-cesium potential are yet to

be ascertained �2,3,22,23�. We list a few available theoretical
and experimental data and speculate about the other param-
eters. According to Ref. �23�, the van der Waals coefficient
for the interaction between a ground-state cesium atom and a
perfect metal surface is C3

�metal�=4.5 a.u.=4.39 kHz �m3. For
a dielectric medium of refractive index n, we have an ap-
proximate expression C3= �n2−1� / �n2+1�C3

�metal� �22�. For
pure fused silica, with n=1.45 �in a broad region around the
wavelength �0=852 nm�, we find C3g=1.56 kHz �m3. This
theoretical value is larger than the theoretical estimate of
Ref. �24�, which ignores core transitions. Since the van der
Waals coefficient C3e for the cesium excited state 6P3/2 has
not been accurately calculated in the manner of Ref. �23�, we
take a relatively arbitrary value C3e=3.09 kHz �m3. This
choice is based on the fact that, from the results of Ref. �24�
�see also �25��, where the core contributions are neglected,
one can infer the ratio C3e /C3g=1.98. Regarding the poten-
tial depths, we use the experimental value Dg=0.66 eV
=159.6 THz, measured as the adsorption energy of ground-
state cesium atoms on fused silica �26�. With the assumption
De /Dg=Ce /Cg, we find De=316 THz. For both the ground-
and excited-state potentials, we find xa=0.21 nm. Hence, the
condition �A3� reads 0.13 nm�xm�0.21 nm. We assume
that the minimum positions of both potentials are the same
and are equal to xm=0.19 nm. Then, Eq. �A1� yields Ag
=1.6	1018 Hz and Ae=3.17	1018 Hz, while Eq. �A2� gives
�g=�e=53 nm−1. We recognize that, due to the lack of data
and knowledge, the above values may be substantially dif-
ferent from the actual parameters. However, we believe that
the difference is not dramatic.

APPENDIX B: DENSITY-MATRIX EQUATIONS
FOR A COHERENTLY DRIVEN ATOM

We present the density-matrix equations for a coherently
driven atom. We assume that the atom is driven by one or
several classical coherent plane-wave fields El. Here the in-
dex l labels the fields. The set �El� may include not only the
incident �leftward-propagating� fields but also the reflected
�rightward-propagating� ones. For simplicity, we consider the
case where all the driving fields propagate perpendicularly to
the surface of the dielectric. The expressions for the fields
are given by El= �Ele

i�lx−�lt��l+c.c.� /2, where El, �l, �l, and

SPONTANEOUS RADIATIVE DECAY OF TRANSLATIONAL… PHYSICAL REVIEW A 75, 013423 �2007�
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�l�=�l /c are the envelopes, the polarization vectors, the fre-
quencies, and the wave numbers, respectively. The quantities
l are positive or negative for rightward- or leftward-
propagating fields, respectively.

The interaction between the atom and the driving fields is
described by the Hamiltonian

HI = −
�

2 �
lab

��labe−i�lt�a�	b� + H.c.� , �B1�

where

�lab =
Eldleg

�
Fab�l� �B2�

is the Rabi frequency for the action of the field El on the
transition between the translational levels �a� and �b�. Here,
dleg=�l · 	e�d�g� is the projection of the atomic dipole moment
onto the polarization vector �l, and Fab�k�= 	
a�eikx�
b� is the
overlapping matrix element for the transition between the
center-of-mass states 
a and 
b with a momentum transfer of
�k. It is interesting to note that, when we use the momentum
representations 
̃a�p� and 
̃b�p� for the wave functions 
a�x�
and 
b�x�, respectively, we have

Fab�k� = �
−�

�


̃a
*�p + �k�
̃b�p�dp . �B3�

Equation �B3� indicates that the overlapping factor Fab�k�
takes into account the change in the momentum of the atom.

When we apply the Schrödinger equation i��̇= �HI ,�� to
the Hamiltonian �B1� and include the radiative decay terms,

described by Eqs. �15�, we obtain the following equations for
the density matrix � of the atom:

�̇aa� =
i

2�
l,b

��lab�a�b
* e−i�labt − �la�b

*
�abei�la�bt�

−
1

2�
a�

��a�aei�aa�t�a�a� + �a�a�
* ei�a�a�t�aa�� ,

�̇ab =
i

2�
l,b�

�lab��b�be−i�lab�t −
i

2�
l,a�

�la�b�aa�e
−i�la�bt

−
1

2�
a�

�a�aei�aa�t�a�b,

�̇bb� = −
i

2�
l,a

��lab��ab
* e−i�lab�t − �lab

* �ab�e
i�labt�

+
1

2�
aa�

��aa�bb� + �a�ab�b
* �ei��bb�−�aa��t�aa�. �B4�

Here, �lab=�l−�a+�b is the detuning of the driving-field
frequency �l from the atomic transition frequency �ab.

We note that Eqs. �B4� do not include the interaction of
the atom with the phonons of the solid. We can take into
account the decay due to phonons by adding phenomenologi-
cal terms �36�. The coefficients of such terms are phonon
absorption and emission probabilities and can be calculated
in second-order perturbation theory �30,31�.
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