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We propose a method for direct calculation of the multiply differential cross section of the single and double
ionization of two-electron atomic and molecular systems, which involves the reduction of the initial nine-
dimensional Schrodinger equation to an evolution problem followed by the modeling of the wave packet
dynamics. The cross section is obtained by the method of a time-scaled coordinate system. This approach,
which describes well the behavior of two slow ejected electrons, avoids the use of rather uncertain cumbersome
complex final-state functions of the continuous spectrum. Our results agree with those obtained by the
convergent-close-coupling approach which is the object of some reserve because of ambiguity about its

asymptotic behavior.
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I. INTRODUCTION

The study of the (e,3e) reaction in atomic and molecular
systems is the subject of many experimental works [1-4] as
it provides valuable information about the electronic struc-
ture of the target and permits one to evaluate electron-
electron correlation and other interactions. Discussions are
going on [5-7] about the choice of the initial and final wave
functions of the four-body Coulomb scattering problem.
These discussions are stimulated by disagreement between
the existing theoretical descriptions and experimental obser-
vations [1] in the (e,3e) reaction with helium atoms. Differ-
ent approaches have been used to calculate the fully differ-
ential cross section of the (e,3e) reaction. Direct numerical
calculations of this reaction using the convergent-close-
coupling (CCC) method [5,8,9] for the final double-
continuum state wave function of two slow ejected electrons
lead to an underestimation of the magnitude of the cross
section by several times. This disagreement stimulated some
theoretical activity which tried to introduce some approxi-
mate analytical expressions for the final [6] and initial [7]
wave functions satisfying some special conditions. Although
a better fit between the calculated and measured cross sec-
tions was achieved, these approximate functions used can be
hardly considered as satisfactory, since they poorly satisfy
the initial Schrodinger equation. As a result, the use of these
functions in the case of the parameters change or other phe-
nomena (e.g., photoionization) considered yields in poor
agreement with experiment.

There are several hypotheses that may explain the diffi-
culties of the existing theory. First, it is possible that the
Born expansion is principally inapplicable in the case of
(e,3e) for incident electron energy lower than several keV.
Second, the reason may be that the wave functions of the
initial and final states do not satisfy the cusp conditions in
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the vicinity of the collision point near the nucleus that
mainly contributes to the proper matrix elements. Third, the
observed difference may be due to the asymptotic behavior
of the wave function of the two slow electrons at large dis-
tances from the nucleus, which is not taken into account by
the CCC method. The aim of the present paper is to check
the third hypothesis by taking into account the correct
asymptotic behavior of the wave function of two slow elec-
trons.

The solutions of this problem are known in double photo-
ionization, where several numerical methods alternative to
CCC have been successfully applied, such as the hyper-
spherical R-matrix approach with semiclassical outgoing
wave (HRM-SOW)[10], and the external complex-scaling
(ECS) [11], and the time-dependent close-coupling (TDCC)
[12] methods. These methods account for the asymptotic be-
havior in a certain way. In the HRM-SOW method the
asymptotic behavior of the three-body continuum states is
taken into account by direct use of the quasiaclassical
asymptotic functions. In the ECS method the extrapolation of
the ionization flux to infinity is used for this purpose [13].
The difference between the CCC, ECS, and HRM-SOW
methods in the case of asymmetric energy sharing is shown
in [11,14]. Although in double photoionization the agreement
between the methods mentioned above is good, there is no
guarantee that it will be so for electron-impact double ion-
ization.

In the present paper we reduce the initial stationary
Schrodinger equation describing the interaction of a fast in-
cident electron with a two-electron target to an evolution
problem using approximation analogous to that of paraxial
optics [15]. Then the modeling of the wave packet dynamics
is carried out by means of the modified TDCC method using
the time-dependent scaling (TDS) transformation [16-18].
The similarity of our approach to the TDCC method is that
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we also use an expansion in the bispherical basis for angular
variables and a finite-difference grid for radial ones to solve
a Schrodinger-type equation. The difference is that (i) the
very equation is modified due to time-dependent scaling and
(ii) we use a different time propagation numerical scheme.
The evolution approach removes the main difficulty in solv-
ing stationary problems with two electrons in the field of the
nucleus that consists in imposing outgoing boundary condi-
tion [19]. Although the original TDCC method does not use
the wave functions of the continuous spectrum of the two
ejected electrons in solving the evolution problem, they are,
however, necessary for extraction of the amplitudes by pro-
jecting the wave packet onto them [12]. The time-dependent
scaling transformation allows one to calculate directly the
multiply differential cross section of the single and double
ionization of two-electron systems avoiding this projection
procedure [18].

To implement the modified TDCC approach with time-
dependent scaling we had to develop an original numerical
scheme based on the split-operator method [20]. The discrete
variable representation (DVR)[21] was used to diagonalize
the electron-electron interaction. For efficient implementa-
tion of the DVR we propose a dynamical version of the
Chang-Fano (CF) transformation [22] from a bispherical ba-
sis to a D basis and back.

In Sec. I we reduce the initial stationary problem to a
lower-dimensional time-dependent Schrédinger equation. In
Sec. III we describe the procedure of the extraction of the
(e,2e) and (e,3e) cross sections from the resulting wave
packet using the time-scaled space variable technique. In
Sec. IV we present a numerical scheme for the solution of
the evolution problem. In Sec. V the results of the calcula-
tions are discussed and compared with those of other au-
thors.

II. PARAXTAL METHOD

Consider a general model of a molecule with N,,,. fixed
nuclei and N electrons interacting with a single fast impact
electron.  This  system is  described by the
3(N+1)-dimensional stationary Schrodinger equation

1
Hy(r) - EVfO + V(r,ry) |P(r,ry) = (kf/2 + Ey)D(r,ry).

(1)

N is the set of position vectors of the molecular

Here r={r,},,_,
electrons, I:IO is the molecular Hamiltonian, r is the position
vector of the fast impact electron, V(r,ry)=U(r,)
+U,;,(r,ry) describes the interaction between the impact
electron and the molecule, U(r0)=—2ggquB/|pﬂ—ro| is the
potential of attraction between the incident electron and the
nuclei, U, (r,r)==N_1/|r,~ry| is the potential of repul-
sion between the electrons, and E is the energy of the target
initial state having the wave function ¢(r).

Let us seek the solution of Eq. (1) in the form
D(r,xq,y0,20)=¥(r, 1y, ,z0)explikizy) [15]. By analogy with
the paraxial approximation in beam optics one can neglect
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the second derivative of ¢ with respect to the slow variable
Zo- As a result we get an evolutionlike equation for the enve-
lope function (r,ry ,z0):

. OY(r,ry 1 ,20)
thk——=

. 1
Hy(r)-=-V?> -E
i O”Z(] { 0( ) 2 0

ToL

+ V(l‘sl‘(u,Zo)} Hr,ry,20). (2)

In the case of small scattering angles the initial condition for
(r,ry | ,70) may be written as

'ﬁ(r’l’op— OO) = ¢O(r)-

To solve the (3N+2)-dimensional Schrodinger evolution
equation (2) we use the Fourier transformation of ¢ with
respect to r

1 -
r,rg,20) = 2_ f l//kL(r,Zo)eXP(— ik -1y )dk, .
T

The Fourier transform function Jfki(r,zo) satisfies the equa-

tion
&Z’k (I',Zo) A i -
ikig—zoz Hy(r) + ?—Eo l/ka(l’,Zo)
+JVki—kl(r’zo)kzkl(l'ﬂo)dkl, (3)
where

1
Vi, (r.z0) = 2’ f exp(— ik 1o )V(r,rg,.20)dro,

(4)

is the Fourier transform of the interaction potential
V(rarOL aZO)'

Further simplification of the problem is possible if the
amplitude of the incident wave is much greater than that of

the scattered wave. In this case the approximation

'jfkl(r’zo) =~ 5(kl)l//0(l')

may be applied, which is equivalent to keeping the first term
only in the Born series [15]. Introducing the notation ¢

=z0/k; and (Zki(r,kit)=¢kL(r,t)exp[—i(kzl/Z—EO)t] we get
the Schrodinger-like inhomogeneous time-dependent equa-
tion

.&wki(r’t)
—

=y, (1)

2
+exp{i(% —E0>t:| Vki(r,k[t)wo(r), (5)

with the initial condition «pkl(r,—oo)=0, where k| is the
transverse component of the transferred momentum K [15]
and
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N
1 .
V r,zp) = e_kleo_Za"Hki'raL
2 zm[z

a=1
Nnuc
P |
B=1

The latter expression follows from the inverse Fourier trans-
formation of the Coulomb potential in momentum space with
respect to the longitudinal momentum [15]. This potential
vanishes exponentially as the impact time tends to zero. The
transversal momentum transfer is given by k, =k;sin 6,,
where 6, is the scattering angle.

III. IONIZATION DIFFERENTIAL CROSS SECTION

Our aim now is to extract the ionization amplitudes from
the solution ¢ (r,7). For simplicity let us start from a
single-electron target with Coulomb potential and then pro-
ceed to a double-electron one. It is known [15] that the scat-
tering amplitude f(k,), k, being the momentum of the
ejected electron, can be expressed as

f(Qs’Ee’Qe) == 27lezc(ke)

via the coefficients C(k,) of the expansion of the solution
(r,1) of Eq. (5) after the impact

¢(r’t) - f C(k) d);(_)(r)e_iEtdk + E Cnlm¢nlm(r)e_iEnlmt-

nlm
(6)

Here E=k*/2, ¢, (r) are the continuum wave functions of the
target normalized as

f ¢ () (n)dr = 8k’ - k),
and ¢,,,(r) are the bound-state functions of the target. Ac-
cording to [23], the asymptotic form of the solution is

1 i Z 5
lp(rﬂoo,teoo)=wexp §7+l_h’12ket C(ky),

k
™)

where k, represents the stationary point of the integral in Eq.

(6),

e

In 2kt k,
Kt k,

ko=k, - ;
and k,=r/t is the electron momentum at large distances;
here, Z is the charge of the residual ion.

Numerical representation of (r, ) faces problems related
to the finite size of the spatial grid. When the wave packet
propagates during a long time ¢, the continuum component of
the wave function expands and is reflected from the finite
grid boundary. Moreover, the spatial phase gradient increases
with time, so that the wave function becomes strongly oscil-
lating. To avoid these difficulties we apply the time-
dependent scaling transformation [16,17]
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r=a(nNé, (8)

where £ is the vector of projective coordinates and a=a(z) is
the scaling factor that depends only on time. Physically, this
transformation makes the coordinates expand together with
the continuum components of the wave function. The substi-
tution of Eq. (8) into the time-dependent Schrodinger equa-
tion yields the following relation [17]:

1 i
r,1) = n eXP(gadg)‘I’(é 1, 9)

where d:% and W(&,1) is the “pilot wave function” of the
solution ¢(r, ) that satisfies the time-dependent Schrodinger-
like equation [16]

i(%‘l’(ét) = [ﬁo(a(t)é) + %a(t)d(t)gz}‘l’(ét). (10)

If d>0, the spectrum of the operator in the square brackets
is purely discrete. This provides smooth behavior of the pilot
solution W(&,7), and ensures normalization in the reduced
interval 0=¢<¢, ..

Consider the scale parameter increasing linearly in the
asymptotic region:

a(t — ©)=d,t, d,>0.

Comparing Egs. (7) and (9), we arrive at the asymptotic defi-
nition of the envelope function at large 7 [18]:

z
V(&) = (- idx)3/2C(k0)exp<ik— In 2k§z),

where it is assumed that k,=a§. For finite r and é&>R,/a,
where R, is the typical radius of the excited bound states, we
get

1
|IC(k,)[* = 5| ¥(kJa1)|* + O(ZInt/t) + O(R/1), (11)
aOO

where R; is the radius of the wave packet before the expan-
sion.

Finally, the triple-differential ionization cross section, de-
scribing the ejection of the initially bound electron that fi-
nally gets the given momentum k, by the projectile electron
with the initial momentum k;, may be expressed as

o IO,.E,.Q,) = 472k k ka7 im |V (K /d.p, 1)|?.
1—©
Now let us consider a two-electron target. For single ion-

ization, when one of the electrons stays near the nucleus in
the ion bound state (n,/,m), the cross section takes the form

(O, E,, Q) = 477k k kyi > lima(t)
11—

2
s

X |<¢nlm(a(t) gl )|\P(§1 ’kZ/doov t))

while for double ionization,
0-(5)(QX5E1’QI’E29QZ)
= 47k ik ey Ko 2O Tim W (K oo, Ko/ iop 1)
{—s00

012715-3



SEROV et al.

For single-photon photoionization Kazansky et al. [19]
have shown how to derive the cross section directly by solv-
ing the time-dependent Schrodinger equation. Implementa-
tion of this approach is straightforward in the case of our
numerical scheme and time-dependent scaling method for
extraction of amplitudes. We solve Eq. (10) with the initial
condition

W(r;,ry,0)=(e-r;+e-ry)ipy(r;,ry)

and get the cross section of one-photon photoionization in
the coord'matf: gauge. For photons having energy E, the
cross section is given by

47°E
l)(Qz) —Zk a;’lima>?(z)

t—0oo

X |<¢nlm(a(t)§l)|\Ir(§l’k2/aoc’t)>|2

for single photoionization and
4m°E
Q) E», Q) = —Lky oz 21m W (K /e, Ko/ o 1) 2
Y C 1—00
for double photoionization.

IV. NUMERICAL METHOD FOR THE HELIUM ATOM

Now let us consider a heliumlike atom and make use of
both the paraxial approximation and the time-dependent scal-
ing method. The appropriate two-electron Schrodinger-like
inhomogeneous equation takes the form

ia\I’(glng,t)

B = () + A1) + U5 -

&MV (E,86.1)
+F(£,6.1). (12)

Here H 5(7) are one-electron Hamiltonians,

) 1, Z

a(t)d(r)
Ho)==550 Ve

Tae, T 2

2
ga,

and U(§,,,1) is the potential of electron-electron interaction,

1
U= e

The term F(&;,&,,t) on the right-hand side is the source term
of Eq. (5) in projective coordinates.

After the impact the full angular momentum and its pro-
jection are conserved; hence, the solution may be presented
as

V(&,&,0) =2 V(g &), (13)
LM

where L and M are the quantum numbers of the full angular
momentum and its projection, respectively. We expand Wt
in terms of bispherical harmonics [24]:
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V(g ) = S Y 101,01, 00, @)U (E1,E0,0).

&i&00,
(14)

The coefficients of the analogous expansion of the source
term F(&,,&,,1) are denoted by

fﬁ%(fbfz,f) = £ 6(LMIL|F (&), &,.1)).

To solve the resulting set of equations we use the split-
operator method [20] in which each evolution step is split
into substeps easily implemented by means of the simple
Crank- Nicholson scheme. Introducing the radial grid
{§l,l 52,2} iy ,N,, the discrete time points #,, and the
notation /Zl iy J,DIL J(&1i,-&,.1,), the evolution from 7, to
1,42 can be accomphshed by the following scheme:

l//ZLIIZili2n+1/4 = ‘//fl%ilizn =T, 11%1'11'2;1’ (15a)
[5:1] + %H{:il(tn+l):| l//ﬁ[gj]iznn/z
{5]1 /]ll(til+l):| ¢1L1}Zj1i2n+1/4’ (15b)
[5/ ”le, (tn+l):| WILIIZiljzn+3/4
= [52 _Hfz 2(tn+l)} 'WDZLIZZiljZnH/Z’ (15¢)
¢km2 iiyn+3/4 = 772%,126521,}12 11%i1i2n+3/4’ (15d)
B i = M ot ignezias (15€)
" L+in,Us iltyer) 712
i 12, iS4 = Cerzz szmz Yy i45/45 (15f)
[52 +5 12, (tn+l):| lﬁle ijon+3/2
= [52 - iTn H2 2(ln+1)] %}Ziljzmsmv (15g)
[5’] + _Hl ,1(1n+1)} llszxj]iznwm
= {5{11 - %H{;il(%ﬂ)} 'wblLl}Zjlizn+3/2’ (15h)
Illgilizwz = ‘ﬁ/%liznnm =i Tnszl]Zilizmr (151)

Here we follow the Einstein summation rule. Each time step
7, =(th4r=1,)/2 is attributed to the mean time f,,=(t,,,
+1,)/2. The matrices H (t) are finite-difference approxi-
mations of one- dlmensmnal radial Hamiltonians
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FIG. 1. The probability density integrated over the angular vari-
ables for L=0, M=0 versus the radial coordinates &;, & of two
electrons: (a) after impact but before the start of expanding of co-
ordinates (=3 a.u.) and (b) within the space of expansion (¢
=1000).
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To diagonalize the electron-electron interaction we use two
orthogonal transformations. First, the Chang-Fano transfor-
mation [22] is used to provide the conversion from the bi-
spherical basis (14) to D basis [24]:

2L+1

1 *
\I’LM(§1’§2J) =—_-\ . 2 Dﬁ/lmz(@l’ 01.¢12)
&& a7 o,

XY yny(012:0) X, (€15 E000), (16)

I:Iala(t) ==

where Dfnlmz is the Wigner function. The [2 min(L,l,)+1]
X [2 min(L,[,)+ 1] matrices of the direct and inverse Chang-
Fano transformations have the form
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FIG. 2. The same as in Fig. 1 but for L=1, M=0.

Crn = (=D, (17a)
Oz = (= 122Gy, L (17b)

Iy —

where C%?,zmz are the Clebsh-Gordan coefficients [24], I,
=0,...,0 aes Li=|L=1,|,...,.L+1,, m,=-—min(L,1,),
...,min(L,[,). For final diagonalization we use the discrete
variable representation [21] based on the transformation

N,~1
¢£r1r‘1/[(§1’§2’t) = 2 X%’V[(gl’gz’t)P;"(n;{n)’ (18)
=0

where ¢ (¢,,&,,1) is the value of the wave function in the
kth node of the angular grid, n=cos 6}, 7,2 and \}'? are the
nodes and weights of corresponding Gauss-Legendre quadra-
tures, k=1,...,N,,, P/'(n) are the normalized associated
Legendre polynomials, and N, is the number of the in-
volved polynomials for given m,. The matrices of dimen-

012715-5



SEROV et al.
3,0x10™"
R without filtration
2,5x107"°4\ —— with filter
5 2,010

s
& 1,5x10™%

1,0x10™"°
5,0x10%°
0,0 : : : ,
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FIG. 3. Single-photoionization cross section versus the energy
of the ejected electron, E=E,+E,, calculated without filtration
(dashed line), with linear and exponential filter (solid line).

sions Ny, XNy, of direct and inverse transformations are

Prw= P, (19a)

Im= P;n( ﬂ?))\k (19b)
The direct transformations are performed at step (15d) of the
algorithm. The potential of an electron-electron interaction
appears in the diagonal form as a function of the radial co-
ordinates of two electrons and the angle 6;, between their
radius vectors. As a result implementation of the Crank-
Nicholson scheme (15¢) is reduced to multiplication by the
phase factor. Then the inverse transformations (15f) are per-
formed to return to the bispherical basis convenient for cal-
culations involving one-electron Hamiltonians. This proce-
dure is particularly efficient in our case of a time-dependent
grid, since the commonly used nondiagonal matrix represen-
tation (,1,|U|l}1}) of the electron-electron potential requires
full matrix inversion for each node of the radial grid at each
time step.

% —— PA-TDS
---- ccc

15 e e expt.
150 30

20+

104

180

c(a.u.)
°

104 210

270

FIG. 4. (Color online) Single-ionization triple-differential cross
section versus the ejection angle for the energy of impact electron,
E;=5600 eV; the scattering angle 6,=0.45; and the energy of
ejected electron, E; ,=10 eV.
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FIG. 5. (Color online) Coplanar double-ionization fivefold dif-
ferential cross section versus 6, for the energy of the impact elec-
tron, E;=5600 eV; the scattering angle 6,=0.45; and energy of the
ejected electrons, E;=E,=10 eV. The ejection angles are (a) 6,
=97°, (b) 6,=139°, and (c) 6,=263°.

To implement the fourth-order finite-difference approxi-
mation of the second radial derivatives we choose a nonuni-
form radial grid with the nodes

max . .
(hi=btans,, s;=—i, i=1...N,,
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FIG. 6. (Color online) Double-photoionization threefold differ-
ential cross section versus 6, for fixed ejection angle #; and equal
energy sharing E\=E,. (a) E,=99 eV, E;=10¢V, 6,=0°% (b) E,
=99 eV, E;=10eV, 6,=60% and (c) E,=179 eV, E|=50 eV, 6,
=45°.

b _ u _ T
= ,  tan 8, =

Smax u

smax’

where r,,,, is the size of the radial box, N, is the number of
nodes, and r, is the grid parameter. In the vicinity of zero the
step h=E&,1—&q0=r.,/N,. We constructed the finite-difference
operator on this grid to be self-adjoint, which assures the
Hermicity of the total Hamiltonian.

The source term is actual during the impact of the incident
electron and exhibits an exponential decrease at large |¢|.
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Hence the zero initial condition is imposed at the initial time
t=—1;,. In the interval [t,,,1,,] the source term is taken into
account. At r=t;,, the negligible source term is omitted to
decrease computational efforts. The time-dependent scaling
factor is chosen in the form

1 1= tyy,

[1+ (-1, 1>

int>

a(t) =

providing d..=.

In the calculations discussed below the parameters of the
numerical scheme were chosen as N,=200, r,,,,=20, r,=10,
by =11, t;,,=3, and y=0.5.

The split-operator method is stable if the time step 7 sat-
isfies the condition

h2
W . (20)

T<

However, practical calculations show that for L >0 the step 7
can be taken a few times larger without any harm. This fact
is due to the absence of three-body collisions in the case L
>0. We choose 7,=7(t,,,)=al(t,,,)7, because the Coulomb
potential decreases as 1/a(t). Then the computer time needed
to calculate the evolution up to given ¢ is proportional to In ¢.
In the present calculations we use the time step 7,=h>/4
=0.000 625 for L=0, To=h2/2=0.00 125 for L=1, and 7,
=h*=0.0025 for L=2.

There is a computational difficulty associated with the use
of projective coordinates: namely, in these coordinates the
size of bound and single-ionized (bound in one coordinate)
states decreases with time, so that the finite-difference ap-
proximation finally becomes poor. For the grid parameters
used here the ground-state radius becomes smaller than the
mesh size long before cross-section convergence is achieved.
However, for Coulomb potentials this problem is not essen-
tial, because the bound states collapse to the node nearest to
the nucleus. This does not affect the double-ionization cross
section to which the remote nodes mainly contribute. The
probability density integrated over the angular variables ver-
sus the radial coordinates of two electrons at r=t;,, is shown
in Figs. 1(a) and 2(a). In Figs. 1(b) and 2(b) the same distri-
bution is shown at large t. The “sidewalls” correspond to
single-ionized (SI) states, and the peak near the center cor-
responds to bound (B) states. The rest smooth part of the
distribution corresponds to the double-ionized (DI) state.

More computational problems arise due to doubly excited
(autoionization) states. The numerical error increasing with ¢
shifts the real part of the energy of such states. As a result
nonphysical oscillations appear in the dependence of the
single-ionization cross section upon the energy of the ejected
electron (dashed line in Fig. 3). To avoid this artifact we
suppress the harmful contributions before starting the coor-
dinate expansion by the following filtration of the initial
wave function:
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n=1

where E;, are the energies of doubly excited states and Ny, is
the number of doubly excited states significantly excited dur-

ing the impact. The multiplication by (H,—E,,) substantially
broadens the wave packet in the energy space. To correct it
one should suppress the high-energy part of the spectrum by
propagating in imaginary time during f, which is imple-
mented by the exponential factor. Actually in all our calcu-
lations it was enough to take Nj,=1 and E;;=-0.625 with
t4,=0.2 to make the nonphysical oscillations negligible (solid
line in Fig. 3). Evidently, standard methods of noise filtration
could be applied with not less efficiency. However, we prefer
not only to remove the artifact oscillations, but to reveal and
suppress their “physical” source.

The target initial-state function i(r;,r,) is found by cal-
culating the propagation in imaginary time [12].

V. RESULTS AND DISCUSSION

In the present work we extend the numerical approach
proposed in [15] over the single and double ionization of
two-electron targets by fast electrons. As mentioned above,
while for (e,2¢) and double photoionization the theoretical
results agree with the experimental ones, in double ionization
by fast-electron impact the disagreements persist [5]. Many
attempts have been made to tackle this difficult problem or,
at least, to explain the reasons for these disagreements. The
first idea was that high-order terms in the Born expansion
could be important in this case [6,9], and this can really
explain the results for smaller impact electron energy [2], but
not for 5.5 keV, when the second-order term of the Born
series contributes only by 10% [9]. In some papers an at-
tempt is made to improve the description of the two-electron
target initial state by using correlated initial-state functions
or even more elaborate functions satisfying the cusp condi-
tion [7]. Other attempts aimed to improve the final-state cor-
relation and the description of the double electron continuum
[6]. In this state of the art the method developed here ap-
proaches the problem from completely different point of
view.

To verify our numerical scheme we have first calculated
the triple-differential cross section of the ionization of he-
lium by electrons with energy 5600 eV. Figure 4 shows its
dependence on the ejection angle for the small scattering
angle 6,=0.45° and the ejection energy 10 eV. Our results
are in very good agreement with the experiment and the first
Born CCC calculations with Hylleraas ground state [8].

Figure 5 shows the multifold differential cross section of
the double ionization of helium as a function of the ejection
angle of one electron at fixed ejection angle of the other
electron. Our results are close to those of the CCC method
[5] and thus are several times lower in magnitude compared
to the experimental results.
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Hence, the hypothesis that the disagreement between
CCC calculations and experiment is due to the incorrect
asymptotic behavior of the CCC two-electron continuum
function, which largely stimulated this work, is not verified.

One can see that our results slightly differ from those of
the CCC method. To reveal the source of this difference we
calculate the double photoionization cross section and com-
pare it with CCC [5,26], HRM-SOW [10], ECS [14], and
experimental [25,26] results (Fig. 6). It is clear that our re-
sults are closer to those of the ECS method. This fact has
minor significance, since the difference mentioned has the
order of numerical error.

VI. CONCLUSION

The multiply differential cross section of the double ion-
ization of a helium atom by fast-electron impact is calculated
by means of a direct approach, which involves the reduction
of the initial nine-dimensional (9D) Schrodinger equation to
a 6D evolution problem followed by modeling the wave
packet dynamics. This approach allows one to avoid the use
of rather cumbersome functions of the continuous spectrum
of the two ejected electrons. The evolution problem is re-
duced to a set of 2D radial matrix equations using the total
momentum representation. The numerical method of solving
the evolution problem is based on two-step splitting of the
repulsive Coulomb interaction between the electrons. To pro-
vide an efficient diagonalization of this interaction in the
DVR and, thus, to reduce the computational burden consid-
erably, we propose a dynamical version of Chang-Fano
transformation. To obtain the cross section versus the ejec-
tion energy and angle we used the time-dependent scaling
transformation of coordinates.

For simple (e,2e) ionization and double photoionization
our results agree with the experimental and CCC results. In
case of the (e,3e) double ionization the disagreement per-
sists between the experiment and the theory, including both
our results and those of the CCC method. With that, our
results are in good agreement with those of the CCC method.

In the next paper we plan to consider the double ioniza-
tion of He with unequal energy sharing. The computational
scheme developed here is clearly applicable to the double
photo- and impact ionization of alkaline-earth metals. In fu-
ture we also plan to develop a scheme based on a modified
CF-DVR for the calculation of photoionization and impact
ionization excitation and double ionization of molecular hy-
drogen.
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