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We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field
covering the regime B=0–100 a.u. A full-interaction approach which is based on an anisotropic Gaussian basis
set of one-particle functions being nonlinearly optimized for each field strength is employed. Accurate results
for a total of 17 resonances below the threshold consisting of He+ in the N=2 state are reported in this work.
This includes states with total magnetic quantum numbers M =0,−1,−2 and even z parity. The corresponding
binding energies are compared to approximate energies of two-particle configurations consisting of two hy-
drogenlike electrons in the strong-field regime, thereby providing an understanding of the behavior of the
energies of the resonances with varying field strength.
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I. INTRODUCTION

During the last years the number of observed magnetic
white dwarfs �MWD’s� with magnetic field strengths B
between a few and 105 T has grown rapidly. Including the
ESO �44,1� and SDSS �45,2,3� surveys there are about
170 MWD’s detected �4� and cataloged �46�. Even stronger
fields have been found in the vicinity of neutron stars
�B�107–109 T� �5�. Therefore, the behavior and properties
of matter exposed to strong magnetic fields are of immediate
interest. In this context, atomic physics plays a major role
with respect to analyzing the atmospheres of these astro-
nomical objects. Spectra resulting from theoretical investiga-
tions are a key ingredient in order to identify atomic �or
molecular� species in the atmospheres of MWD’s. Beyond
this they allow one to gain information on the magnetic field
strength and its landscape of the object under investigation.

Most of the literature on atoms in strong magnetic fields
deals with the hydrogen atom which has also become a para-
digm for a low-dimensional chaotic system �6�. Already in
the 1930s it was studied employing perturbation theory in the
low-field regime �B�2�103 T� �7� and later on also in the
high-field regime. But it was not until 1984 that exact ener-
gies of the hydrogen atom for the complete magnetic field
range 0�B�5�108 T were available �8–10�. The calcula-
tion of accurate extensive data was made possible by the
advent of supercomputers. It was the accuracy and complete-
ness of this new quantum mechanical data which permitted,
after 40 years of speculation, an understanding of the myste-
rious absorption features in the spectrum of the MWD Grw
+70°8247. They could be explained in 1985 as a hydrogen
spectrum in a magnetic field with a polar value of 3.2
�104 T �11–13�. In the following decades a great number of
MWD’s with the same type of spectrum have been identified
�13�.

In spite of this great success, there were also spectra of
MWD’s which could not be explained in terms of hydrogen
lines. Therefore, also results of atoms with more than one
electron are needed. Ten years ago knowledge about atoms
with more than one electron in strong magnetic fields was
still very sparse. Even in the case of two-electron atoms the
investigations covered only much smaller parts of the spec-
trum compared to the case of the hydrogen atom and their
accuracy was considerably poorer. At the end of the 1990s,
sufficiently accurate and extensive data for the helium atom
in the magnetic field regime 0�B�2.35�107 T �14–17�
and later also for 2.35�107 T�B�2.35�109 T �18�
emerged. These data consist exclusively of bound-state prop-
erties and the corresponding transitions.

Employing these data, it is possible to identify astronomi-
cal spectra of strongly magnetized helium atmospheres. In
particular the interpretation of the absorption features in the
spectrum of the MWD GD 229, one of the major remaining
mysteries for more than 25 years, could be solved. It was
the first high-field MWD with an identified helium atmo-
sphere �19�.

Nevertheless, the spectra of several MWD’s with an esti-
mated hydrogen or helium atmosphere show major absorp-
tion features that remain unexplained. There were indications
to explain the unresolved features with bound-free and free-
free transitions but also with spectral components of heavier
elements or of ions. However, the literature concerning these
topics is comparably sparse. In order to shed light on this
issue there were efforts to calculate bound-free opacities for
the hydrogen atom �20�. More recently, extensive and accu-
rate calculations on the bound-state spectrum of heavier ele-
ments like lithium �21� and beryllium �22� in strong mag-
netic fields have been accomplished. However, these newer
results have not been able to explain the unresolved absorp-
tion features in question.

In view of the above it is of particular interest to explore
the doubly excited states—i.e., the resonances of helium in
strong magnetic fields—which have not been considered to
date in the literature. It is the aim of this work to provide a
step towards the understanding of doubly excited helium at-
oms in strong magnetic fields and to provide the first data for
the corresponding resonances.
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The paper is organized as follows: In Sec. II we introduce
the Hamiltonian and discuss its symmetries. In Sec. III we
report on our computational approach and the employed op-
timized basis set. Section IV begins with a comparison of
calculated resonance energies with the literature in the well-
known field-free case. Subsequently the resonance energies
and their behavior for different magnetic field strengths are
presented and discussed. The dominant configurations con-
tributing to the resonances are identified, allowing us to in-
terprete them. Additionally, the widths of selected resonances
are studied with increasing magnetic field strength.

II. HAMILTONIAN AND SYMMETRIES

Our investigation is carried out under the assumption of
an infinite nuclear mass. However, by exploiting a pseu-
doseparation of the center-of-mass motion in a magnetic field
�23–25� a scaling law can be derived which allows one to
translate the data for fixed nucleus into results with a finite
nuclear mass under the assumption of a vanishing pseudo-
momentum �see �14� and references therein�. The finite-
nuclear-mass effects have certainly to be taken into account
in the high-field regime �18�. However, in this work we focus
on the intermediate-field regime and can therefore safely ne-
glect the corresponding considerations.

Assuming the magnetic field B to point in the positive z
direction and for the field strength B= �B�, our Hamiltonian
reads �atomic units are used throughout the paper�

H = �
i=1

2 �1

2
pi

2 −
2

�ri�
+

1

2
B�li�z +

B2

8
�xi

2 + yi
2� + B�si�z	

+
1

�r2 − r1�
. �1�

The one-particle operators in Eq. �1� are the field-free kinetic

energies
pi

2

2 , the Coulomb potential energies − 2
�ri�

of the elec-
trons in the field of the nucleus, the Zeeman terms 1

2B�li�z,
the diamagnetic terms B2

8 �xi
2+yi

2�, and the spin energies
B�si�z. The two-particle operator 1

�r2−r1� represents the
electron-electron repulsion energy. For remarks on the influ-
ence of relativistic effects and on the electron spin g factor,
here taken to be equal to 2, we refer the reader to �10,14�.

There exist four independent quantities commuting with
the Hamiltonian �1�: The total spin S2, the z component Sz of
the total spin, the z component Lz of the total orbital angular
momentum, and the total spatial z parity �z. Therefore, the
following investigations take place in a subspace of a speci-
fied symmetry—i.e., with given eigenvalues of S2, Sz, Lz, and
�z. Furthermore, we will denote the calculated states by the
magnetic field spectroscopic notation

N�2S+1M�z, �2�

where 2S+1 is the spin multiplicity, M the eigenvalue of Lz,
and �=1,2 ,3 , . . . denotes the degree of excitation within a

TABLE I. Correspondence table between the field �2� and field-free �4� notation for the doubly excited
helium atom for B=0. The field-free energy values are taken from the literature.

S=0: Field-free Field S=1: Field-free Field

Energy �L�
N�K ,T�n

A� N�M�z Energy �L�
N�K ,T�n

A� N�M�z

0.77786764 �35� 1Se
2�1,0�2

+
21 10+ 0.76049239 �36� 3Po

2�1,0�2
+

21 30−

0.7019457 �37� 1De
2�1,0�2

+
22 10+

21 3�±1�+

21 1�±1�− 0.7105002 �41� 3Pe
2�0,1�2

+
21 30+

21 1�±2�+
21 3�±1�−

0.69313495 �36� 1Po
2�0,1�2

+
21 10− 0.6025775 �35� 3Se

2�1,0�3
−

22 30+

21 1�±1�+ 0.5846723 �36� 3Po
2�1,0�3

+
22 30−

0.62192725 �35� 1Se
2�−1.0�2

+
23 10+

22 3�±1�+

0.5970738 �36� 1Po
2�1,0�3

−
22 10− 0.58378427 �37� 3De

2�1,0�3
−

23 30+

22 1�±1�+
22 3�±1�−

0.58989468 �35� 1Se
2�1,0�3

+
24 10+

21 3�±2�+

0.58025 �41� 1Pe
2�0,1�3

−
25 10+ 0.57903099 �36� 3Po

2�0,1�3
−

23 30−

21 1�±1�−
23 3�±1�+

0.569221 �37� 1De
2�1,0�3

+
26 10+ 0.56781 �41� 3Pe

2�0,1�3
+

24 30+

23 1�±1�−
23 3�±1�−

22 1�±2�+ 0.5662 �41� 3Fo
2�1,0�3

0
24 30−

0.564085 �36� 1Po
2�0,1�3

+
23 10−

24 3�±1�+

23 1�±1�+
21 3�±2�−

0.5638 �41� 1Do
2�1,1�2

+
24 10−

21 3�±3�+

24 1�±1�+ 0.560687 �37� 3De
2�0,1�3

0
25 30+

21 1�±2�−
24 3�±1�−

22 3�±2�+
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given symmetry subspace, whereas N represents the excita-
tion of the “inner” electron. The latter is not an exact quan-
tum number but a helpful spectroscopic label within an
independent-particle picture.

III. COMPUTATIONAL APPROACH

The Schrödinger equation is solved by applying a full
configuration-interaction �full CI� approach. For our calcula-
tions we use an anisotropic Gaussian basis set which has
been put forward by Schmelcher and Cederbaum �26� for the
purpose of investigating atoms and molecules in strong mag-
netic fields. This one-particle basis set has been successfully
applied to several atoms, ions, and molecules
�14–16,18,21,22,27–30�. The basis functions are optimized
for each field strength and each symmetry separately using a
nonlinear optimization procedure described in �14,18�. A
two-particle basis set within a subspace �M ,�z� is con-
structed by selecting configurations of two optimized one-
particle orbitals respecting the symmetries. The full CI ap-
proach leads to a generalized eigenvalue problem in which

all matrix elements can be calculated analytically and evalu-
ated efficiently �14,15�. Further technical aspects are dis-
cussed in �14,18,29�.

For the investigation in this paper we use the complex-
scaling or complex-rotation method. This means that all spa-
tial coordinates r in the Hamiltonian are formally replaced
with rei� �cf. �31,32��. This leads to a non-Hermitian Hamil-
tonian with complex eigenvalues W=E− i

2	 with energy E
and resonance width 	 and to a complex-symmetric matrix
representation. The energies of the bound states are unaf-
fected by this transformation, while the different continua are
rotated about their respective thresholds by the angle −2�
from the real axis into the complex energy plane. The hidden
resonances of the Hamiltonian in the continuum, associated
with complex eigenvalues W, are revealed if a sufficiently
large value of � is chosen.

It is one major advantage of the complex-scaling method
that the sophisticated numerical code developed for bound
atom systems can be directly “translated” to the case of
unbound resonances. However, the complex eigenvalues
W of the resonances are only independent of the rotation
angle � if the basis set is complete, which is not the case in
any approximate numerical investigation. Therefore, the ro-
tated Hamiltonian has to be calculated for different values of
�. The complex variational theorem and the complex
Hellmann-Feynman theorem provide a criterion for choosing
an optimum resonance parameter � within a given basis
set �33�:

TABLE II. The relative accuracy of the energetically lowest
resonances of doubly excited helium for B=0 in the subspaces
�z= +1 and M =0, ±1 and ±2 with S=0,1, Sz=0, and N=2 are
presented. The accuracies are ordered by the degree of excitation �
of their corresponding states within a given symmetry subspace �cf.
Table I�. The data used for comparison are indicated by reference
number.

� 
E 
	

M =0 S=0

1 7.07�10−5 1.09�10−2 �35�
2 5.41�10−4 5.22�10−2 �37�
3 2.10�10−3 7.03�10−1 �35�
4 7.12�10−5 5.53�10−2 �35�

M =0 S=1

1 1.25�10−4 �41�
2 4.81�10−5 8.13�10−1 �35�
3 2.39�10−5 �37�

M = ±1 S=0

1 5.24�10−4 3.12�10−2 �36�
2 4.19�10−5 4.83�10−1 �36�
3 2.30�10−4 1.30�10−1 �36�
4 7.50�10−4 �41�

M = ±1 S=1

1 6.84�10−5 6.59�10−3 �36�
2 3.59�10−5 2.88�10−1 �36�
3 5.53�10−5 3.45�10−0 �36�
4 9.18�10−4 2.72�10−0 �41�

M = ±2 S=0

1 5.41�10−4 5.22�10−2 �37�
2 1.67�10−4 5.81�10−2 �37�

TABLE III. Correspondence between the spectroscopic field and
field-free notation for vanishing magnetic field. Additionally, for a
strong magnetic field the corresponding approximate configurations
of a He+ and a H electron are presented. Configuration marked by †
are intrashell states which quantitatively do not approximate the
energies well.

Field not.
B�0

Field-free not.
B=0

App. config.
B→�

1 10+ 1Sg
2�1,0�2

+ 2p02p0
†

2 10+ 1Dg
2�1,0�2

+ 2p03p0

3 10+ 1Sg
2�−1,0�2

+ 2p04f0

4 10+ 1Sg
2�1,0�3

+ 2p04p0

1 30+ 3Pg
2�0,1�2

+ 2p03p0

2 30+ 1Sg
2�1,0�3

− 2p04f0

3 30+ 1Dg
2�1,0�3

− 2p04p0

1 1�−1�+ 1Pu
2�0,1�2

+ 2p−12s0

2 1�−1�+ 1Pu
2�1,0�3

− 2p−13d0

3 1�−1�+ 1Pu
2�0,1�3

+ 2p−13s0

4 1�−1�+ 1Du
2�1,1�2

+ 2p−14d0

1 3�−1�+ 3Pu
2�1,0�2

+ 2p−13d0

2 3�−1�+ 3Pu
2�1,0�3

+ 2p−13d0

3 3�−1�+ 3Pu
2�0,1�3

− 2p−13s0

4 3�−1�+ 3Fu
2�1,0�3

0 2p−14d0

1 1�−2�+ 1Dg
2�1,0�2

+ 2p−12p−1
†

2 1�−2�+ 1Dg
2�1,0�3

+ 2p−13p−1
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dW���
d�



�opt

= 0. �3�

To find that optimum �opt, one also has to vary the imaginary
part of �, which can be interpreted as a real scaling param-
eter of the wave functions. Obviously, the criterion �3� is
only fulfilled approximately since we can only calculate fi-
nite differences between eigenvalues belonging to Hamilto-
nians with a different value of the rotation angle �.

In our investigation the diagonalization of the rotated
Hamiltonian is carried out for about 50–80 different values
of �. The used basis-set size varies from 4000 to 6000 two-
particle configurations. This results in a computational effort
of approximately 30–200 h CPU time on a powerful PC for
each magnetic field strength and symmetry subspace.

IV. RESULTS

In principle, one distinguishes two kinds of excitations of
the helium atom using the independent-particle picture. On

the one hand, there are the single excitations of the helium
atom. Their “inner” electron occupies predominantly the
one-particle ground state of He+. The second “outer” electron
carries, like a hydrogenic electron, the angular momentum
alone. All bound states are of this kind. On the other hand,
there are the doubly excited helium states where the inner
electron is excited, too. They appear as resonances in the
continuum of the singly excited helium states. The degree
of the inner and outer excitation is denoted by N with
N=1,2 , . . . and by n with n�N, respectively. States with the
same inner excitation N form Rydberg series converging en-
ergetically to the threshold IN. These thresholds correspond
to the energies of an excited helium ion He+ in the Nth en-
ergy level.

A. Resonances in the field-free case

Doubly excited �DE� helium has been an active research
topic for the last 40 years, from both numerical and analyti-
cal standpoints �cf. review �34��. Major contributions to
the calculation of the energy levels were provided by, e.g.,

TABLE IV. Calculated energies E and resonance widths 	 of
resonances of the subspace 1�0�+ and N=2 for different magnetic
field strengths B: 1 1�0�+ and 2 1�0�+ �field-free 1Se

2�1,0�2
+ and

1De
2�1,0�2

+�.

B

1 1�0�+ 2 1�0�+

−E 	 /2 −E 	 /2

0 0.77786 �35� 0.002271 0.70195 �37� 0.001181

0 0.77781 0.002246 0.70157 0.001121

0.0002 0.77762 0.002299 0.69948 0.001211

0.0005 0.77763 0.002291 0.6995 0.001217

0.001 0.77802 0.002296 0.70093 0.001619

0.002 0.77781 0.002283 0.70116 0.001206

0.005 0.77776 0.002312 0.70112 0.001193

0.007 0.77772 0.002311 0.70064 0.001163

0.01 0.77758 0.002249 0.70098 0.000523

0.02 0.77691 0.002683 0.70006 0.00225

0.04 0.77348 0.001094 0.68867 0.000155

0.05 0.7726 0.002337 0.69688 0.000952

0.08 0.76462 0.002319 0.68842

0.1 0.75772 0.002487 0.68534 0.001109

0.16 0.72982 0.002751 0.66255 0.001122

0.4 0.57765 0.002779 0.48461 0.002578

0.5 0.51019 0.003137 0.37951 0.002904

0.8 0.29357 0.003192 0.03998 0.001906

1 0.13985 0.002744 −0.12582 0.00086

2 −0.70432 0.01068 −0.99833 0.002647

5 −3.47217 0.005766 −3.80865 0.000267

10 −8.29029 0.010718 −8.65359 0.001035

20 −18.0834 0.009865 −18.4943 0.00912

50 −47.8771 0.007483 −48.3142 0.002379

100 −97.7081 −98.1969

TABLE V. Calculated energies E and resonance widths 	 of
resonances of the subspace 1�0�+ and N=2 for different magnetic
field strengths B: 3 1�0�+ and 4 1�0�+ �field-free 1Se

2�−1,0�2
+ and

1Se
2�1,0�3

+�.

B
3 1�0�+

−E

4 1�0�+

−E 	 /2

0 0.62193�35� 0.58989�35� 0.000681

0 0.62062 0.58985 0.000644

0.0002 0.61347 0.58965 0.000655

0.0005 0.62085 0.58960 0.000609

0.001 0.62044 0.58794 0.001025

0.002 0.62044 0.58984 0.000670

0.005 0.62085 0.58960 0.000710

0.007 0.62048 0.58941 0.000699

0.01 0.62009 0.58849 0.000924

0.02 0.61873 0.58637 0.000377

0.04 0.61373 0.57662 0.000755

0.05 0.61368 0.57308 0.000852

0.08 0.60268 0.55647 0.000914

0.1 0.59495 0.54606 0.000625

0.16 0.56150 0.50973 0.000372

0.4 0.36064 0.34611 0.000468

0.5 0.27335 0.25830 0.000402

0.8 0.03153 −0.01283 0.000086

1 −0.17336 −0.19726 0.001278

2 −1.05301 −1.06606 0.000748

5 −3.86318 −3.88367

10 −8.71004 −8.73188

20 −18.55700 −18.58471 0.000631

50 −48.37604 −48.41477 0.000049

100 −98.19686 −98.29527
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Bürgers et al. �S states� �35�, Ho and Bhatia �P and D states�
�36,37�, and Bachau �N=3 states� �38�. However, the data
have not reached the same accuracy and completeness com-
pared with the literature of singly excited helium. DE helium
is considered as a standard model for a strongly correlated
system. We use the standard notation—i.e., the correlation
quantum numbers introduced by Herrick and Sinanoğlu �39�
and Lin �40�:

2S+1L�
N�K,T�n

A. �4�

Here L is the total angular momentum and K and T represent
angular and A radial correlations.

However, the focus of this paper lies on the interaction of
the atomic system in a strong magnetic field. For a finite field
strength the correlation quantum numbers �4� lose their
meaning. Therefore, it is instructive to consider the corre-
spondence between the magnetic field spectroscopic notation
�2� and the field-free one �4� which is done for the states
studied here in Table I.

Table II provides the relative accuracy of our calculated
energies E and decay widths 	 for the energetically lowest

resonances in the absence of the field. The comparison was
performed with the corresponding high-precision results
available in the literature �35–37,41�. Generally it has to
be remarked that for the states considered here, the absolute
values of the energies are significantly larger than the values
of the corresponding widths. The accuracy of our results
is consequently much higher for the energies compared to
the widths. Except for the states 310+ and 43�±1�+ all calcu-
lated energies possess a relative accuracy in the range of
7.5�10−4–2�10−5.

Obviously our approach is not best suited to describe the
resonances in the absence of the external field—i.e., cannot
compete with the best methods available in the literature
based, e.g., on a Hylleraas basis. However, our focus is to
provide first results on resonances in strong magnetic fields
and in this case our anisotropic Gaussian basis set is certainly
superior to existing field-free methods that cannot efficiently
describe the pronounced anisotropy present in a strong field.
This reflects itself also in the different symmetries for B=0
and B�0.

B. Resonances in a magnetic field

1. Dependence of the resonance energies on M and Sz

The Zeeman term of the Hamiltonian �1� depends linearly
on Lz and remains unchanged when the complex rotation is
applied. Using eigenfunctions of Lz, as is done here, one
arrives at

�i�TZeeman�M��j� = �i� 1
2LzB� j� = 1

2 MBSij ,

with Sij being the overlap matrix of the two-particle states �i�
and �j�. The relation between two matrix elements associated
with different signs of the magnetic quantum number M
reads as follows:

�i�TZeeman�− M��j� = �i�TZeeman�M��j� − MBSij;

i.e., we obtain a shift. A similar argument holds for Sz,

�i�Tspin�Sz��j� = �i�SzB�j� = SzBSij .

In combination, the relation for the dependence of the com-
plex energy W on M and Sz can be put in the following way:

W�M,Sz� = W�− M,Sz = 0� + MB + SzB . �5�

In what follows, we only present results for states belonging
to subspaces with M �0 and Sz=0. All energies of subspaces
with M 
0 and Sz�0 are just shifted by a real energy term
and can be calculated with the help of Eq. �5�. Note that the
resonance widths do not depend on Sz and the sign of M.

2. Resonance energies

The results of our calculations include the energies of the
energetically lowest resonance states of the subspaces with
M =0,−1,−2, �z= +1, Sz=0, and S=0,1. The values of the
magnetic field strength are spread over a logarithmic scale
covering the range B=0–100 a.u. �B=0–2.35�107 T�. The
resulting data are given in Tables IV–IX.

The minimal energy of a single free electron �m�0� in
a magnetic field is Ee−�B�=B /2 �cf. Landau energy �42��.

TABLE VI. Calculated energies E of resonances of the subspace
3�0�+ and N=2 for different magnetic field strengths B: 1 3�0�+,
2 3�0�+, and 3 3�0�+ �field-free 3Pe

2�−1,0�2
+, 3Se

2�−1,0�3
−, and

3De
2�1,0�3

−�.

B
1 3�0�+

−E
2 3�0�+

−E
3 3�0�+

−E

0 0.71050 �41� 0.60258 �35� 0.58378 �37�

0 0.71041 0.60255 0.58359

0.0002 0.70621 0.60250 0.58331

0.0005 0.71039 0.60237 0.58344

0.001 0.71045 0.60064 0.58344

0.002 0.71036 0.60254 0.58345

0.005 0.71039 0.60237 0.58344

0.007 0.71033 0.60222 0.58298

0.01 0.71014 0.60157 0.58176

0.02 0.70952 0.59899 0.58001

0.04 0.70672 0.59146 0.57100

0.05 0.70465 0.58797 0.56960

0.08 0.69598 0.57264 0.54839

0.1 0.68825 0.56251 0.53147

0.16 0.65724 0.52765 0.48792

0.4 0.45585 0.36377 0.30446

0.5 0.34928 0.28915 0.22842

0.8 0.05382 −0.00755 −0.01468

1 −0.11049 −0.8276 −0.19474

2 −0.98307 −1.04769 −1.07099

5 −3.78678 −3.85651 −3.88082

10 −8.62833 −8.70260 −8.72806

20 −18.47258 −18.55026 −18.57670

50 −48.28332 −48.36675 −48.40350

100 −98.16338 −98.25919 −98.28200
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Therefore, the minimal energy of two noninteracting free
electrons that possess no kinetic energy along the magnetic
field is E2e−�B�=B, which corresponds to the double-
ionization threshold of helium with a fixed nucleus in a mag-
netic field. In order to get the binding energies Ebin�B� of the
helium states, this energy E2e−�B� has to be subtracted from
the total energies:

Ebin�B� = E�B� − E2e−�B� = E�B� − B . �6�

Figure 1 shows the binding energies for the resonance
states belonging to the subspaces M =0 �a� and M =−1 �b�.
The absolute values of the binding energies increase with
increasing field strength for all resonant states considered
here. The rate of increase, however, is larger for the reso-
nances belonging to the symmetry subspace M =−1. Addi-
tionally, the binding energies of the He+ ions EHe+�B� emerg-
ing from the field-free quantum number n=2 and magnetic
quantum numbers m=0 �a� and m=−1 �b� are shown. The
total energies EHe+,tot�B� of He+ in a magnetic field can be
obtained via a scaling relation �10� from the precisely known
energies of hydrogen in a magnetic field �10,43�. In order to
get the binding energies EHe+�B� of the He+ ion �similar as in
Eq. �6��, Ee−�B� has to be subtracted from the total energies
EHe+,tot�B�:

EHe+�B� = EHe+,tot�B� − Ee−�B� = EHe+,tot�B� − B/2.

One observes that the binding energies of He+�2p0� and
He+�2p−1� correspond to upper thresholds for Ebin�B� of the
calculated states with M =0 �a� and M =−1 �b�, respectively
�47�, and they show the same qualitative behavior as the
energies Ebin�B� of our resonances with increasing field
strength. This can be interpreted in the following way: as a
rough approximation, one of the electrons of the DE helium
occupies the corresponding orbital of the He+ ion mentioned
above. In order to analyze the behavior of the second elec-
tron we subtract from the binding energies of the DE helium
atoms the corresponding He+ energy EHe+�B�:

E2�M,B� = Ebin�M,B� − EHe+�2pM,B� .

The corresponding results are shown in Fig. 2. One observes
a qualitatively different behavior of the energy levels ac-
cording to three different regimes: �I� low-field regime
0�B�10−2, �II� intermediate-field regime 10−2�B�1, and
�III� high-field regime 1�B�102. Especially in �I� but also
in �III� there is a comparatively weak dependence on the
magnetic field. On the other hand, in �II� a reorganization of
the energy levels takes place being most pronounced in Fig.
2�a�. This behavior is also known for hydrogen and singly
excited helium in a magnetic field. In both subfigures three

TABLE VII. Calculated energies E and resonance widths 	 of resonances of the subspace 1�−1�+ and
N=2 for different magnetic field strengths B: 1 1�−1�+ 2 1�−1�+, 3 1�−1�+, and 4 1�−1�+ �field-free
1Po

2�0,1�2
+, 1Po

2�1,0�3
−, 1Po

2�0,1�3
+, and 1Do

2�1,1�2
+�.

B

1 1�−1�+

2 1�−1�+

−E
3 1�−1�+

−E
4 1�−1�+

−E−E 	 /2

0 0.69313 �36� 0.000687 0.59707 �36� 0.56408 �36� 0.56338 �41�
0 0.69277 0.000708 0.59705 0.56395 0.56338

0.0002 0.69293 0.000645 0.59716 0.56413 0.56356

0.0005 0.69286 0.000541 0.59724 0.56420 0.56317

0.001 0.69306 0.000875 0.59723 0.56518 0.56260

0.002 0.69359 0.000530 0.59783 0.56482 0.56470

0.005 0.69499 0.000691 0.59929 0.56611 0.56517

0.01 0.69746 0.000599 0.60123 0.56766 0.56732

0.02 0.70032 0.001664 0.60359 0.57098 0.56781

0.04 0.70755 0.000589 0.60505 0.57442 0.56664

0.08 0.71809 0.000518 0.59790 0.57637 0.56085

0.1 0.71239 0.000749 0.59139 0.56711 0.54302

0.16 0.71991 0.000854 0.58014 0.54826 0.53355

0.4 0.64988 0.001143 0.49967 0.45167 0.43185

0.8 0.43997 0.001498 0.28585 0.24529 0.22741

1 0.31808 0.000575 0.16893 0.12654 0.10915

2 −0.37324 0.002034 −0.51960 −0.56024 −0.57691

5 −2.77600 0.000682 −2.92460 −2.96510 −2.98170

10 −7.14520 0.002161 −7.29770 −7.33940 −7.35590

20 −16.31200 0.001250 −16.47400 −16.51800 −16.58900

50 −44.83400 0.001380 −45.00700 −45.05200

100 −93.35100 0.003623 −93.53500 −93.58200
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additional energies are shown �dashed line�. These appro-
ximate energies Eapp�B� are the sum of the binding
energy EHe+�2pmHe+��B� of the helium ion He+�2p0� �a� and

He+�2p−1� �b� and the energetically lowest binding energies
EH�nlmH��B� of the hydrogen atom with n�2:

Eapp�B� = EHe+�2pmHe+��B� + EH�nlmH��B� .

The combination of the individual quantum numbers is in
agreement with the total quantum numbers of the considered
subspace:

M = mHe+ + mH and �z = ��He+�z��H�z.

In these approximate energies, no interaction between the
two electrons is taken into account, and a complete screening
of one charge unit of the nucleus by the inner electron is
assumed. Considering the subspace M =−1 in Fig. 2�b� one
can see that in the high-field regime �III� the energies Eapp�B�
come energetically close to the calculated resonance energies
and show the same qualitative behavior. In this regime also a
degeneracy of the singlet �solid line� and triplet �dotted line�
states takes place �only Sz=0 is considered here�. These fea-
tures become more pronounced with increasing field strength
and higher degree of excitation �logarithmic scale�. Let us

concentrate as an example on the approximation
Eapp(He+�2p−1�H�2s0�) to the energies of the singlet and trip-
let ground states 11�−1�+ and 13�−1�+, respectively. It obvi-
ously significantly underestimates the magnitude of their
binding energies in the field regimes �I� and �II� where both
states are also energetically significantly separated. This is a
sign of the strong overlap of the two electrons of the DE
helium. This overlap decreases in the region �III�, and the
electrons become spatially separated. Therefore, it is possible
in �III� to speak of an “inner” He+-like electron, which is
located close to the nucleus and screens one charge unit, and
of an “outer” H-like electron at a distance noticing only one
effective positive charge.

The above-observed behavior can be illustrated by using
an independent-particle picture. All one-electron states ex-
cept the tightly bound states are elongated along the mag-
netic field axis and squeezed perpendicular to it with increas-
ing magnetic field strength. Tightly bound states
�1s0 ,2p−1 ,3d−2 , . . . � are confined parallel to the magnetic
field axis as well, and their binding energy rises strongly
with increasing field strength �10�. In the case that one of the
electrons occupies a tightly bound orbital, the overlap of two
electrons steadily decreases with increasing magnetic field
strength. Thus the tightly bound electron is located close to
the nucleus screening one charge, while the second electron

TABLE VIII. Calculated energies E and resonance widths 	 of resonances of the subspace 3�−1�+ and
N=2 for different magnetic field strengths B: 1 3�−1�+ 2 3�−1�+, 3 3�−1�+, and 4 3�−1�+ �field-free
3Po

2�1,0�2
+, 3Po

2�1,0�3
+, 3Po

2�0,1�3
−, and 3Fo

2�1,0�3
0�.

B

1 3�−1�+

2 3�−1�+

−E
3 3�−1�+

−E
4 3�−1�+

−EE 	 /2

0 0.76049 �36� 0.000149 0.58465 �36� 0.57900 �36� 0.56568 �41�

0 0.76044 0.000150 0.58465 0.57900 0.56568

0.0002 0.76055 0.000123 0.58475 0.57908 0.56608

0.0005 0.76059 0.000090 0.58484 0.57913 0.56571

0.001 0.76092 0.000224 0.58498 0.57905 0.56541

0.002 0.76121 0.000117 0.58542 0.57985 0.56701

0.005 0.76284 0.000163 0.58682 0.58115 0.56777

0.01 0.76516 0.000140 0.58861 0.58313 0.56994

0.02 0.76911 0.000611 0.59056 0.58572 0.57277

0.04 0.77664 0.000123 0.59090 0.58756 0.57433

0.08 0.78635 0.000123 0.59067 0.58004 0.57017

0.1 0.78735 0.000161 0.58934 0.56246 0.54601

0.16 0.78813 0.000172 0.58511 0.55843 0.53253

0.4 0.70867 0.000172 0.51165 0.45580 0.44592

0.8 0.47094 0.000102 0.29665 0.24898 0.22976

1 0.33918 0.17395 0.12839 0.11003

2 −0.36680 0.000106 −0.51867 −0.55994 −0.57678

5 −2.77240 −2.92410 −2.96500 −2.98160

10 −7.14050 0.000067 −7.29700 −7.33870 −7.35560

20 −16.3110 −16.47500 −16.51800 −16.59300

50 −44.8330 −45.0080 −45.0520 −45.070000

100 −93.3510 0.000302 −93.5350 −93.58200
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stays mainly near the z axis at a distance to the core and
behaves therefore similar to an electron of a hydrogen atom.
This scenario applies to the subspace M =−1 �z= +1 since
2p−1 is a tightly bound orbital and consequently all other
possible orbitals of the second electron are not tightly bound.

In the subspace M =0 in Fig. 2�a� no degeneracy of the
energies of the singlet and triplet states occurs in the pres-
ence of a strong field. However, the singlet states can be well
approximated by the corresponding Eapp�B�. An exception to
this rule is the ground state 11�0�+, which is approximated
only qualitatively by the binding energies of He+�2p0� and
H�2p0�, which corresponds to an intrashell state. In an in-
trashell state with both electrons approximately in the same
orbital, it is expected that the assumption of weakly interact-
ing electrons fails. Of course, there is no triplet partner for
the ground state which is approximately described by the
symmetric �2p0�2 configuration. In contrast to the subspace
M =−1 the resonances of the subspace M =0 contain no
�dominating� configurations that include a tightly bound or-
bital. As a consequence also the “inner” He+-like electron is
elongated along the z axis and a noticeable overlap of the
electronic orbitals remains even in the strong-field regime
�III�.

The strong increase of some energies in the regime
0.1�B�1 �see Figs. 2�a� and 2�b�� can be partly modeled
with two-electron configurations that consist of an electronic
wave function of a helium ion He+�2s0� and a hydrogen atom
and are not shown in Fig. 2. This effect results from the

increasing energetic gap between the binding energy of
He+�2s0� and He+�2p0� which can be seen in Fig. 1�a�. Note
that the approximations applied in the strong-magnetic-field
regime �III� do not hold in the regimes �I� and �II� and par-
ticularly not in the field-free situation �40�.

As a next step we aim at investigating the energetically
lowest DE helium state in a strong magnetic field. Therefore,
we searched for the DE helium state with the strongest bind-
ing energy in the field range �III�. The latter is dominated by
the configuration He+�2p−1� H�2p−1� �10�. Consequently we
calculated the energetically lowest singlet states of the sub-
space M =−2 and �z= +1.

In Fig. 3 the energetic distances of the two energetically
lowest singlet states to the first ionization threshold I1�B�
=EHe+�1s0��B�+B are shown. The energies of both states show
a weak dependence on the field strength for B�0.01. For
B
0.01 the energetic difference of the energetically lowest
resonance state 11�−2�+ to I1�B� decreases with increasing
field strength. A crossover of the first ionization threshold
seems to take place for B�65 a.u. This would correspond to

TABLE IX. Calculated energies E and resonance widths 	 of
resonances of the subspace 1�−2�+ and N=2 for different magnetic
field strengths B: 1 1�−2�+ and 2 1�−2�+ �field-free 1De

2�1,0�2
+ and

1De
2�1,0�3

+�.

B

1 1�−2�+ 2 1�−2�+

−E 	 /2 −E 	 /2

0 0.70195 �37� 0.001183 0.56922 �37� 0.000278

0 0.70157 0.001121 0.56913 0.000261

0.0005 0.70203 0.001122 0.56960 0.000261

0.001 0.70249 0.001125 0.57009 0.000264

0.002 0.70249 0.001125 0.57009 0.000264

0.005 0.70643 0.001052 0.57379 0.000249

0.01 0.71116 0.001105 0.57755 0.000270

0.02 0.72055 0.001152 0.58413 0.000283

0.05 0.74541 0.001196 0.59369 0.000308

0.1 0.77727 0.001020 0.59346 0.000433

0.16 0.80518 0.001557 0.58362 0.000615

0.5 0.82534 0.004077 0.47937 0.000573

1 0.68014 0.006971 0.21906 0.000840

2 0.16923 0.005071 −0.44999 0.000117

5 −1.92293 0.007648 −2.83753 0.001424

10 −5.97779 0.002951 −7.19591 0.000081

20 −14.78130 −16.35960 0.000128

50 −42.51036 −44.87839

100 −90.36262 −93.39070 0.000145
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FIG. 1. Binding energies Ebin�B�=E�B�−B of doubly excited
helium in a magnetic field range 0.0002�B�100. The dependence
on the magnetic field is shown for the energetically lowest reso-
nances of the subspaces M =0, �z= +1 �a� and M =−1, �z= +1 �b�.
Solid lines stand for singlet and dotted lines for triplet states. Ad-
ditionally, appropriate binding energies of He+ ions are given
�dashed lines� which correspond to upper thresholds.
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a stabilization of the resonance 11�−2�+ and a conversion to a
bound state for a magnetic field B
65 since the autoioniz-
ation process is not possible anymore. The energetically low-
est resonance is approximated only qualitatively by the con-
figuration involving the noninteracting orbitals He+�2p−1�
and H�2p−1�, for it is an intrashell state which consists of two
tightly bound orbitals. We note that the above considerations
assume a spin singlet for both the resonance and threshold
states, which is indeed not the energetically lowest state in
the strong-field regime.

The second singlet state 21�−2�+ is approximated well by
the configuration involving the orbitals He+�2p−1� and
H�3p−1�, and for B
1 there is hardly a difference visible on

the scale of Fig. 3. This can be explained by applying the
same argument as for the subspace M =−1 where all calcu-
lated states also consist approximately of a tightly bound and
a nontightly bound orbital. However, the energetic difference
to I1�B� increases strongly in the high-field regime and no
crossing of I1�B� is possible.

Using the results which have been obtained so far one can
relate the doubly excited helium states in a magnetic field
denoted by the spectroscopic field notation �2� in the limit of
a high-field strength to the corresponding dominant
independent-particle configurations of a helium ion and hy-
drogen electron. This has been done in Table III. In addition,
the corresponding correlation quantum numbers �4� for a
vanishing magnetic field B=0 are given.

3. Resonance widths

Parallel to the real energies dealt with in Sec. IV B 2, the
corresponding imaginary parts 	 have been calculated, too. 	
is interpreted as the width of the resonance and therefore as
the inverse lifetime. Typically, the absolute values of the
widths are by orders of magnitude smaller than the real en-
ergies. Our method allows for the same absolute accuracy for
both the real and imaginary parts. This leads to a signifi-
cantly lower relative accuracy of the resonance widths com-
pared to the real energies. The widths themselves vary by
orders of magnitudes. Therefore, it is most natural to inspect
the behavior of those widths more closely which possess a
large absolute value �	 /2�0.0001�. These include three sin-
glet states of the M =0, �z= +1 subspace 110+, 210+, and
410+, which are shown in Fig. 4�a�. Additionally, the widths
of the two energetically lowest resonance states of the
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FIG. 2. Differences of the binding energies of the doubly ex-
cited helium atom and the He+ ion Ebin�B�−EHe+�B� in a magnetic
field range 0.0002�B�100. The dependence on the magnetic field
is shown for the energetically lowest states of the subspaces M =0,
�z= +1 �a� and M =−1, �z= +1 �b�. Solid lines stand for singlet
and dotted lines for triplet states. Additionally to Ebin�B�, approxi-
mate energies are given �dashed lines� which are a sum of the
binding energies of a He+ ion and a hydrogen atom �see text for
details�.
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FIG. 3. Energetic difference E�B�− I1�B� of DE helium energies
to the first ionization threshold I1�B�. The energies of the two ener-
getically lowest singlet states of the subspace M =−2, �z= +1 in a
magnetic field range 0.0002�B�100 are presented. Additionally,
approximate energies �dashed lines� are given which are a sum of
the binding energies of a He+ ion and a hydrogen atom.
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M =−1, �z= +1 subspace, 11�−2�+ and 13�−2�+, are pre-
sented in Fig. 4�b�. The corresponding data can be found in
Tables IV, V, and VII–IX.

For B�0.05 just a weak dependence on the magnetic
field can be observed for the three singlet states in Fig. 4�a�.
With further increasing field strength, the widths start to fluc-
tuate, although this fluctuation could possibly be a conse-
quence of the finite numerical accuracy. The width of the
state 110+ increases in the regime 1�B�2 approximately
by a factor of 4.

In Fig. 4�b� we compare a singlet and a triplet state oth-
erwise possessing the same quantum numbers. In Fig. 2�b�
we see that the energies of these states become degenerate
for B
2. For B�0.1 their widths fluctuate around a mean
value of 7�10−4 �11�−1�+� and 1.5�10−4 �13�−1�+�, respec-
tively. For B
0.1 the width of the triplet state keeps fluctu-
ating, but the width of the singlet states increases with mag-
netic field strength B. This means that both states become
energetically degenerate for strong magnetic fields, but the

behavior of the corresponding resonance widths is different
in this field range.

V. SUMMARY AND OUTLOOK

We have investigated the energies and lifetimes of the
resonance states of a doubly excited helium atom exposed to
a magnetic field. The nonrelativistic, infinite-mass Hamil-
tonian is characterized by the symmetries associated with the
four quantum numbers: M, �z, S2, and Sz. Our computational
approach consists of the complex scaling method applied to a
full configuration-interaction scheme based on nonlinearly
optimized anisotropic Gaussian orbitals.

In order to show the behavior of the DE helium states
denoted by the spectroscopic field notation �2� in the limits
of weak and strong magnetic field strengths, we have pre-
sented for vanishing magnetic field their corresponding cor-
relation quantum numbers �4� and for a strong magnetic field
their corresponding independent-particle configurations of a
helium ion and hydrogen electron.

In total the energies of 17 DE states have been calculated.
Their behavior can be subdivided into three magnetic field
ranges: the weak- �0�B�10−2�, the intermediate- �10−2

�B�1�, and the strong- �1�B�102� field regimes. With
increasing field strength we observe the transition from a
weak to a strong dependence on magnetic field which is ac-
companied by a reorganization of the energies of the reso-
nances especially in the intermediate-field regime.

In the strong-field regime, a clustering of the calculated
energies into different branches according to their magnetic
quantum numbers takes place. Furthermore, the electron-
electron interaction becomes less important with increasing
field strength, being more pronounced for the states of sub-
space M =−1 than for those of M =0. As a result, a crude
description of the resonance energies by the sum of the en-
ergies of a He+ ion and a hydrogen atom is possible. An
exception to this rule is the intrashell states. The DE helium
state with the lowest energy �Sz=0� is the state 11�−2�+ of the
subspace M =−2. This resonance state can probably be sta-
bilized by a magnetic field, for its calculated energy becomes
smaller than the one-electron ionization threshold for a field
strength of B
65.

The behavior of the widths of five calculated resonances
with large absolute value �	�10−4� has been inspected. The
dependence of the widths on the magnetic field for low field
strengths B�0.1 is weak. The values of the widths are fluc-
tuating around their mean values, which could be due to the
finite numerical accuracy of our method. For field strengths
B
1 the widths of two states—namely, 110+ and
11�−1�+—significantly increase while the widths of the other
investigated states still fluctuate with an increasing ampli-
tude.

Having presented the first data on the energies of the reso-
nances of DE helium in a magnetic field, several issues still
have to be addressed in future works. In order to get syn-
thetic spectra of astronomical objects like MWD’s, the num-
ber of calculated states should be increased including also
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FIG. 4. Resonance widths 	 of the DE helium atom in a mag-
netic field range 0.0002�B�100. The widths of three singlet states
with M =0, �z= +1 �a� and of the two ground states with M = ±1,
�z= +1 �b� are plotted.
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states with �z=−1. Additionally, magnetic-field-dependent
oscillator strengths and electromagnetic-transition probabili-
ties have to be studied. On the other hand, a closer look at
the resonance widths would be desirable in order to gain a
deeper understanding of the role of electron-electron interac-
tions and the autoionization process under the influence of a

magnetic field. An increased accuracy of our data would be a
prerequisite for this.
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